Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances
Abstract
1. Introduction
2. Materials and Methods
2.1. Load Cell Calibration
2.2. Testing Procedure and Data Analyses
3. Experimental Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norton, J.R.; Cloeren, J.M. Precision quartz oscillators and their use aboard satellites. Johns Hopkins APL Tech. Dig. 1994, 15, 30–37. [Google Scholar]
- Lam, C.S. A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 694–704. [Google Scholar] [CrossRef]
- Mansfield, E.; Kar, A.; Quinn, T.P.; Hooker, S.A. Quartz crystal microbalances for microscale thermogravimetric analysis. Anal. Chem. 2010, 82, 9977–9982. [Google Scholar] [CrossRef] [PubMed]
- Sai, N.; Tagawa, Y.; Sohgawa, M.; Abe, T. Miniature quartz crystal-resonator-based thermogravimetric detector. Rev. Sci. Instrum. 2014, 85, 095001. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, S.R.; Speller, N.C.; Chhotaray, P.; McCarter, K.S.; Siraj, N.; Pérez, R.L.; Li, Y.; Warner, I.M. Class-specific discrimination of volatile organic compounds using a quartz crystal microbalance-based multisensor array. Talanta 2018, 188, 423–428. [Google Scholar] [CrossRef]
- Smith, A.L.; Mulligan, R.B., Sr.; Shirazi, H.M. Determining the effects of vapor sorption in polymers with the quartz crystal microbalance/heat conduction calorimeter. J. Polym. Sci. B Polym. Phys. 2004, 42, 3893–3906. [Google Scholar] [CrossRef]
- Zampetti, E.; Macagnano, A.; Papa, P.; Bearzotti, A.; Petracchini, F.; Paciucci, L.; Pirrone, N. Exploitation of an integrated microheater on QCM sensor in particulate matter measurements. Sens. Actuators A Phys. 2017, 264, 205–211. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Kukita, H.; Shiobara, T.; Yukumatsu, K.; Miyazaki, E. Temperature controllable QCM sensor with accurate temperature measurement for outgas and contamination assessment. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Pérez, R.L.; Ayala, C.E.; Park, J.-Y.; Choi, J.-W.; Warner, I.M. Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. Chemosensors 2021, 9, 153. [Google Scholar] [CrossRef]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef]
- Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.; Saggin, B.; Scaccabarozzi, D. A review of quartz crystal microbalances for space applications. Sens. Actuators A Phys. 2019, 287, 48–75. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Martina, C.; Saggin, B.; Junior, E.V.V.; Palomba, E.; Longobardo, A.; Gisellu, C.; Dirri, F.; Zampetti, E.; Pedone, M.; et al. Feasibility Design of DIANA, a Dust Analyzer developed for the Tianwen-2 Mission. In Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Lublin, Poland, 3–5 June 2024; pp. 422–426. [Google Scholar] [CrossRef]
- Martina, C.; Scaccabarozzi, D.; Saggin, B.; Vaz Junior, E.V.; Palomba, E.; Longobardo, A.; Gisellu, C.; Dirri, F.; Zampetti, E.; Pedone, M.; et al. DIANA, a cometary dust in-situ analyzer for Tianwen-2 mission: Thermomechanical design. In Proceedings of the 75th International Astronautical Congress (IAC), Milan, Italy, 14–18 October 2024. Paper IAC-24-A3.4B. [Google Scholar]
- Martina, C.; Saggin, B.; Palomba, E.; Zampetti, E.; Mancuso, M.A.; Scaccabarozzi, D. Finite element modelling of thermoelastic behavior for high-temperature quartz crystal microbalance. In Proceedings of the 2023 IEEE 10th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Milan, Italy, 19–21 June 2023; pp. 109–113. [Google Scholar] [CrossRef]
