Agricultural Image Processing: Challenges, Advances, and Future Trends
Abstract
1. Introduction
2. Materials and Methods
- Which specific challenges in agricultural image processing are addressed in the study?
- What technical approaches are employed to tackle these challenges?
- What are the advantages and limitations of the proposed technological solutions?
- Does the study include comparative evaluations against alternative technologies?
- What are the current state-of-the-art solutions for overcoming these challenges?
3. Technical Challenges in Agricultural Image Processing-Environmental Challenges
3.1. Problems Posed by the Environmental Conditions
3.1.1. The Challenge of Background Interference
3.1.2. The Challenge of Generalized Adaptation
3.1.3. The Challenge of Multi-Scale Scene Adaptation
3.2. Cutting-Edge Solutions
3.2.1. Model Segmentation Techniques
- (1)
- Traditional model segmentation techniques
- (2)
- Deep learning-based model segmentation techniques
3.2.2. Domain-Adaptive Techniques
3.2.3. Attention Mechanisms Technology
3.2.4. Feature Extraction Techniques
3.3. Future Technological Development Trends in the Environmental Aspect
3.3.1. Future Trends of Model Segmentation Technology
3.3.2. Future Trends of Domain-Adaptive Technology
3.3.3. Trends in Feature Extraction Techniques
4. Technical Challenges in Agricultural Image Processing-Data Challenges
4.1. Problems with Data
4.1.1. Data Annotation Challenges
4.1.2. Data Imbalance Challenge
4.1.3. Data Scarcity Challenge
4.2. Data-Centric Frontier Solutions
4.2.1. Data Annotation Technology
4.2.2. Data Imbalance Processing Technology
4.2.3. Data Scarcity Response Techniques
4.3. Future Technological Developments in Terms of Data
4.3.1. Trends in Data Annotation Technology
4.3.2. Trends in Data Imbalance Processing Technology
4.3.3. Data Scarcity in Response to Technological Trends
5. Challenges in Agricultural Image Processing Technology-Model Deployment Challenges
5.1. Problems in Model Deployment
5.1.1. Edge Device Computing Power Is Limited
5.1.2. The Contradiction Between Real-Time Requirements and Inference Delay
5.1.3. Model Parameter Size and Storage Limitations
5.2. Frontier Solutions for Model Lightweighting and Deployment
5.2.1. Innovation in Lightweight Network Architecture
- 1.
- Lightweight Backbone Network Replacement
- 2.
- Efficient Convolution and Lightweight Feature Extraction
5.2.2. Model Compression and Lightweighting Techniques
- Network Pruning Techniques
- 2.
- Quantization Techniques
- 3.
- Knowledge Distillation Technique
5.3. Future Technological Trends in Model Deployment
5.3.1. Dynamic Computing Offloading and Task Allocation
5.3.2. Dedicated Accelerator Design
5.3.3. Distributed Model Deployment and Inference
6. Practical Recommendations for Agricultural Stakeholders
6.1. Recommendations for Image Acquisition and Model Application in Complex Environments
6.2. Data Management and Application Practice Scheme
6.3. Deployment of Intelligent Equipment and Strategies for Technology Implementation
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Y.; Cui, M.; Xu, Z. Spatial Characteristics of Transfer Plots and Conservation Tillage Technology Adoption: Evidence from a Survey of Four Provinces in China. Agriculture 2023, 13, 1601. [Google Scholar] [CrossRef]
- Calicioglu, O.; Flammini, A.; Bracco, S.; Bellù, L.; Sims, R. The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions. Sustainability 2019, 11, 222. [Google Scholar] [CrossRef]
- Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wang, B. Research on Apple Object Detection and Localization Method Based on Improved YOLOX and RGB-D Images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Mousa, S.; Zhou, L.; Wang, Y.; Elmasry, G.; Al-Rejaie, S.; Elwakeel, A.E.; Wei, Y.; Qiu, Z. Deep Learning-Enabled Dynamic Model for Nutrient Status Detection of Aquaponically Grown Plants. Agronomy 2024, 14, 2290. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.; Pan, Q.; Jin, X.; Wang, G.; Zhao, Y.; Hu, Y. Identification of Tea Plant Cultivars Based on Canopy Images Using Deep Learning Methods. Sci. Hortic. 2025, 339, 113908. [Google Scholar] [CrossRef]
- Mahmood Ur Rehman, M.; Liu, J.; Nijabat, A.; Faheem, M.; Wang, W.; Zhao, S. Leveraging Convolutional Neural Networks for Disease Detection in Vegetables: A Comprehensive Review. Agronomy 2024, 14, 2231. [Google Scholar] [CrossRef]
- Ma, J.; Li, M.; Fan, W.; Liu, J. State-of-the-Art Techniques for Fruit Maturity Detection. Agronomy 2024, 14, 2783. [Google Scholar] [CrossRef]
