The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Specimen Preparation
2.2. Experiment Scheme and System
3. Results
3.1. Changes in Physical Properties
3.2. Stress-Strain Curve
3.3. Acoustic Emission Characteristics
3.4. Compression Damage Characteristics Based on DIC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, W.; Yang, C.; Zhao, Y. Experimental investigation of mechanical properties of bedded salt rock. Int. J. Rock Mech. Min. Sci. 2007, 44, 400–411. [Google Scholar] [CrossRef]
- Peng, H.; Fan, J.; Zhang, X.; Chen, J.; Li, Z.; Jiang, D.; Liu, C. Computed tomography analysis on cyclic fatigue and damage properties of rock salt under gas pressure. Int. J. Fatigue 2020, 134, 105523. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, H.; Yang, C.; Zhao, K.; Wang, X.; Zheng, Z. Characterizing imbibition and void structure evolution in damaged rock salt under humidity cycling by low-field NMR. Eng. Geol. 2024, 328, 107371. [Google Scholar] [CrossRef]
- Ozarslan, A. Large-scale hydrogen energy storage in salt caverns. Int. J. Hydrogen Energy 2012, 37, 14265–14277. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.; Chen, J.; Jiang, D.; Wu, F.; Fan, J.; Li, Y. Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province. Energy 2020, 198, 117348. [Google Scholar] [CrossRef]
- Bérest, P. Heat transfer in salt caverns. Int. J. Rock Mech. Min. Sci. 2019, 120, 82–95. [Google Scholar] [CrossRef]
- Yin, H.; Yang, C.; Ma, H.; Shi, X.; Zhang, N.; Ge, X.; Li, H.; Yue, H. Stability evaluation of underground gas storage salt caverns with micro-leakage interlayer in bedded rock salt of Jintan, China. Acta Geotech. 2020, 15, 549–563. [Google Scholar] [CrossRef]
- Hunsche, U.; Albrecht, H. Results of true triaxial strength tests on rock salt. Eng. Fract. Mech. 1990, 35, 867–877. [Google Scholar] [CrossRef]
- Senseny, P.; Hansen, F.; Russell, J.; Carter, N.; Handin, J. Mechanical behaviour of rock salt: Phenomenology and micromechanisms. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1992, 29, 363–378. [Google Scholar] [CrossRef]
- Liang, W.; Xu, S.; Zhao, Y. Experimental Study of Temperature Effects on Physical and Mechanical Characteristics of Salt Rock. Rock Mech. Rock Eng. 2006, 39, 469–482. [Google Scholar] [CrossRef]
- Gao, R.; Wu, F.; Chen, J.; Zhu, C.; He, Q. Accurate characterization of triaxial deformation and strength properties of salt rock based on logarithmic strain. J. Energy Storage 2022, 51, 104484. [Google Scholar] [CrossRef]
- Aldakheel, F. Micromorphic approach for gradient-extended thermo-elastic-plastic solids in the logarithmic strain space. Contin. Mech. Thermodyn. 2017, 29, 1207–1217. [Google Scholar] [CrossRef]
- Urai, J.; Kukla, P.; Schléder, Z.; Spiers, C. Dynamics of Complex Intracontinental Basins: The Central European Basin System; Springer: Berlin/Heidelberg, Germany, 2008; pp. 277–290. [Google Scholar] [CrossRef]
- Guo, W.; Li, J.; Wang, T.; He, T.; Xie, D.; Liao, Y.; Liu, C. Experimental Study on the Evolution Law of Permeability Characteristics of Salt Rocks Under Different Temperatures and Different Pore Pressures. Rock Mech. Rock Eng. 2025, 58, 1–23. [Google Scholar] [CrossRef]
- Popp, T.; Kern, H.; Schulze, O. Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation. J. Geophys. Res. Solid Earth 2001, 106, 4061–4078. [Google Scholar] [CrossRef]
- Miller, R. Engineering Classification and Index Properties for Intact Rock. Ph.D. Thesis, University of Illinois, Urbana, IL, USA, 1965; pp. 1–332. [Google Scholar]
- Neff, P.; Eidel, B.; Martin, J. Geometry of Logarithmic Strain Measures in Solid Mechanics. Arch. Ration. Mech. Anal. 2016, 222, 507–572. [Google Scholar] [CrossRef]
