Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture
Abstract
1. Introduction
2. Materials and Methods
2.1. Reactants
2.2. Synthesis of MCM-41-Based Solids
2.3. Characterization of MCM-41/N and MCM-41/NN
2.4. Cr(VI) Removal Tests
3. Results and Discussion
3.1. Characterization of MCM-41-N and MCM-41-NN
3.2. Performance of MCM-41-N and MCM-41-NN in Cr(VI) Removal
3.3. Characterization of Used Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chai, Z.; Liu, B.; Lv, P.; Bai, Y.; Wang, J.; Su, W.; Song, X.; Yu, G.; Xu, G. Microwave synthesis of amino-functionalized MCM-41 from coal gasification fine slag for efficient bidirectional adsorption of anionic and cationic dyes. Chemosphere 2024, 351, 141229. [Google Scholar] [CrossRef]
- Costa, J.A.S.; de Jesus, R.A.; Santos, D.O.; Mano, J.F.; Romão, L.P.C.; Paranhos, C.M. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. Microporous Mesoporous Mater. 2020, 291, 109698. [Google Scholar] [CrossRef]
- Freitas Cavalcante, J.C.; da Silva, A.M.; Batista Caldas, P.M.; de Sousa Barbosa, B.V.; da Silva Júnior, H.B.; Nicácio Alves, J.J. Characterization and optimization of biodiesel production from corn oil using heterogeneous MoO3/MCM-41 catalysts. Catal. Today 2025, 446, 115119. [Google Scholar] [CrossRef]
- Kuppireddy, S.; Varghese, A.M.; Araj, H.; Hart, P.; Ramantani, T.; Bampos, G.; Karanikolos, G.N. A combined experimental and simulations assessment of CO2 capture and CO2/H2 separation performance of aminosilane-grafted MCM-41 and pore-expanded MCM-41. Microporous Mesoporous Mater. 2024, 377, 113220. [Google Scholar] [CrossRef]
- Vera-Baquero, F.L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Exploring Adsorption Performance of Functionalized Mesoporous Silicas with a Different Pore Structure as Strong Cation-Exchange Sorbents for Solid-Phase Extraction of Atropine and Scopolamine. Appl. Sci. 2025, 15, 646. [Google Scholar] [CrossRef]
- Mallik, A.K.; Moktadir, A.; Rahman, A.; Shahruzzaman; Rahman, M.M. Progress in surface-modified silicas for Cr(VI) adsorption: A review. J. Hazard. Mater. 2022, 423, 127041. [Google Scholar] [CrossRef]
- Tandon, R.K.; Crisp, P.T.; Ellis, J.; Baker, R. Effect of pH on Chromium(VI) species in solution. Talanta 1984, 31, 227–228. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Luo, X.; Luo, J.; Li, G.; Deng, L.; Cao, Y. Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution. Environ. Res. 2025, 269, 120821. [Google Scholar] [CrossRef]
- Liao, P.; Li, B.; Xie, L.; Bai, X.; Qiao, H.; Li, Q.; Yang, B.; Liu, C. Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution. J. Hazard. Mater. 2020, 383, 121145. [Google Scholar] [CrossRef]
- Martin, P.; Rafti, M.; Marchetti, S.; Fellenz, N. MCM-41-based composite with enhanced stability for Cr(VI) removal from aqueous media. Solid State Sci. 2020, 106, 106300. [Google Scholar] [CrossRef]
- Fellenz, N.; Perez-Alonso, F.J.; Martin, P.P.; García-Fierro, J.L.; Bengoa, J.F.; Marchetti, S.G.; Rojas, S. Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents. Microporous Mesoporous Mater. 2017, 239, 138–146. [Google Scholar] [CrossRef]
- Fellenz, N.; Martin, P.P.; Marchetti, S.G.; Bengoa, J.F. Aminopropyl-modified mesoporous silica nanospheres for the adsorption of Cr(VI) from water. J. Porous Mater. 2015, 22, 729. [Google Scholar] [CrossRef]
- Ko, Y.; Choi, K.; Lee, S.; Jung, K.; Hong, S.; Mizuseki, H.; Choi, J.; Lee, W. Strong chromate-adsorbent based on pyrrolic nitrogen structure: An experimental and theoretical study on the adsorption mechanism. Water Res. 2018, 145, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Zaitseva, N.; Zaitsev, V.; Walcarius, A. Chromium(VI) removal via reduction-sorption on bi-functional silica adsorbents. J. Hazard. Mater. 2013, 250–251, 454–461. [Google Scholar] [CrossRef]