- Xu, H.; Yin, H.; Liu, Y.; Wang, B.; Song, H.; Zheng, Z.; Zhang, X.; Jiang, L.; Wang, S. Regional Winter Wheat Yield Prediction and Variable Importance Analysis Based on Multisource Environmental Data. Agronomy 2024, 14, 1623. [Google Scholar] [CrossRef]
- Chen, X.; Ding, H.; Yuan, L.-M.; Cai, J.-R.; Chen, X.; Lin, Y. New Approach of Simultaneous, Multi-Perspective Imaging for Quantitative Assessment of the Compactness of Grape Bunches: Simultaneous Multi-Perspective Imaging of Bunches. Aust. J. Grape Wine Res. 2018, 24, 413–420. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Deng, J.; Li, Z.; Raza, A.; Khadke, L.; Yu, Z.; El-Rawy, M. Forecasting Vapor Pressure Deficit for Agricultural Water Management Using Machine Learning in Semi-Arid Environments. Agric. Water Manag. 2023, 283, 108302. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Y.; Hu, J.; Xu, G.; Liu, W.; Ma, G.; Ding, Q.; He, R. Quantitative Evaluation of Post-Tillage Soil Structure Based on Close-Range Photogrammetry. Agriculture 2024, 14, 2124. [Google Scholar] [CrossRef]
- Chen, S.; Memon, M.S.; Shen, B.; Guo, J.; Du, Z.; Tang, Z.; Guo, X.; Memon, H. Identification of Weeds in Cotton Fields at Various Growth Stages Using Color Feature Techniques. Ital. J. Agron. 2024, 19, 100021. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep Learning in Agriculture: A Survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Borowiec, M.L.; Dikow, R.B.; Frandsen, P.B.; McKeeken, A.; Valentini, G.; White, A.E. Deep learning as a tool for ecology and evolution. Methods Ecol. Evol. 2022, 13, 1640–1660. [Google Scholar] [CrossRef]
- Liao, J.; Tao, W.; Liang, Y.; He, X.; Wang, H.; Zeng, H.; Wang, Z.; Luo, X.; Sun, J.; Wang, P.; et al. Multi-scale monitoring for hazard level classification of brown planthopper damage in rice using hyperspectral technique. Int. J. Agric. Biol. Eng. 2024, 17, 202–211. [Google Scholar] [CrossRef]
- Zhou, M.; Dai, C.; Aheto, J.H.; Zhang, X. Design of a Portable Electronic Nose for Identification of Minced Chicken Meat Adulterated with Soybean Protein Isolate. J. Food Saf. 2024, 44, e13163. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Y.; Zhang, B.; Fang, L.; Huang, D.; Qi, L. Learning attention in the frequency domain for flexible real photograph denoising. IEEE Trans. Image Process. 2024, 33, 3707–3721. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, D.; Olaniyi, E.; Huang, Y. Generative Adversarial Networks (GANs) for Image Augmentation in Agriculture: A Systematic Review. Comput. Electron. Agric. 2022, 200, 107208. [Google Scholar] [CrossRef]
- Güldenring, R. Self-Supervised Contrastive Learning on Agricultural Images. Comput. Electron. Agric. 2021, 191, 106510. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, G.; Du, X.; Shaheen, N.; Mao, H. Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network. Int. J. Agric. Biol. Eng. 2021, 14, 190–198. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Ali, S.; Yang, N.; Fu, S.; Zhang, Y. Multi-class detection of cherry tomatoes using improved YOLOv4-tiny. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Z.; Zhang, K.; Yang, L.; Zhang, D.; Yu, Y. Research on the Visual Location Method for Strawberry Picking Points under Complex Conditions Based on Composite Models. J. Sci. Food Agric. 2024, 104, 8566–8579. [Google Scholar] [CrossRef]
- Li, M.M.; Long, J.; Stein, A.; Wang, X.Q. Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images. ISPRS J. Photogramm. Remote Sens. 2023, 200, 24–40. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, X.; Guo, G.; Zhu, X.; Shi, J.; Zhang, N.; Ding, S.; Tang, N.; Qu, Y.; Sun, Z.; et al. An automated root phenotype platform enables nondestructive high-throughput root system architecture dissection in wheat. Plant Physiol. 2025, 198, kiaf154. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, W.; Gao, X.; Zhang, W.; Li, N.; Miao, Z.H. Efficient occlusion avoidance based on active deep sensing for harvesting robots. Comput. Electron. Agric. 2024, 225, 109360. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y. Prediction of the Chlorophyll Content in Pomegranate Leaves Based on Digital Image Processing Technology and Stacked Sparse Autoencoder. Int. J. Food Prop. 2019, 22, 1720–1732. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Heidari, A.A.; Yu, H.; Chen, H. Multi-Threshold Image Segmentation of Maize Diseases Based on Elite Comprehensive Particle Swarm Optimization and Otsu. Front. Plant Sci. 2021, 12, 789911. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.J. An Edge Detection for Sunflower Seeds Based on Improved Canny Algorithm. Food Mach. 2015, 31, 36–38. [Google Scholar]