- Li, W.; Feng, K.; Ma, H.; Jiang, W.; Li, J.; Lu, Y. Microscopic mechanism analysis of temperature influence on rock salt and thermal damage evolution of surrounding wall in underground salt cavern. Bull. Eng. Geol. Environ. 2024, 83, 412. [Google Scholar] [CrossRef]
- Zhai, S.; Wu, G.; Zhang, Y.; Wu, X. Study on the mechanical properties of high-temperature salt rock under uniaxial compression. J. Rock Mech. Eng. 2014, 33, 105–111. [Google Scholar]
- Li, Z.; Ma, H.; Yao, Y. Research on the Basic Mechanical Properties of Salt Rock under High Temperature and High Pressure. J. Undergr. Space Eng. 2013, 9, 981–985. [Google Scholar]
- Wang, Z.; Chen, F.; Dong, Z.; Li, H.; Shi, X.; Xu, Z.; Meng, X.; Yang, C. Study on the influence of temperature on the damage evolution of hot dry rock in the development of geothermal resources. Geoenergy Sci. Eng. 2024, 241, 213171. [Google Scholar] [CrossRef]
- Sheinin, V.; Blokhin, D. Features of thermomechanical effects in rock salt samples under uniaxial compression. J. Min. Sci. 2012, 48, 39–45. [Google Scholar] [CrossRef]
- Li, H.; Dong, Z.; Yang, Y.; Liu, B.; Chen, M.; Jing, W. Experimental study of damage development in salt rock under uniaxial stress using ultrasonic velocity and acoustic emissions. Appl. Sci. 2018, 8, 553. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Y.; Li, H.; Wang, Z.; Shi, X.; Chen, X.; Lu, Q. Experimental Study on the Influence of Temperature on Rock Salt Creep. Rock Mech. Rock Eng. 2023, 56, 3499–3518. [Google Scholar] [CrossRef]
- Pan, X.; Chen, J.; Rui, Y.; Chen, Z.; Li, Z.; Du, J. Experimental study on short-term creep crack evolution and acoustic emission characteristics of salt rock after heat treatment at different temperatures. Bull. Eng. Geol. Environ. 2025, 84, 253. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, W.; Xiao, N.; Zhao, D.; Li, J.; Li, C. Fractional order viscoelastic plastic creep damage model of salt rock considering temperature. J. Rock Mech. Eng. 2022, 41, 3198–3209. [Google Scholar]
- Zhang, S.; Xu, S.; Xiao, N.; Li, J.; Li, C. Creep damage model of deep salt rock under temperature stress coupling. Coal J. 2024, 49, 3425–3438. [Google Scholar]
- Klafki, M.; Wagler, T.; Grosswig, S.; Kneer, A. Long-term down hole fibre optic temperature measurements and CFD-modeling for investigation of different gas operating modes. In Proceedings of the SMRI Fall Meeting, Chester, UK, 5–8 October 2003; pp. 179–189. [Google Scholar]
- Mahmutoglu, Y. Mechanical Behaviour of Cyclically Heated Fine Grained Rock. Rock Mech. Rock Eng. 1998, 31, 169–179. [Google Scholar] [CrossRef]
- Johnston, H.; Toksöz, N. Thermal cracking and amplitude dependent attenuation. J. Geophys. Res. Solid Earth 1980, 85, 937–942. [Google Scholar] [CrossRef]
- Zhou, S.; Xia, C.; Hu, Y.; Zhang, P. Damage modeling of basaltic rock subjected to cyclic temperature and uniaxial stress. Int. J. Rock Mech. Min. Sci. 2015, 77, 77163. [Google Scholar] [CrossRef]
- Inada, Y.; Kinoshita, N.; Ebisawa, A.; Gomi, S. Strength and deformation characteristics of rocks after undergoing thermal hysteresis of high and low temperatures. Int. J. Rock Mech. Min. Sci. 1997, 34, e1–e140. [Google Scholar] [CrossRef]
- Becattini, V.; Motmans, T.; Zappone, A.; Madonna, C.; Haselbacher, A.; Steinfeld, A. Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl. Energy 2017, 203, 373–389. [Google Scholar] [CrossRef]
- Jin, P.; Hu, Y.; Shao, J.; Zhao, G.; Zhu, X.; Li, C. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite. Geothermics 2019, 78, 118–128. [Google Scholar] [CrossRef]
- ISO 22282:2012; Geotechnical Investigation and Testing. International Organization for Standardization: Geneva, Switzerland, 2012.