- Shapira, A.; Stern, A.; Prazot, S.; Mann, R.; Barash, Y.; Detoma, E.; Levy, B. An Ultra Stable Oscillator for the 3GM experiment of the JUICE mission. In Proceedings of the 2016 European Frequency and Time Forum (EFTF), York, UK, 4–7 April 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Suliga, A.; Ergincan, O.; Rampini, R. Modeling of spacecraft outgassed contamination levels by thermogravimetric analysis. J. Spacecr. Rocket. 2021, 58, 1010–1016. [Google Scholar] [CrossRef]
- Dushin, V.K.; Krylov, A.N.; Soares, C.E. On-orbit quartz crystal microbalance measurements of molecular deposition on Russian and US Space Stations. In Proceedings of the 25th International Symposium on Rarefied Gas Dynamics (RGD), St. Petersburg, Russia, 21–28 July 2006. [Google Scholar]
- Wood, B.E.; Hall, D.F.; Lesho, J.C.; Dyer, J.S.; Uy, O.M.; Bertrand, W.T. Quartz crystal microbalance (QCM) flight measurements of contamination on the MSX satellite. In Proceedings of the SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA, 11 November 1996; Volume 2864. [Google Scholar]
- Wood, B.; Bertrand, W.; Uy, M.; Lesho, J.; Cain, R.; Hall, D.; Green, B.; Galica, G.; Boies, M.; Dyer, J. Review of Midcourse Space Experiment (MSX) Satellite QCM Contamination Results After 8 Years in Space. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005. [Google Scholar] [CrossRef]
- Dawson, T.T.; Hill, C.A.; Rowell, A.F.; Leavor, K.R.; Hawley, S.A. SAGE III/ISS Contamination Monitoring Package: Observations in Orbit. NASA Technical Report, No. L-21120. 2020. Available online: https://ntrs.nasa.gov/api/citations/20205001963/downloads/NASA-TM-20205001963update.pdf (accessed on 20 August 2025).
- Pereira, A.; Roussel, J.-F.; van Eesbeek, M.; Schmeitzky, O.; Faye, D. Experiments and Physical Modeling of Ultraviolet-Enhanced Contamination from Pure Contaminants. J. Spacecr. Rocket. 2006, 43, 402–409. [Google Scholar] [CrossRef]
- Skládal, P. Piezoelectric Biosensors: Shedding Light on Principles and Applications. Microchim. Acta 2024, 191, 184. [Google Scholar] [CrossRef] [PubMed]
- ANSI/IEEE Std 176-1987; IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1988. [CrossRef]
- Shen, D.; Kang, Q.; Wang, Y.-E.; Hu, Q.; Du, J. New cut angle quartz crystal microbalance with low frequency–temperature coefficients in an aqueous phase. Talanta 2008, 76, 803–808. [Google Scholar] [CrossRef]
- Sauerbrey, G. Use of quartz vibration for weighing thin films on a microbalance. J. Phys. 1959, 155, 206–212. [Google Scholar]
- Cibiel, G.; Boizot, B.; Boy, J.J.; Carlotti, J.F.; Cambon, O.; Devautour-Vinot, S.; Piccheda, D. Ultra stable oscillators dedicated for space applications: Oscillator and quartz material behaviors vs radiation. In Proceedings of the 2006 IEEE International Frequency Control Symposium and Exposition, Newport Beach, CA, USA, 4–7 June 2006; pp. 814–822. [Google Scholar]
- Yu, G.Y.; Janata, J. Proximity effect in quartz crystal microbalance. Anal. Chem. 2008, 80, 2751–2755. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Koh, M.; Yoon, C.; Kim, H.; Kim, H. The behavior of quartz crystal microbalance in high pressure CO2. J. Supercrit. Fluids 2004, 29, 203–212. [Google Scholar] [CrossRef]
- Walls, F.L.; Gagnepain, J.-J. Environmental sensitivities of quartz oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 241–249. [Google Scholar] [CrossRef]