- Ju, Z.; Xue, Y.; Zhang, W.; Zhai, C. Algorithm for Detecting Pomegranate Disease Spots Based on Prewitt Operator with Adaptive Threshold. Trans. Chin. Soc. Agric. Eng. 2020, 36, 135–142. [Google Scholar]
- Wang, Z.; Chu, G.K.; Zhang, H.J.; Liu, S.X.; Huang, X.C.; Gao, F.R.; Zhang, C.Q.; Wang, J.X. Identification of Diseased Empty Rice Panicles Based on Haar-like Feature of UAV Optical Image. Trans. CSAE 2018, 34, 73–82. [Google Scholar]
- Liu, X.; Jia, W.; Ruan, C.; Zhao, D.; Gu, Y.; Chen, W. The Recognition of Apple Fruits in Plastic Bags Based on Block Classification. Precis. Agric. 2018, 19, 735–749. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, B.; Cai, J.; Xu, Y.; Lu, F.; Ma, H. Inspection and Classification of Wheat Quality Using Image Processing. Qual. Assur. Saf. Crops Foods 2023, 15, 43–54. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Han, L.; Cai, Z.; Guo, Z. Two-Wavelength Image Detection of Early Decayed Oranges by Coupling Spectral Classification with Image Processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Liu, Z.H.; Yu, M.; Ren, H.E. Image Segmentation of Grape Clusters Based on Improved K-means Clustering. Jiangsu Agric. Sci. 2018, 46, 239–244. [Google Scholar] [CrossRef]
- Pham, V.H.; Lee, B.R. An Image Segmentation Approach for Fruit Defect Detection Using K-Means Clustering and Graph-Based Algorithm. Vietnam J. Comput. Sci. 2015, 2, 25–33. [Google Scholar] [CrossRef]
- Yu, Y.; Velastin, S.A.; Yin, F. Automatic Grading of Apples Based on Multi-Features and Weighted K-Means Clustering Algorithm. Inf. Process. Agric. 2020, 7, 556–565. [Google Scholar] [CrossRef]
- Tian, I.A.; Xie, C.; Li, L.Y.; Lu, S.L.; Qian, T.T. Improved YOLO v8 Method for Cucumber Fruit Segmentation in Complex Greenhouse Environments. Trans. Chin. Soc. Agric. Mach. 2025, 56, 433–442. [Google Scholar]
- Zhao, Y.; Zhang, X.; Sun, J.; Yu, T.; Cai, Z.; Zhang, Z.; Mao, H. Low-Cost Lettuce Height Measurement Based on Depth Vision and Lightweight Instance Segmentation Model. Agriculture 2024, 14, 1596. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Y.; Fan, W.; Liu, J. An Improved YOLOv8 Model for Lotus Seedpod Instance Segmentation in the Lotus Pond Environment. Agronomy 2024, 14, 1325. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Wu, C.; Wu, H. Fruit Distribution Density Estimation in YOLO-Detected Strawberry Images: A Kernel Density and Nearest Neighbor Analysis Approach. Agriculture 2024, 14, 1848. [Google Scholar] [CrossRef]
- Tang, S.; Xia, Z.; Gu, J.; Wang, W.; Huang, Z.; Zhang, W. High-Precision Apple Recognition and Localization Method Based on RGB-D and Improved SOLOv2 Instance Segmentation. Front. Sustain. Food Syst. 2024, 8, 1403872. [Google Scholar] [CrossRef]
- Zhu, G.; Luo, Z.; Ye, M.; Xie, Z.; Luo, X.; Hu, H.; Wang, Y.; Ke, Z.; Jiang, J.; Wang, W. Instance Segmentation of Sugar Apple (Annona squamosa) in Natural Orchard Scenes Using an Improved YOLOv9-Seg Model. Agriculture 2025, 15, 1278. [Google Scholar] [CrossRef]
- Yang, Q.L.; Chen, C.; Lei, L.; Zhou, N.S.; Yang, L. TD-BlendMask-based Approach for Instance Segmentation of Panax notoginseng Leaf Diseases in Complex Environments. Trans. Chin. Soc. Agric. Mach. 2025, 56, 375–386. [Google Scholar]
- Dai, W.; Zhu, W.; Zhou, G.; Liu, G.; Xu, J.; Zhou, H.; Hu, Y.; Liu, Z.; Li, J.; Li, L. AISOA-SSformer: An Effective Image Segmentation Method for Rice Leaf Disease Based on the Transformer Architecture. Plant Phenomics 2024, 6, 0218. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Y.; Yang, J.; Dai, A.; Zhou, H.; Tang, K.; Zhang, Y.; Wang, R.; Wei, B.; Wang, Y. Large-Scale Apple Orchard Identification from Multi-Temporal Sentinel-2 Imagery. Agronomy 2025, 15, 1487. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Segmentation of Overlapping Grape Clusters Based on the Depth Region Growing Method. Electronics 2021, 10, 2813. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, W.; Liu, M.; Zhao, J.; Zhu, Q.; Yin, Y. Semantic Segmentation Model-Based Boundary Line Recognition Method for Wheat Harvesting. Agriculture 2024, 14, 1846. [Google Scholar] [CrossRef]
- Xu, B.; Werle, R.; Chudzik, G.; Zhang, Z. Enhancing Weed Detection Using UAV Imagery and Deep Learning with Weather-Driven Domain Adaptation. Comput. Electron. Agric. 2025, 237, 110673. [Google Scholar] [CrossRef]