- Jiang, X.; Zhang, F.; Huang, B.; Titi, H.; Polaczyk, P.; Ma, Y.; Wang, Y.; Cheng, Z. Full-scale accelerated testing of geogrid-reinforced inverted pavements. Geotext. Geomembr. 2024, 53, 511–525. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Wang, Z. Comparative Study of Temperature and Pressure Variation Patterns in Hydrogen and Natural Gas Storage in Salt Cavern. Appl. Sci. 2024, 14, 9005. [Google Scholar] [CrossRef]
- Deng, F.; Jiang, F.; Wan, J.; Ji, W.; Li, J. Analysis of the deformation characteristics of surrounding rock due to interlayers during cyclic injection-production period of salt cavern hydrogen storage. Fuel 2025, 385, 134115. [Google Scholar] [CrossRef]
- Labaune, P.; Rouabhi, A. Dilatancy and tensile criteria for salt cavern design in the context of cyclic loading for energy storage. J. Nat. Gas Sci. Eng. 2019, 62, 314–329. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Jiang, X.; Tao, F. A new two-sensor non-destructive testing method of grouted rock bolts. Constr. Build. Mater. 2022, 317, 125919. [Google Scholar] [CrossRef]
- Jitka, K.; Radomír, K.; Martin, K.; Lenka, S.; Alena, V. New insight into the phase changes of gypsum. Mater. Struct. 2024, 57, 128. [Google Scholar] [CrossRef]
- Li, W.; Zhu, C.; Yang, C.; Duan, K.; Hu, W. Experimental and DEM investigations of temperature effect on pure and interbedded rock salt. J. Nat. Gas Sci. Eng. 2018, 56, 29–41. [Google Scholar] [CrossRef]
- Xie, H.; Xie, H.; Zhang, Z.; Yao, Q.; Cao, Z.; Gao, H.; Shan, C.; Yan, Z.; Yin, R. Fatigue fracture behaviors and damage evolution of coal samples treated with drying–wetting cycles investigated by acoustic emission and nuclear magnetic resonance. Int. J. Rock Mech. Min. Sci. 2025, 185, 105976. [Google Scholar] [CrossRef]
Number | Tmax/°C | Tmin/°C | Number of Cycles | Temperature Cycle Diagram |
---|---|---|---|---|
T1 | Normal temperature | 0 | ||
T2 | 60 | 40 | 5 | |
T3 | 60 | 40 | 10 | |
T4 | 60 | 40 | 20 | |
T5 | 60 | 40 | 40 | |
T6 | 50 | 40 | 10 | |
T7 | 60 | 40 | 10 | |
T8 | 70 | 40 | 10 | |
T9 | 80 | 40 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Qin, Y.; Xu, N.; Lei, H.; Xu, J.; Zhang, B.; Feng, S.; Chen, L. The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics. Appl. Sci. 2025, 15, 8848. https://doi.org/10.3390/app15168848
Guo Y, Qin Y, Xu N, Lei H, Xu J, Zhang B, Feng S, Chen L. The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics. Applied Sciences. 2025; 15(16):8848. https://doi.org/10.3390/app15168848
Chicago/Turabian StyleGuo, Yuxi, Yan Qin, Nengxiong Xu, Huayang Lei, Junhui Xu, Bin Zhang, Shuangxi Feng, and Liuping Chen. 2025. "The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics" Applied Sciences 15, no. 16: 8848. https://doi.org/10.3390/app15168848
APA StyleGuo, Y., Qin, Y., Xu, N., Lei, H., Xu, J., Zhang, B., Feng, S., & Chen, L. (2025). The Influence of Periodic Temperature on Salt Rock Acoustic Emission, Strength, and Deformation Characteristics. Applied Sciences, 15(16), 8848. https://doi.org/10.3390/app15168848