Transport Dust in Poland: Tracking the Invisible Footprint of Transport on Ecosystem Health
Abstract
1. Introduction
- (1)
- URD from smaller industrialized cities (e.g., Rawicz) contains a higher concentration of trace elements and poses greater toxicity than that from larger cities.
- (2)
- Rainfall and urban maintenance practices (e.g., street cleaning) significantly affect pollutant mobility, potentially increasing exposure through first flush effects and resuspension.
- Compare the concentrations of trace elements (in particular Cu, Zn, Pb) in dust from road and rail transport in urban conditions (we assessed two cities in Poland).
- Determine the differences in the chemical composition and toxicity of dust depending on the type of transport route (road vs. rail), although the direct comparison of dust from rail and road was not possible due to the use of different toxicity tests at each location and the different nature of the samples, which prevented a standardized, parallel comparison between the two types of transport.
- Investigate the effect of rainfall on the mobility and movement of pollutants in URD.
- Assess the “first flush” effect in the context of the intensity of pollutant transport during the initial phase of rainfall.
- Identify the possible health risks of road and rail dust in humans. Additionally, the possible impact of street cleaning was studied to understand the effect of URD distribution on pollution levels.
2. Materials and Methods
2.1. Description of Study Sites
2.2. Sample Preparation and Metal Concentration Assessment
3. Toxicity Assessment
3.1. Aqueous Phase—Runoff Extracts
3.1.1. Microtox
3.1.2. Daptoxkit F Magna
3.2. Solid Phase—Urban Road Dust (URD)
Ostracodtoxkit F
4. Health Risk Assessment
4.1. Exposure Dose Calculation
4.2. Non-Carcinogenic Risk Assessment
4.3. Carcinogenic Risk Assessment
5. Statistical Analysis
6. Results and Discussion
6.1. Trace Element Concentration
6.2. Toxicity Assessment
6.2.1. Aqueous Phase—Runoff Extracts
Microtox
Daphtoxkit F Magna
6.3. Solid Phase—Urban Road Dust (URD)
Ostracodtoxkit F
6.4. Health Risk Assessment
6.4.1. Exposure Dose
6.4.2. Non-Carcinogenic Risk Assessment
6.4.3. Carcinogenic Risk Assessment (ECR)
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anh, H.Q.; Tran, T.M.; Thuy, N.T.T.; Minh, T.B.; Takahashi, S. Screening analysis of organic micro-pollutants in road dusts from some areas in northern Vietnam: A preliminary investigation on contamination status, potential sources, human exposure, and ecological risk. Chemosphere 2019, 224, 428–436. [Google Scholar] [CrossRef]
- Stojić, N.; Štrbac, S.; Ćurčić, L.; Pucarević, M.; Prokić, D.; Stepanov, J.; Stojić, G. Exploring the impact of transportation on heavy metal pollution: A comparative study of trains and cars. Transp. Res. Part D Transp. Environ. 2023, 125, 103966. [Google Scholar] [CrossRef]
- Park, S.; Kim, M.K.; Versoza, M.; Heo, J.; Kim, M.; Park, D. Emission of fugitive dust from railway maintenance vehicles operating on gravel track. Transp. Res. Part D Transp. Environ. 2022, 112, 103441. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Zhao, Y.; Zhang, P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010, 181, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Vaiškūnaitė, R.; Jasiūnienė, V. The analysis of heavy metal pollutants emitted by railway transport. Transport 2020, 35, 213–223. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Daiber, A.; Landrigan, P.J. Soil and water pollution and human health: What should cardiologists worry about? Cardiovasc. Res. 2023, 119, 440–449. [Google Scholar] [CrossRef]
- Safadoust, A.; Khaleghi, S.; Kolahchi, Z. Environmental risks of heavy trace elements in railway soils: Challenges to ecosystem management. Sci. Total Environ. 2025, 974, 179217. [Google Scholar] [CrossRef]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic trace elements in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef]