- Tian, L.; Ustin, S.L.; Xue, B.; Zarco-Tejada, P.J.; Jin, Y.F.; Yao, X.; Zhu, Y.; Cao, W.X.; Cheng, T. Visualizing the pre-visual: Rice blast infection signals revealed. Remote Sens. Environ. 2025, 328, 114905. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Zhong, R.; Lin, Z.; Xu, J.; Jiang, H.; Huang, J.; Li, H.; Lin, T. DeepCropMapping: A Multi-Temporal Deep Learning Approach with Improved Spatial Generalizability for Dynamic Corn and Soybean Mapping. Remote Sens. Environ. 2020, 247, 111946. [Google Scholar] [CrossRef]
- Chen, L.; Zou, J.; Yuan, Y.; He, H. Improved Domain Adaptive Rice Disease Image Recognition Based on a Novel Attention Mechanism. Comput. Electron. Agric. 2023, 208, 107806. [Google Scholar] [CrossRef]
- Wang, H.; Shan, Y.; Chen, L.; Liu, M.; Wang, L.; Meng, Z. Multi-Scale Feature Learning for 3D Semantic Mapping of Agricultural Fields Using UAV Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2025, 141, 104626. [Google Scholar] [CrossRef]
- Liu, D.; Parmiggiani, A.; Norton, T. MT-SRNet: A Transferable Multi-Task Super-Resolution Network for Pig Keypoint Detection, Segmentation, and Posture Estimation. Comput. Electron. Agric. 2025, 237, 110533. [Google Scholar] [CrossRef]
- Tao, K.; Wang, A.; Shen, Y.; Lu, Z.; Peng, F.; Wei, X. Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion. Horticulturae 2022, 8, 904. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine. Agriculture 2021, 11, 869. [Google Scholar] [CrossRef]
- Saleh, A.; Olsen, A.; Wood, J.; Philippa, B.; Rahimi Azghadi, M. Semi-Supervised Weed Detection for Rapid Deployment and Enhanced Efficiency. Comput. Electron. Agric. 2025, 236, 110410. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, T.; Du, X.; Dong, B.; Li, Q. Model Morphing Supported Large Scale Crop Type Mapping: A Case Study of Cotton Mapping in Xinjiang, China. Int. J. Appl. Earth Obs. Geoinf. 2025, 141, 104667. [Google Scholar] [CrossRef]
- Miao, C.; Fu, S.; Sun, W.; Feng, S.; Hu, Y.; Liu, J.; Feng, Q.; Li, Y.; Liang, T. Large-Scale Mapping of the Spatial Distribution and Cutting Intensity of Cultivated Alfalfa Based on a Sample Generation Algorithm and Random Forest. Comput. Electron. Agric. 2025, 237, 110613. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the 35th International Conference on Neural Information Processing Systems (NIPS’21), Red Hook, NY, USA, 6 December 2021. [Google Scholar]
- Xu, Z.; Zhang, W.; Zhang, T.; Yang, Z.; Li, J. Efficient Transformer for Remote Sensing Image Segmentation. Remote Sens. 2021, 13, 3585. [Google Scholar] [CrossRef]
- Xu, J.; Lu, K.; Wang, H. Attention Fusion Network for Multi-Spectral Semantic Segmentation. Pattern Recognit. Lett. 2021, 146, 179–184. [Google Scholar] [CrossRef]
- Tang, J.; Miao, R.; Zhang, Z.; He, D.; Liu, L. Decision Support of Farmland Intelligent Image Processing Based on Multi-Inference Trees. Comput. Electron. Agric. 2015, 117, 49–56. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, K.R. MTS-CNN: Multi-Task Semantic Segmentation-Convolutional Neural Network for Detecting Crops and Weeds. Comput. Electron. Agric. 2022, 199, 107146. [Google Scholar] [CrossRef]
- Guo, Y.; Lan, Y.; Chen, X. CST: Convolutional Swin Transformer for Detecting the Degree and Types of Plant Diseases. Comput. Electron. Agric. 2022, 202, 107407. [Google Scholar] [CrossRef]
- Khare, O.; Mane, S.; Kulkarni, H.; Barve, N. LeafNST: An Improved Data Augmentation Method for Classification of Plant Disease Using Object-Based Neural Style Transfer. Discov. Artif. Intell. 2024, 4, 50. [Google Scholar] [CrossRef]
- Quach, L.-D.; Quoc, K.N.; Quynh, A.N.; Thai-Nghe, N.; Nguyen, T.G. Explainable Deep Learning Models with Gradient-Weighted Class Activation Mapping for Smart Agriculture. IEEE Access 2023, 11, 83752–83762. [Google Scholar] [CrossRef]
- Zhou, L.; Xiao, Q.; Taha, M.F.; Xu, C.; Zhang, C. Phenotypic Analysis of Diseased Plant Leaves Using Supervised and Weakly Supervised Deep Learning. Plant Phenomics 2023, 5, 0022. [Google Scholar] [CrossRef] [PubMed]
- Ciarfuglia, T.A.; Motoi, I.M.; Saraceni, L.; Fawakherji, M.; Sanfeliu, A.; Nardi, D. Weakly and Semi-Supervised Detection, Segmentation and Tracking of Table Grapes with Limited and Noisy Data. Comput. Electron. Agric. 2023, 205, 107624. [Google Scholar] [CrossRef]
- Huang, Y.; Bais, A. Unsupervised Domain Adaptation for Weed Segmentation Using Greedy Pseudo-Labelling. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; IEEE: New York, NY, USA, 2024; pp. 2484–2494. [Google Scholar] [CrossRef]
- Liu, T.; Zhai, D.; He, F.; Yu, J. Semi-supervised Learning Methods for Weed Detection in Turf. Pest Manag. Sci. 2024, 80, 2552–2562. [Google Scholar] [CrossRef]