- Magni, M.; Scaccabarozzi, D.; Saggin, B. Compensation of thermal gradients effects on a quartz crystal microbalance. Sensors 2023, 23, 24. [Google Scholar] [CrossRef]
- Mumyakmaz, B.; Yildiz, B.S.; Akin, T.; Külah, H. A study on the development of a compensation method for humidity effect in QCM sensor responses. Sens. Actuators B Chem. 2010, 147, 277–282. [Google Scholar] [CrossRef]
- Bechmann, R. Frequency-temperature-angle characteristics of AT-type resonators made of natural and synthetic quartz. Proc. IRE 1956, 44, 1600–1607. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, J.; Gan, N.; Ma, T.; Huang, B.; Neubig, B.; Johannsmann, D. An analysis of the thermal behavior and effects of circular quartz crystal resonators for microbalance applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 2569–2578. [Google Scholar] [CrossRef]
- Magni, M.; Saggin, B.; Scaccabarozzi, D.; Tarabini, M.; Palomba, E.; Longobardo, A.; Dirri, F.; Zampetti, E. Temperature sensitivity of a quartz crystal microbalance for TGA in space. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018; pp. 629–633. [Google Scholar] [CrossRef]
- Cooper, M.; Steinem, C.; Janshoff, A. Piezoelectric Sensors, 1st ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Saggin, B.; Tarabini, M.; Scaccabarozzi, D. Infrared Optical Element Mounting Techniques for Wide Temperature Ranges. Appl. Opt. 2010, 49, 542–548. [Google Scholar] [CrossRef]
- European Cooperation for Space Standardization (ECSS). Thermal Control—Thermal Analysis (ECSS-E-ST-31C); ECSS: Noordwijk, The Netherlands, 2008. [Google Scholar]
- Breslavsky, D.; Uspenskyi, V.; Mietielov, V.; Senko, A.; Tatarinova, O. Determining the Influence of Thermomechanical Loading on The Measurement Errors of Fiber-Optic Gyroscope. East.-Eur. J. Enterp. Technol. 2025, 2, 7. [Google Scholar]
- García-Pérez, A.; Alonso, G.; Gómez-San-Juan, A.; Pérez-Álvarez, J. Thermoelastic Evaluation of the Payload Module of the ARIEL Mission. Exp. Astron. 2022, 53, 831–846. [Google Scholar] [CrossRef]
- Ivanov, A.Y.; Plokhotnichenko, A.M. A low-temperature quartz microbalance. Instrum. Exp. Tech. 2009, 52, 308–311. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Saggin, B.; Magni, M.; Corti, M.G.; Zampetti, E.; Palomba, E.; Longobardo, A.; Dirri, F. Calibration in Cryogenic Conditions of Deposited Thin-Film Thermometers on Quartz Crystal Microbalances. Sens. Actuators A Phys. 2021, 330, 112878. [Google Scholar] [CrossRef]
- Palomba, E.; Colangeli, E.L.; Palumbo, P.; Rotundi, A.; Perrin, J.M.; Bussoletti, E. Performance of Micro-Balances for Dust Flux Measurement. Adv. Space Res. 2002, 29, 1155–1158. [Google Scholar] [CrossRef]
- Klein, M. ECSS-E-30 Mechanical Engineering Standard. Spacecr. Struct. Mater. Mech. Test. 2001, 468, 479. [Google Scholar]
- George, T.; Son, K.A.; Powers, R.A.; Del Castillo, L.Y.; Okojie, R. Harsh Environment Microtechnologies for NASA and Terrestrial Applications. In Proceedings of the IEEE Sensors 2005, Irvine, CA, USA, 30 October–3 November 2005; p. 6. [Google Scholar] [CrossRef]
- Goh, G.M. Space Safety Standards in Europe. In Space Safety Regulations and Standards; Pelton, J.N., Jakhu, R.S., Eds.; Butterworth-Heinemann: Burlington, VT, USA, 2010; pp. 29–48. ISBN 9781856177528. [Google Scholar] [CrossRef]
- Ballato, A.; EerNisse, E.P.; Lukaszek, T. The force-frequency effect in doubly rotated quartz resonators. In Proceedings of the 31st Annual Symposium on Frequency Control, Fort Monmouth, NJ, USA, 1–3 June 1977; pp. 8–16. [Google Scholar]