- Chillrud, S.N.; Epstein, D.; Ross, J.M.; Sax, S.N.; Pederson, D.; Spengler, J.D.; Kinney, P.L. Elevated Airborne Exposures of Teenagers to Manganese, Chromium, and Iron from Steel Dust and New York City’s Subway System. Environ. Sci. Technol. 2004, 38, 732–737. [Google Scholar] [CrossRef]
- Skorbiłowicz, M.; Skorbiłowicz, E.; Łapiński, W. Assessment of metallic content, pollution, and sources of road dust in the City of Białystok (Poland). Aerosol Air Qual. Res. 2020, 20, 2507–2518. [Google Scholar] [CrossRef]
- Sturm, P.; Fruhwirt, D.; Steiner, H. Impact of dust loads in long railway tunnels: In-situ measurements and consequences for tunnel facilities and operation. Tunn. Undergr. Space Technol. 2022, 122, 104328. [Google Scholar] [CrossRef]
- Abbasi, S.; Jansson, A.; Sellgren, U.; Olofsson, U. Particle emissions from rail traffic: A literature review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2511–2544. [Google Scholar] [CrossRef]
- Khoshakhlagh, A.H.; Ghobakhloo, S.; Gruszecka-Kosowska, A. Inhalational exposure to heavy trace elements: Carcinogenic and non-carcinogenic risk assessment. J. Hazard. Mater. Adv. 2024, 100485. [Google Scholar]
- Koh, B.; Kim, E.A. Comparative analysis of urban road dust compositions in relation to their potential human health impacts. Environ. Pollut. 2019, 255, 113156. [Google Scholar] [CrossRef]
- Khan, R.K.; Strand, M.A. Road dust and its effect on human health: A literature review. Epidemiol. Health 2018, 40, e2018011. [Google Scholar] [CrossRef]
- Rybak, J.; Wróbel, M.; Krzyżyńska, R.; Rogula-Kozłowska, W.; Olszowski, T. Is Poland at risk of urban road dust? Comparison studies on mutagenicity of dust. Environ. Pollut. 2022, 314, 120337. [Google Scholar] [CrossRef]
- Penkała, M.; Bihałowicz, J.S.; Rogula-Kozłowska, W.; Rogula-Kopiec, P.; Klik, B.; Bihałowicz, J.; Lewicka, S.; Olszowski, T.; Majewski, G. Health Hazard Related to Fine Road Dust in Poland. Chem. Didact. Ecol. Metrol. 2023, 28, 79–92. [Google Scholar] [CrossRef]
- Li, X.; Yang, S.; Li, J.; Li, Y.; Liu, D.; Xiong, F.; Li, J. Impacts of rainfall characteristics and land cover types on an urban river water quality: A case study of sponge city Beijing. J. Clean. Prod. 2025, 505, 145411. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Li, J.; Wang, Y.; Dzakpasu, M.; Wang, X.C. First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures. J. Environ. Manag. 2023, 340, 117976. [Google Scholar] [CrossRef]
- Gokul, T.; Kumar, K.R.; Veeramanikandan, V.; Arun, A.; Balaji, P.; Faggio, C. Impact of particulate pollution on aquatic invertebrates. Environ. Toxicol. Pharmacol. 2023, 100, 104146. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, X.; Yu, B.; Wang, Z.; Wang, L.; Lei, K.; Zuo, L.; Fan, P.; Liang, T. Exploring the Environmental Risks and Seasonal Variations of Potentially Toxic Elements (PTEs) in Fine Road Dust in Resource-Based Cities Based on Monte Carlo Simulation, Geo-Detector and Random Forest Model. J. Hazard. Mater. 2024, 473, 134708. [Google Scholar] [CrossRef] [PubMed]
- Rybak, J.; Ziembik, Z.; Wróbel, M.; Bihałowicz, J.S.; Rogula-Kozłowska, W.; Mudiyanselage, N.D.; Majewski, G. Seasonal Toxicity of Urban Road Dust in Runoff Process-Studies in Poland. Environ. Sci. Pollut. Res. 2024, 31, 38485–38499. [Google Scholar] [CrossRef] [PubMed]
- Główny Urząd Statystyczny. Rocznik Statystyczny Województw 2023; GUS: Warszawa, Poland, 2023. Available online: https://stat.gov.pl (accessed on 27 June 2025).
- Urząd Miejski Gminy Rawicz. Strategia rozwoju Gminy Rawicz na lata 2021–2030; Urząd Miejski Gminy Rawicz: Rawicz, Poland, 2021; Available online: https://rawicz.pl (accessed on 27 June 2025).
- European Environment Agency. Urban Sustainability in Europe—Opportunities for Climate-Neutral and Liveable Cities; EEA: Copenhagen, Denmark, 2022; Available online: https://www.eea.europa.eu (accessed on 27 June 2025).