- Chen, L.-B.; Huang, G.-Z.; Huang, X.-R.; Wang, W.-C. A Self-Supervised Learning-Based Intelligent Greenhouse Orchid Growth Inspection System for Precision Agriculture. IEEE Sens. J. 2022, 22, 24567–24577. [Google Scholar] [CrossRef]
- Monowar, M.M.; Hamid, M.A.; Kateb, F.A.; Ohi, A.Q.; Mridha, M.F. Self-Supervised Clustering for Leaf Disease Identification. Agriculture 2022, 12, 814. [Google Scholar] [CrossRef]
- Kar, S.; Nagasubramanian, K.; Elango, D.; Nair, A.; Mueller, D.S.; O’Neal, M.E.; Singh, A.K.; Sarkar, S.; Ganapathysubramanian, B. Self-supervised learning improves agricultural pest classification. In Proceedings of the AI for Agriculture and Food Systems, Vancouver, BC, Canada, 28 February 2021. [Google Scholar]
- Silva, R.F.; Mostaço, G.M.; Xavier, F.; Saraiva, A.M.; Cugnasca, C.E. Use of Unsupervised Machine Learning for Agricultural Supply Chain Data Labeling. In Information and Communication Technologies for Agriculture—Theme II: Data; Bochtis, D.D., Moshou, D.E., Vasileiadis, G., Balafoutis, A., Pardalos, P.M., Eds.; Springer Optimization and Its Applications; Springer International Publishing: Cham, Switzerland, 2022; Volume 183, pp. 267–288. [Google Scholar] [CrossRef]
- Sara, B.; Otman, A.; Khatir, E. New Learning Approach for Unsupervised Neural Networks Model with Application to Agriculture Field. IJACSA 2020, 11, 360–369. [Google Scholar] [CrossRef]
- Badapanda, K.; Mishra, D.P.; Salkuti, S.R. Agriculture Data Visualization and Analysis Using Data Mining Techniques: Application of Unsupervised Machine Learning. TELKOMNIKA 2022, 20, 98. [Google Scholar] [CrossRef]
- Weller, D.L.; Love, T.M.T.; Wiedmann, M. Comparison of Resampling Algorithms to Address Class Imbalance When Developing Machine Learning Models to Predict Foodborne Pathogen Presence in Agricultural Water. Front. Environ. Sci. 2021, 9, 701288. [Google Scholar] [CrossRef]
- Feng, J.; Shi, Y.; Su, Y.; Mu, W.; Tian, D. Evaluation Method of Agricultural Production Technical Efficiency Based on Borderline-SMOTE and LightGBM. In Atlantis Highlights in Engineering, Proceedings of the 3rd International Conference on Management Science and Software Engineering (ICMSSE 2023), Qingdao, China, 9 October 2023; Rauf, A., Zakuan, N., Sohail, M.T., Azmi, R., Eds.; Atlantis Press International BV: Dordrecht, The Netherlands, 2024; Volume 20, pp. 586–592. [Google Scholar] [CrossRef]
- Sovia, N.A.; Wardhani, N.W.S. Ensemble CNN with ADASYN for multiclass classification on cabbage pests. BAREKENG J. Math. Its Appl. 2024, 18, 1237–1248. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S. Broken Corn Detection Based on an Adjusted YOLO With Focal Loss. IEEE Access 2019, 7, 68281–68289. [Google Scholar] [CrossRef]
- Guan, X.; Shi, L.; Yang, W.; Ge, H.; Wei, X.; Ding, Y. Multi-Feature Fusion Recognition and Localization Method for Unmanned Harvesting of Aquatic Vegetables. Agriculture 2024, 14, 971. [Google Scholar] [CrossRef]
- Yang, Y.; Xi, M.; Wen, J.; Xiao, S.; Yang, J. Image Classification of Rice Diseases Based on Metric Learning. In Proceedings of the 2024 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Toronto, ON, Canada, 19–21 June 2024; IEEE: New York, NY, USA, 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, F.; Diao, Q.; Feng, X.; Li, W.; Wang, J. Seeding Crop Detection Framework Using Prototypical Network Method in UAV Images. Agriculture 2021, 12, 26. [Google Scholar] [CrossRef]
- Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-Learning with Memory-Augmented Neural Networks. In Proceedings of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016. [Google Scholar]
- Elsherbiny, O.; Gao, J.; Ma, M.; Guo, Y.; Tunio, M.H.; Mosha, A.H. Advancing Lettuce Physiological State Recognition in IoT Aeroponic Systems: A Meta-Learning-Driven Data Fusion Approach. Eur. J. Agron. 2024, 161, 127387. [Google Scholar] [CrossRef]
- Yang, F.; Sun, J.; Cheng, J.; Fu, L.; Wang, S.; Xu, M. Detection of Starch in Minced Chicken Meat Based on Hyperspectral Imaging Technique and Transfer Learning. J. Food Process Eng. 2023, 46, e14304. [Google Scholar] [CrossRef]
- Upreti, K.; Singh, P.; Jain, D.; Pandey, A.K.; Gupta, A.; Singh, H.R.; Srivastava, S.K.; Prasad, J.S. Progressive Loss-Aware Fine-Tuning Stepwise Learning with GAN Augmentation for Rice Plant Disease Detection. Multimed. Tools Appl. 2024, 83, 84565–84588. [Google Scholar] [CrossRef]
- Bosilj, P.; Aptoula, E.; Duckett, T.; Cielniak, G. Transfer Learning between Crop Types for Semantic Segmentation of Crops versus Weeds in Precision Agriculture. J. Field Robot. 2020, 37, 7–19. [Google Scholar] [CrossRef]