- Chen, F.; Gao, J.; Tian, W. Force-frequency characteristics of multi-electrode quartz crystal resonator cluster. Sens. Actuators A Phys. 2018, 269, 427–434. [Google Scholar] [CrossRef]
- Tian, W.; Sun, Y.; Zhou, H.; Zhao, Q. Force-frequency sensitive character of quartz resonator with same base and different electrode. In Software Engineering and Knowledge Engineering: Theory and Practice; Zhang, W., Ed.; Advances in Intelligent and Soft Computing, Volume 162; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Hamedi, M. Force frequency effect in square quartz crystals. AUT J. Mech. Eng. 2021, 5, 215–226. [Google Scholar] [CrossRef]
- Reviakine, I. Quartz Crystal Microbalance in Soft and Biological Interfaces. Biointerphases 2024, 19, 1. [Google Scholar] [CrossRef]
- Mosley, R.J.; Talarico, M.V.; Byrne, M.E. Recent Applications of QCM-D for the Design, Synthesis, and Characterization of Bioactive Materials. J. Bioact. Compat. Polym. 2021, 36, 261–275. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Saggin, B.; Magni, M.; Corti, M.G.; Valnegri, P.; Palomba, E.; Longobardo, A.; Dirri, F.; Zampetti, E. Quartz Crystal Microbalances for Space: Design and Testing of a 3D Printed Quasi-Kinematic Support. Aerospace 2023, 10, 42. [Google Scholar] [CrossRef]
- Na Songkhla, S.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350. [Google Scholar] [CrossRef]
- Wang, L. Metal-organic frameworks for QCM-based gas sensors: A review. Sens. Actuators A Phys. 2020, 307, 111984. [Google Scholar] [CrossRef]
- Wang, L.; Song, J.; Yu, C. The utilization and advancement of quartz crystal microbalance (QCM): A mini review. Microchem. J. 2024, 199, 109967. [Google Scholar] [CrossRef]
- Pohanka, M. Quartz crystal microbalance (QCM) sensing materials in biosensors development. Int. J. Electrochem. Sci. 2021, 16, 211220. [Google Scholar] [CrossRef]
- Huang, X.; Chen, Q.; Pan, W.; Yao, Y. Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review. Sensors 2022, 22, 5112. [Google Scholar] [CrossRef]
- Boella, M. Performance of Piezo-Oscillators and the Influence of the Decrement of Quartz on the Frequency Oscillations. Proc. Inst. Radio. Eng. 1931, 19, 1252–1273. [Google Scholar] [CrossRef]
- Arnau, A.; Garcia, J.V.; Jimenez, Y.; Ferrari, V.; Ferrari, M. Improved Electronic Interfaces for Heavy Loaded at Cut Quartz Crystal Microbalance Sensors. In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May–1 June 2007; pp. 357–362. [Google Scholar] [CrossRef]
- Wersing, W. Small Signal Resonance Methods. In Piezoelectricity: Evolution and Future of a Technology; Heywang, W., Lubitz, K., Wersing, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 114, pp. 423–444. [Google Scholar]
Parameter | Value |
---|---|
Electrodes diameter | 6.0 ± 0.2 mm |
Quartz disc diameter | 13.95 ± 0.001 mm |
Thickness of the disc | 0.167 ± 0.001 mm |
Preloading element stiffness | 7.9 ± 1.3 N/mm |
Clamping preload | 1.7 N |
Trial Number | Value [N/mm] | R2 |
---|---|---|
#1 | 9.37 | 0.994 |
#2 | 8.78 | 0.997 |
#3 | 6.77 | 0.983 |
#4 | 6.34 | 0.977 |
#5 | 6.64 | 0.970 |
#6 | 7.76 | 0.992 |
#7 | 7.51 | 0.994 |
#8 | 7.45 | 0.999 |
#9 | 8.16 | 0.997 |
#10 | 10.60 | 0.999 |
Average value | 7.9 | - |
Measurement uncertainty | 1.3 | - |
Theoretical value | 7.26 | - |
Test Number | Sensitivity (V/N) | Uncertainty (V/N) | R2 |