- Program Ochrony Środowiska dla Miasta i Gminy Rawicz na Lata 2021–2025 z Perspektywą do 2029. Available online: https://bip.rawicz.pl/artykul/720/9688/program-ochrony-srodowiska-dla-miasta-i-gminy-rawicz-na-lata-2021-2025-z-perspektywa-do-2029 (accessed on 27 June 2025).
- Krzeszowiak, J.; Michalak, A.; Pawlas, K. Zanieczyszczenie powietrza we Wrocławiu i potencjalne zagrożenie dla zdrowia z tym związane. Med. Środ. 2015, 18, 66–73. [Google Scholar]
- General Directorate for National Roads and Motorways. Data from Automatic Traffic Measurement Stations for 2024. 3 June 2025. Available online: https://www.gov.pl/web/gddkia/dane-z-automatycznych-stacji-pomiarowych-za-2024-r (accessed on 27 June 2025).
- Watanabe, H.; Nakajima, F.; Kasuga, I.; Furumai, H. Toxicity evaluation of road dust in the runoff process using a benthic ostracod Heterocypris incongruens. Sci. Total Environ. 2011, 409, 2366–2372. [Google Scholar] [CrossRef]
- PN-ISO 11047:2001; Jako´s´c Gleby—Oznaczanie Kadmu, Chromu, Kobaltu, Miedzi, Ołowiu, Man-Ganu, Niklu i Cynku w Ekstraktach Gleby Wod ˛a Królewsk ˛a—Metody Płomieniowej i Elektrotermicz-Nej Absorpcyjnej Spektrometrii Atomowej. Polish Committee for Standardization: Warsaw, Poland, 2001.
- ISO 11348-3:2007; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. International Organization for Standardization (ISO): Geneva, Switzerland, 2007; Confirmation date: 2022. Amendment: ISO 11348-3:2007/Amd 1:2018.
- Persoone, G.; Marsálek, B.; Blinova, I.; Törökné, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A Practical and User-Friendly Toxicity Classification System with Microbiotests for Natural Waters and Wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef]
- Test No. 202; Daphnia sp. Acute Immobilisation Test. OECD Publishing: Paris, France, 2004. Available online: https://www.oecd.org/en/publications/test-no-202-daphnia-sp-acute-immobilisation-test_9789264069947-en.html (accessed on 27 June 2025).
- Direct Contact’ Toxicity Test for Freshwater Sediments Standard Operating Procedure; Microbiotests: Gent, Belgium, 2019.
- U.S. EPA. Policy Assessment for the Review of the Particulate Matter National Ambient Air Quality Standards; Report EPA-452/R-11-003; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards: Washington, DC, USA, 2011. [Google Scholar]
- U.S. EPA. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; Revision 1; United States Environmental Protection Agency: Washington, DC, USA, February 2007. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 15 June 2025).
- Hołtra, A.; Zamorska-Wojdyła, D. Single- and multi-elemental pollution indices as a useful tool for the evaluation of road dust contaminated by trace elements. Environ. Prot. Eng. 2024, 50, 127–145. [Google Scholar] [CrossRef]
- Samarska, A.; Kovrov, O.; Zelenko, Y. Investigation of heavy metal sources on railways: Ballast layer and herbicides. J. Ecol. Eng. 2020, 21, 32–46. [Google Scholar] [CrossRef]
- Mahbub, P.; Goonetilleke, A.; Egodawatta, P. Impacts of traffic and rainfall characteristics on heavy trace elements build-up and wash-off from urban roads. Environ. Technol. 2010, 32, 571–580. [Google Scholar]
- Gasperi, J.; Zgheib, S.; Cladière, M.; Rocher, V.; Moilleron, R.; Chebbo, G. Priority pollutants in urban stormwater: Part 2—Case of combined sewers. Water Res. 2012, 46, 6693–6703. [Google Scholar] [CrossRef]