- Ding, Y.; Zeng, R.; Jiang, H.; Guan, X.; Jiang, Q.; Song, Z. Classification of Tea Quality Grades Based on Hyperspectral Imaging Spatial Information and Optimization Models. Food Meas. 2024, 18, 9098–9112. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Adade, S.Y.S.; Lin, J.; Lin, H.; Chen, Q. Tea Grading, Blending, and Matching Based on Computer Vision and Deep Learning. J. Sci. Food Agric. 2025, 105, 3239–3251. [Google Scholar] [CrossRef]
- Lu, P.; Zheng, W.; Lv, X.; Xu, J.; Zhang, S.; Li, Y.; Zhangzhong, L. An Extended Method Based on the Geometric Position of Salient Image Features: Solving the Dataset Imbalance Problem in Greenhouse Tomato Growing Scenarios. Agriculture 2024, 14, 1893. [Google Scholar] [CrossRef]
- Li, L.-H.; Tanone, R. Improving Robustness Using MixUp and CutMix Augmentation for Corn Leaf Diseases Classification Based on ConvMixer Architecture. J. ICT Res. Appl. 2023, 17, 167–180. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L. Image Generation of Tomato Leaf Disease Identification Based on Adversarial-VAE. Agriculture 2021, 11, 981. [Google Scholar] [CrossRef]
- Sener, E.; Colak, E.; Erten, E.; Taskin, G. The Added Value of Cycle-GAN for Agriculture Studies. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 12–16 July 2021; IEEE: New York, NY, USA, 2021; pp. 7039–7042. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, Y.; He, P.; Hu, L.; Gao, W.; Gu, L. Identifying Tomato Growth Stages in Protected Agriculture with StyleGAN3–Synthetic Images and Vision Transformer. Agriculture 2025, 15, 120. [Google Scholar] [CrossRef]
- Mullins, C.C.; Esau, T.J.; Zaman, Q.U.; Hennessy, P.J. Optimizing Data Collection Requirements for Machine Learning Models in Wild Blueberry Automation through the Application of DALL-E 2. Smart Agric. Technol. 2025, 10, 100764. [Google Scholar] [CrossRef]
- Moreno, H.; Gómez, A.; Altares-López, S.; Ribeiro, A.; Andújar, D. Analysis of Stable Diffusion-Derived Fake Weeds Performance for Training Convolutional Neural Networks. Comput. Electron. Agric. 2023, 214, 108324. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.; Tang, C.; Liu, Z.; Li, Z.; Zhai, R.; Peng, H.; Song, P. E-CLIP: An Enhanced CLIP-Based Visual Language Model for Fruit Detection and Recognition. Agriculture 2025, 15, 1173. [Google Scholar] [CrossRef]
- Robinson, C.; Ortiz, A.; Malkin, K.; Elias, B.; Peng, A.; Morris, D.; Dilkina, B.; Jojic, N. Human-Machine Collaboration for Fast Land Cover Mapping. AAAI 2020, 34, 2509–2517. [Google Scholar] [CrossRef]
- Deepa, R.; Vigneshwari, S. An Effective Automated Ontology Construction Based on the Agriculture Domain. ETRI J. 2022, 44, 573–587. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, L.; Xie, Y.; Jin, Z.; Jia, X. Task-Adaptive Meta-Learning Framework for Advancing Spatial Generalizability. AAAI 2023, 37, 14365–14373. [Google Scholar] [CrossRef]
- Omole, O.J.; Rosa, R.L.; Saadi, M.; Rodriguez, D.Z. AgriNAS: Neural Architecture Search with Adaptive Convolution and Spatial–Time Augmentation Method for Soybean Diseases. AI 2024, 5, 2945–2966. [Google Scholar] [CrossRef]
- Guo, G.; Lai, S.; Wu, Q.; Shou, Y.; Shi, W. Enhancing Domain Adaptation for Plant Diseases Detection through Masked Image Consistency in Multi-Granularity Alignment. Expert Syst. Appl. 2025, 276, 127101. [Google Scholar] [CrossRef]
- Tsoumas, I.; Sitokonstantinou, V.; Giannarakis, G.; Lampiri, E.; Athanassiou, C.; Camps-Valls, G.; Kontoes, C.; Athanasiadis, I.N. Leveraging Causality and Explainability in Digital Agriculture. Environ. Data Sci. 2025, 4, e23. [Google Scholar] [CrossRef]
- Peng, X.; Ma, Y.; Sun, J.; Chen, D.; Zhen, J.; Zhang, Z.; Hu, X.; Wang, Y. Grape Leaf Moisture Prediction from UAVs Using Multimodal Data Fusion and Machine Learning. Precis. Agric. 2024, 25, 1609–1635. [Google Scholar] [CrossRef]
- Ku, K.; Jubery, T.Z.; Rodriguez, E.; Balu, A.; Sarkar, S.; Krishnamurthy, A.; Ganapathysubramanian, B. SC-NeRF: NeRF-Based Point Cloud Reconstruction Using a Stationary Camera for Agricultural Applications. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 11–15 June 2025. [Google Scholar]
- Ragu, N.; Teo, J. Object Detection and Classification Using Few-Shot Learning in Smart Agriculture: A Scoping Mini Review. Front. Sustain. Food Syst. 2023, 6, 1039299. [Google Scholar] [CrossRef]
- Wu, Y.; Nagy, A.; Rajnai, Z.; Fregan, B.; Takács-György, K. Quantum Machine Learning in Crop Disease Monitoring: Opportunities and Challenges to Practical Implementation. In Proceedings of the 2025 IEEE 12th International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC), Mahe Island, Beau Vallon, Seychelles, 9–11 April 2025; IEEE: New York, NY, USA, 2025; pp. 59–64. [Google Scholar] [CrossRef]