---|---|---|---|
1 | 0.2521 | 2.8 × 10−3 | 0.9992 |
2 | 0.2470 | 4.4 × 10−3 | 0.9980 |
3 | 0.2556 | 2.3 × 10−3 | 0.9995 |
all dataset | 0.2516 | 1.8 × 10−3 | 0.9987 |
Test | Nominal Values | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Worst Case Uncertainty (1σ%) |
---|---|---|---|---|---|---|---|---|---|
1A | Force [N] | 0.76 | 1.08 | 1.57 | 1.93 | 2.40 | 2.72 | 3.20 | 0.27% |
Frequency [MHz] | 9.970581 | 9.970585 | 9.970587 | 9.970593 | 9.970598 | 9.970601 | 9.970605 | 0.0000010% | |
2A | Force [N] | 1.01 | 1.48 | 2.04 | 2.79 | 3.32 | n.a. | n.a. | 0.31% |
Frequency [MHz] | 9.970578 | 9.970588 | 9.970594 | 9.970603 | 9.970607 | n.a. | n.a. | 0.0000012% | |
3A | Force [N] | 1.20 | 1.60 | 1.94 | 2.48 | 2.91 | 3.31 | n.a. | 0.25% |
Frequency [MHz] | 9.970582 | 9.970590 | 9.970596 | 9.970601 | 9.970606 | 9.970609 | n.a. | 0.0000010% | |
4A | Force [N] | 0.95 | 1.42 | 1.83 | 2.17 | 2.57 | 3.05 | n.a. | 0.30% |
Frequency [MHz] | 9.970578 | 9.970583 | 9.970593 | 9.970596 | 9.970600 | 9.970607 | n.a. | 0.0000013% | |
5A | Force [N] | 1.15 | 1.57 | 2.05 | 2.45 | 2.76 | 3.39 | n.a. | 2.40% |
Frequency [MHz] | 9.970589 | 9.970593 | 9.970597 | 9.970605 | 9.970611 | 9.970618 | n.a. | 0.0000017% | |
1B | Force [N] | 2.50 | 3.10 | 3.53 | 3.90 | 4.37 | 4.72 | n.a. | 0.24% |
Frequency [MHz] | 9.970456 | 9.970461 | 9.970474 | 9.970480 | 9.970484 | 9.970487 | n.a. | 0.0000004% | |
2B | Force [N] | 2.76 | 3.14 | 3.58 | 3.84 | 4.38 | 4.64 | n.a. | 0.26% |
Frequency [MHz] | 9.970460 | 9.970463 | 9.970471 | 9.970480 | 9.970482 | 9.970486 | n.a. | 0.0000018% | |
3B | Force [N] | 2.71 | 3.13 | 3.58 | 3.92 | 4.35 | 4.68 | n.a. | 0.30% |
Frequency [MHz] | 9.970461 | 9.970463 | 9.970475 | 9.970480 | 9.970482 | 9.970487 | n.a. | 0.0000033% | |
4B | Force [N] | 2.43 | 2.82 | 3.24 | 3.62 | 3.91 | 4.41 | n.a. | 0.28% |
Frequency [MHz] | 9.970489 | 9.970498 | 9.970501 | 9.970504 | 9.970510 | 9.970516 | n.a. | 0.0000023% | |
5B | Force [N] | 2.79 | 3.23 | 3.90 | 4.17 | 4.68 | n.a. | n.a. | 1.12% |
Frequency [MHz] | 9.970500 | 9.970504 | 9.970510 | 9.970512 | 9.970516 | n.a. | n.a. | 0.000015% |
Test | Slope [10−6 N−1] | R2 |
---|---|---|
1A | 1.2330 | 0.9740 |
2A | 1.2451 | 0.9804 |
3A | 1.2480 | 0.9688 |
4A | 1.3960 | 0.9844 |
5A | 1.3563 | 0.9818 |
Mean value | 1.296 | - |
1σ | 0.075 | - |
1σ (%) | 5.7% | - |
Test | Slope [10−6 N−1] | R2 |
---|---|---|
1B | 1.5920 | 0.9585 |
2B | 1.5022 | 0.9245 |
3B | 1.3586 | 0.9500 |
4B | 1.2523 | 0.9719 |
5B | 1.4613 | 0.9489 |
Mean value | 1.43 | - |
1σ | 0.13 | - |
1σ (%) | 9.2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaccabarozzi, D.; Martina, C.; Saggin, B.; Zampetti, E. Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances. Appl. Sci. 2025, 15, 9261. https://doi.org/10.3390/app15179261
Scaccabarozzi D, Martina C, Saggin B, Zampetti E. Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances. Applied Sciences. 2025; 15(17):9261. https://doi.org/10.3390/app15179261
Chicago/Turabian StyleScaccabarozzi, Diego, Chiara Martina, Bortolino Saggin, and Emiliano Zampetti. 2025. "Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances" Applied Sciences 15, no. 17: 9261. https://doi.org/10.3390/app15179261
APA StyleScaccabarozzi, D., Martina, C., Saggin, B., & Zampetti, E. (2025). Measurement of the Instrumental Effect Caused by Flexure Clamping on Quartz Crystal Microbalances. Applied Sciences, 15(17), 9261. https://doi.org/10.3390/app15179261