- Pochodyła-Ducka, E.; Glińska-Lewczuk, K.; Jaszczak, A. Changes in stormwater quality and heavy trace elements content along the rainfall–runoff process in an urban catchment. Water 2023, 15, 3505. [Google Scholar] [CrossRef]
- Stinshoff, H.; Meinikmann, K.; Wick, A.; Ternes, T.A.; Drewes, J.E. Evaluation of leaching behavior of trace trace elements from road-deposited sediments and filter media in urban stormwater systems. Environ. Sci. Water Res. Technol. 2025, 10, 455–466. [Google Scholar] [CrossRef]
- Liu, S.; Zhan, C.; Zhang, J.; Liu, H.; Xiao, Y.; Zhang, L.; Guo, J.; Liu, X.; Xing, X.; Cao, J. Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. Ecotoxicol. Environ. Saf. 2020, 205, 111155. [Google Scholar] [CrossRef] [PubMed]
- Al-Shidi, H.K.; Sulaiman, H. Toxicity Evaluation of Different Exposure Scenarios of Road Dust Using Daphnia magna and Artemia salina as Aquatic Organisms, and Prosopis cineraria and Vachellia tortilis as Native Plant Species. Open J. Air Pollut. 2024, 13, 73–86. [Google Scholar] [CrossRef]
- Kayhanian, M.; Singh, A.; Suverkropp, C.; Borroum, S. Impact of Annual Average Daily Trafc on Highway Runof Pollutant Concentrations. J. Environ. Eng. 2003, 129, 975–990. [Google Scholar] [CrossRef]
- Schiff, K.C.; Tiefenthaler, L.L.; Bay, S.M.; Greenstein, D.J. Effects of Rainfall Intensity and Duration on the First Flush from Parking Lots. Water 2016, 8, 320. [Google Scholar] [CrossRef]
- Göbel, P.; Dierkes, C.; Coldewey, W.G. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 2007, 91, 26–42. [Google Scholar] [CrossRef]
- Zgheib, S.; Moilleron, R.; Chebbo, G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Res. 2012, 46, 6683–6692. [Google Scholar] [CrossRef]
- Lapointe, M.; Rochman, C.M.; Tufenkji, N. Sustainable strategies to treat urban runoff needed. Nat. Sustain. 2022, 5, 366–369. [Google Scholar] [CrossRef]
- Yi, J.; Lo, L.S.H.; Liu, H.; Qian, P.-Y.; Cheng, J. Study of heavy trace elements and microbial communities in contaminated sediments along an urban estuary. Front. Mar. Sci. 2021, 8, 741912. [Google Scholar] [CrossRef]
- Das, S.; Wiseman, C.L.S. Examining the effectiveness of municipal street sweeping in removing road-deposited particles and metal(loid)s of respiratory health concern. Environ. Int. 2024, 187, 108697. [Google Scholar] [CrossRef]
- McCabe, J.; Schaffer, M. Review of Street Sweeping Measures to Reduce Particulate Matter Emissions; Air & Waste Management Association—Urban Measures Symposium: Pittsburgh, PA, USA, 2024; Available online: https://awma-ums.org (accessed on 15 June 2025).
Parameter | Adults | Children |
---|---|---|
IngR (mg/d) | 200 | 100 |
EF (days/year) | 180 | 180 |
ED (years) | 70 | 6 |
AT (days) | 70·365 | 6·365 |
BW (kg) | 70 | 15 |
InhR (m3/d) | 20 | 7.6 |
PEF (m3/kg) | 1.39·109 | 1.39·109 |
ABS | 0.001 | 0.001 |
SL (mg/cm2·d) | 0.7 | 0.2 |
SA (cm2) | 5700 | 2800 |
ET (h) | 14 | 8 |
Site | EC50 5 min | EC50 15 min |
---|---|---|
1 (Wrocław) | - | - |
2 (Wrocław) | 60.74% | - |
3 (Wrocław) | - | - |
4a (Wrocław) | - | - |
4b (Wrocław) | - | - |
1a (Rawicz) | - | - |
1b (Rawicz) | 9.75% | 13.25% |
2a (Rawicz) | - | - |
2c (Rawicz) | - | - |
3a (Rawicz) | - | - |