- Yin, H.; Gu, Y.H.; Park, C.-J.; Park, J.-H.; Yoo, S.J. Transfer Learning-Based Search Model for Hot Pepper Diseases and Pests. Agriculture 2020, 10, 439. [Google Scholar] [CrossRef]
- Guo, Z.; Cai, D.; Bai, J.; Xu, T.; Yu, F. Intelligent Rice Field Weed Control in Precision Agriculture: From Weed Recognition to Variable Rate Spraying. Agronomy 2024, 14, 1702. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, X.; Huang, Y.; Sun, H.; Wan, F. A Real-Time Zanthoxylum Target Detection Method for an Intelligent Picking Robot under a Complex Background, Based on an Improved YOLOv5s Architecture. Sensors 2022, 22, 682. [Google Scholar] [CrossRef]
- Lu, A.; Guo, R.; Ma, Q.; Ma, L.; Cao, Y.; Liu, J. Online Sorting of Drilled Lotus Seeds Using Deep Learning. Biosyst. Eng. 2022, 221, 118–137. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. TS-YOLO: An All-Day and Lightweight Tea Canopy Shoots Detection Model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Zuo, Z.; Gao, S.; Peng, H.; Xue, Y.; Han, L.; Ma, G.; Mao, H. Lightweight Detection of Broccoli Heads in Complex Field Environments Based on LBDC-YOLO. Agronomy 2024, 14, 2359. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple Target Recognition Method in Complex Environment Based on Improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Feng, G.; Wang, C.; Wang, A.; Gao, Y.; Zhou, Y.; Huang, S.; Luo, B. Segmentation of Wheat Lodging Areas from UAV Imagery Using an Ultra-Lightweight Network. Agriculture 2024, 14, 244. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Shi, J.; Zhou, C.; Hu, J. SN-CNN: A Lightweight and Accurate Line Extraction Algorithm for Seedling Navigation in Ridge-Planted Vegetables. Agriculture 2024, 14, 1446. [Google Scholar] [CrossRef]
- Ji, W.; Zhai, K.; Xu, B.; Wu, J. Green Apple Detection Method Based on Multidimensional Feature Extraction Network Model and Transformer Module. J. Food Prot. 2025, 88, 100397. [Google Scholar] [CrossRef]
- Li, A.; Wang, C.; Ji, T.; Wang, Q.; Zhang, T. D3-YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario. Agriculture 2024, 14, 2268. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, Y.; Zhang, L.; Ding, Y.; Zhang, G.; Zhang, D. Improved Lightweight Zero-Reference Deep Curve Estimation Low-Light Enhancement Algorithm for Night-Time Cow Detection. Agriculture 2024, 14, 1003. [Google Scholar] [CrossRef]
- Yuliansyah, H.; Hartanto, R.; Soesanti, I. Model Compression Using Post-Training Dynamic Range Quantization for Plant Disease Recognition. IET Conf. Proc. 2025, 2024, 281–287. [Google Scholar] [CrossRef]
- Syaharani, A.B.; Sulandari, W.; Pardede, H.F.; Heryana, A.; Suryawati, E.; Subekti, A. Small CNN for Plant Disease Classification Using Quantization-Aware Training: A Case Study on MobileNetV3. In Proceedings of the 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Bandung, Indonesia, 15–16 November 2023; IEEE: New York, NY, USA, 2023; pp. 129–134. [Google Scholar] [CrossRef]
- Chelliah, B.J.; Sofi, S.J.; SreeKrishna, K.S.S.; Vishaal, S.; Senthilselvi, A.; Senthil Pandi, S. Mobile-Friendly Plant Disease Detection and Classification Using Metadata and Asymmetric Knowledge Distillation. In Proceedings of the 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Faridabad, India, 28–29 November 2024; IEEE: New York, NY, USA, 2024; pp. 767–771. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, M.; Barda, S.; Goel, N.; Saini, M. PA-RDFKNet: Unifying Plant Age Estimation through RGB-Depth Fusion and Knowledge Distillation. IEEE Trans. AgriFood Elect. 2024, 2, 226–235. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; Zhang, C. Learning Efficient Convolutional Networks through Network Slimming. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; IEEE: New York, NY, USA, 2017; pp. 2755–2763. [Google Scholar] [CrossRef]
- He, Y.; Kang, G.; Dong, X.; Fu, Y.; Yang, Y. Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks. arXiv 2018, arXiv:1808.06866. [Google Scholar] [CrossRef]
- Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; IEEE: New York, NY, USA, 2018; pp. 2704–2713. [Google Scholar] [CrossRef]
- Nagel, M.; Baalen, M.V.; Blankevoort, T.; Welling, M. Data-Free Quantization Through Weight Equalization and Bias Correction. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; IEEE: New York, NY, USA, 2019; pp. 1325–1334. [Google Scholar] [CrossRef]
- Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. [Google Scholar] [CrossRef]