3b (Rawicz) | - | - |
4a (Rawicz) | 21.72% | 20.19% |
4b (Rawicz) | - | - |
Elements | Group/Site | 1 | 2 | 3 | 4a | 4b |
---|---|---|---|---|---|---|
Adults | 3.79·10−3 | 1.08·10−3 | 9.77·10−4 | 3.12·10−3 | 2.43·10−3 | |
Cr | Children | 1.01·10−2 | 2.88·10−3 | 2.61·10−3 | 8.33·10−3 | 6.47·10−3 |
Adults | 4.38·10−5 | 2.07·10−5 | 7.81·10−6 | 3.91·10−5 | 3.95·10−5 | |
Pb | Children | 1.17·10−4 | 5.52·10−5 | 2.08·10−5 | 1.01·10−4 | 1.05·10−4 |
Elements | Group/Site | 1a | 1b | 2a | 2b | 2c | 3a | 3b | 4a | 4b |
---|---|---|---|---|---|---|---|---|---|---|
Adults | 2.82·10−3 | 1.65·10−3 | 8.35·10−4 | 1.52·10−3 | 3.30·10−3 | 1.14·10−3 | 1.39·10−3 | 1.62·10−3 | 4.41·10−4 | |
As | Children | 5.53·10−2 | 6.31·10−2 | 9.03·10−3 | 1.18·10−2 | 3.65·10−2 | 4.31·10−2 | 5.23·10−2 | 2.34·10−1 | 6.76·10−2 |
Adults | 1.25·10−3 | 1.43·10−3 | 2.05·10−3 | 2.66·10−4 | 8.29·10−4 | 9.76·10−4 | 1.19·10−3 | 5.30·10−3 | 1.53·10−3 | |
Ni | Children | 3.34·10−3 | 3.82·10−3 | 5.46·10−4 | 7.11·10−4 | 2.21·10−3 | 2.60·10−3 | 3.16·10−3 | 1.41·10−2 | 4.09·10−3 |
Adults | 4.27·10−5 | 4.60·10−5 | 2.64·10−5 | 2.13·10−5 | 1.53·10−4 | 8.96·10−5 | 9.95·10−5 | 3.23·10−5 | 3.65·10−5 | |
Pb | Children | 1.14·10−4 | 1.23·10−3 | 7.04·10−5 | 5.68·10−5 | 4.09·10−4 | 2.39·10−4 | 2.65·10−4 | 8.61·10−5 | 9.73·10−5 |
Adults | 4.26·10−5 | 4.44·10−5 | 2.13·10−5 | 1.60·10−5 | 4.79·10−5 | 2.66·10−5 | 2.13·10−5 | 2.13·10−5 | 3.20·10−5 | |
Cd | Children | 1.14·10−4 | 1.18·10−4 | 5.68·10−5 | 4.26·10−5 | 1.28·10−4 | 7.10·10−5 | 5.68·10−5 | 5.68·10−5 | 8.52·10−5 |
Adults | 6.68·10−2 | 7.76·10−2 | 8.89·10−2 | 1.80·10−2 | 5.81·10−2 | 8.77·10−2 | 8.90·10−2 | 4.76·10−1 | 1.16·10−1 | |
Cr | Children | 1.78·10−1 | 2.07·10−1 | 2.37·10−1 | 4.81·10−2 | 1.55·10−1 | 2.34·10−1 | 2.37·10−1 | 1.27·100 | 3.08·10−1 |
Sample ID | Cr (mg/kg) | Pb (mg/kg) | Zn (mg/kg) | ECR Cr (Children) | HI (Adults) |
---|---|---|---|---|---|
1 WROCŁAW | 147.7 | 37.0 | 268.1 | 1.01·10−2 | 1.39·10−1 |
3a RAWICZ | 74.10 | 75.70 | 189.5 | 2.34·10−1 | 3.45·10−2 |
2c RAWICZ | 49.10 | 129.60 | 324.4 | 1.55·10−1 | 5.91·10−2 |
4a RAWICZ | 402.10 | 27.30 | 202.7 | 1.27·100 | 3.79·10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróbel, M.; Kamińska, J.; Dissanayake Mudiyanselage, N.; Napiórkowska, K.; Bauman, G.; Rybak, J. Transport Dust in Poland: Tracking the Invisible Footprint of Transport on Ecosystem Health. Appl. Sci. 2025, 15, 8862. https://doi.org/10.3390/app15168862
Wróbel M, Kamińska J, Dissanayake Mudiyanselage N, Napiórkowska K, Bauman G, Rybak J. Transport Dust in Poland: Tracking the Invisible Footprint of Transport on Ecosystem Health. Applied Sciences. 2025; 15(16):8862. https://doi.org/10.3390/app15168862
Chicago/Turabian StyleWróbel, Magdalena, Joanna Kamińska, Niranjala Dissanayake Mudiyanselage, Kinga Napiórkowska, Gabriela Bauman, and Justyna Rybak. 2025. "Transport Dust in Poland: Tracking the Invisible Footprint of Transport on Ecosystem Health" Applied Sciences 15, no. 16: 8862. https://doi.org/10.3390/app15168862
APA StyleWróbel, M., Kamińska, J., Dissanayake Mudiyanselage, N., Napiórkowska, K., Bauman, G., & Rybak, J. (2025). Transport Dust in Poland: Tracking the Invisible Footprint of Transport on Ecosystem Health. Applied Sciences, 15(16), 8862. https://doi.org/10.3390/app15168862