- Padeiro, C.V.; Chen, T.-W.; Komamizu, T.; Ide, I. Lightweight Maize Disease Detection through Post-Training Quantization with Similarity Preservation. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; IEEE: New York, NY, USA, 2024; pp. 2111–2120. [Google Scholar] [CrossRef]
- Wang, S.; Miao, Z.; Cao, Y. A Lightweight Leaf Disease Recognition Model for MobileNetV2 Based on Transfer Learning and Knowledge Distillation. In Proceedings of the 2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE), Guangzhou, China, 10–12 May 2024; IEEE: New York, NY, USA, 2024; pp. 459–462. [Google Scholar] [CrossRef]
Algorithms | Advantages | Disadvantages | Range | References |
---|---|---|---|---|
Threshold segmentation | It has a small computational load, can compress data to the greatest extent, and has relatively stable performance | When dealing with complex images, the segmentation effect is poor, and the time consumption is high | There is a large difference in gray levels between the target and the background, and the background is simple | [23,24,25,26,27] |
Edge segmentation | There is a significant advantage in detecting gray levels or structural mutations | Not suitable for processing complex images | Distinct edges, clear target structure | [28,29,30,31,32,33] |
Clustering segmentation | The number of pixels is proportional to the running time of the algorithm, and the linear complexity is low | There may be “isolated” pixels that do not belong to the cluster center | Multi-region, color-complex, unlabeled data | [34,35,36] |
Model | Precision | Recall | mAP0.5 | MIoU | Parameters (M) | FPS | Inference Time (s) | GFLOPs | F1 | References |
---|---|---|---|---|---|---|---|---|---|---|
YOLO-RepNCSPELAN4-DCNv4 | 96.30% | 93.10% | 96.20% | 3.259 | 138.9 | 901 | [37] | |||
YOLOv8n-seg-FasterNet | 99.80% | 98.50% | 99.50% | 1.369 | 0.040 | 596 | [39] | |||
YOLOv8n-seg-CBAM-WIoU | 96.50% | 94.30% | 98.00% | 0.0259 | [40] | |||||
YOLOv8n-Squeeze-and-Excitation-EIoU | 94.70% | 90.70% | 87.30% | 0.0627 | [41] | |||||
SOLOV2-Prim | 90.10% | 83.20% | 44.290 | 29.5 | 147 | 88.50% | [42] | |||
GCE-YOLOv9-seg | 90.40% | 89.60% | 93.40% | 27.950 | 162 | 90.50% | [43] |
Method Type | Representative Techniques | Advantages | Disadvantages | Applicable Scenarios |
---|---|---|---|---|
Traditional manual annotation | Pixel-by-pixel annotation, rectangular box annotation | High annotation accuracy, suitable for fine-grained tasks | Time-consuming, labor-intensive, costly, and dependent on experts | Small samples, high-value data (such as early disease detection) |
Semi-automatic annotation | Threshold segmentation, edge detection | Higher efficiency than manual, lower annotation costs | Accuracy is limited by the complexity of the image and requires manual correction | Medium scale data, scenes with a simple background |
Weakly supervised learning | Grad-CAM, WSLSS framework | Only image-level labels are needed, reducing costs by 90% | The positioning accuracy is slightly lower than that of full supervision | Preliminary screening of large-scale data, identification of rare diseases |
Semi-supervised learning | Pseudo-labels, consistent regularization | Combine a small amount of labeled data with a large amount of unlabeled data | Pseudo-labels may introduce noise | Label scenarios where resources are limited but accuracy must be guaranteed |
Specific Methods | Cases |
---|---|
Replacement with Lightweight Backbone Networks | [113,114,115,116] |
Efficient Convolution and Lightweight Feature Extraction | [113,117,118,119,120,121] |
Network Pruning | [114,122] |
Quantization Technology | [120,122,123] |
Knowledge Distillation Technology | [119,124,125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Yan, L.; Liu, S.; Gao, T.; Han, L.; Jiang, X.; Jin, H.; Zhu, Y. Agricultural Image Processing: Challenges, Advances, and Future Trends. Appl. Sci. 2025, 15, 9206. https://doi.org/10.3390/app15169206
Song X, Yan L, Liu S, Gao T, Han L, Jiang X, Jin H, Zhu Y. Agricultural Image Processing: Challenges, Advances, and Future Trends. Applied Sciences. 2025; 15(16):9206. https://doi.org/10.3390/app15169206
Chicago/Turabian StyleSong, Xuehua, Letian Yan, Sihan Liu, Tong Gao, Li Han, Xiaoming Jiang, Hua Jin, and Yi Zhu. 2025. "Agricultural Image Processing: Challenges, Advances, and Future Trends" Applied Sciences 15, no. 16: 9206. https://doi.org/10.3390/app15169206
APA StyleSong, X., Yan, L., Liu, S., Gao, T., Han, L., Jiang, X., Jin, H., & Zhu, Y. (2025). Agricultural Image Processing: Challenges, Advances, and Future Trends. Applied Sciences, 15(16), 9206. https://doi.org/10.3390/app15169206