- Dong, X.; Shi, L.; Ma, S.; Chen, X.; Cao, S.; Li, W.; Zhao, Z.; Chen, C.; Deng, H. Chitin/Chitosan Nanofibers Toward a Sustainable Future: From Hierarchical Structural Regulation to Functionalization Applications. Nano Lett. 2024, 24, 12014–12026. [Google Scholar] [CrossRef]
- Malinkina, O.; Shmakov, S.L.; Shipovskaya, A.B. Structure, the energy, sorption and biological properties of chiral salts of chitosan with l- and d-ascorbic acid. Int. J. Biol. Macromol. 2024, 257, 128731. [Google Scholar] [CrossRef]
- Nandi, R.; Laskar, S.; Saha, B. Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Res. Chem. Intermed. 2017, 43, 1619–1634. [Google Scholar] [CrossRef]
- Ukhurebor, K.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef]
- Karthik, C.; Barathi, S.; Pugazhendhiv; Ramkumar, V.S.; Thi, N.; Arulselvi, P.I. Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium(VI) stress. Microbiol. Res. 2017, 204, 65–71. [Google Scholar] [CrossRef]
- Wang, Q.; Zuo, W.; Tian, Y.; Kong, L.; Cai, G.; Zhang, H.; Li, L.; Zhang, J. An ultralight and flexible nanofibrillated cellulose/chitosan aerogel for efficient chromium removal: Adsorption-reduction process and mechanism. Chemosphere 2023, 329, 138622. [Google Scholar] [CrossRef]
- Grün, M.; Unger, K.K.; Matsumoto, A.; Tsutsumi, K. Novel pathways for the preparation of mesoporous MCM-41 materials: Control of porosity and morphology. Microporous Mesoporous Mater. 1999, 27, 207–216. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M.; Sakamoto, Y.; Terasaki, O.; Ryoo, R.; Ko, C.H. Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. J. Phys. Chem. B 2000, 104, 292–301. [Google Scholar] [CrossRef]
- Kaur, P.; Chopra, H.K. SBA-15 supported benzoxazolium-based ionic liquids: Synthesis, characterization, and application in the adsorptive desulfurization. Fuel Process. Technol. 2022, 238, 107480. [Google Scholar] [CrossRef]
- Calvo, A.; Angelome, P.C.; Sanchez, V.M.; Scherlis, D.A.; Williams, F.J.; Soler-Illia, G.J.A.A. Mesoporous aminopropyl-functionalized hybrid thin films with modulable surface and environment-responsive behavior. Chem. Mater. 2008, 20, 4661–4668. [Google Scholar] [CrossRef]
- Zhmud, B.V.; Sonnefeld, J. Aminopolysiloxane gels: Production and properties. J. Non Cryst. Solids 1996, 195, 16–27. [Google Scholar] [CrossRef]
- Walcarius, A.; Etienne, M.; Lebeau, B. Rate of Access to the Binding Sites in Organically Modified Silicates. 2. Ordered Mesoporous Silicas Grafted with Amine or Thiol Groups. Chem. Mater. 2003, 15, 2161–2173. [Google Scholar] [CrossRef]
- Fang, L.; Zeng, J.; Wang, H.; He, F.; Wan, H.; Li, M.; Ren, W.; Ding, L.; Yang, L.; Luo, X. Insights into the proton-enhanced mechanism of hexavalent chromium removal by amine polymers in strong acid wastewater: Reduction of hexavalent chromium and sequestration of trivalent chromium. J. Colloid Interface Sci. 2023, 650, 515–525. [Google Scholar] [CrossRef]
- Ko, Y.G.; Shin, S.S.; Choi, U.S. Primary, secondary, and tertiary amines for CO2 capture: Designing for mesoporous CO2 adsorbents. J. Colloid Interface Sci. 2011, 361, 594–602. [Google Scholar] [CrossRef]
- Yismaw, S.; Ebbinghaus, S.G.; Wenzel, M.; Poppitz, D.; Gläser, R.; Matysik, J.; Bauer, F.; Enke, D. Selective functionalization of the outer surface of MCM-48-type mesoporous silica nanoparticles at room temperature. J. Nanopart. Res. 2020, 22, 279. [Google Scholar] [CrossRef]
- Dogan, F.; Hammond, K.D.; Tompsett, G.A.; Huo, H.; Curtis Conner, W., Jr.; Auerbach, S.M.; Grey, C.P. Searching for Microporous, Strongly Basic Catalysts: Experimental and Calculated 29Si NMR Spectra of Heavily Nitrogen-Doped Y Zeolites. J. Am. Chem. Soc. 2009, 131, 11062–11079. [Google Scholar] [CrossRef]
- Zúñiga, E.; Belmar, L.; Toledo, L.; Torres, C.; Rivas, B.L.; Sánchez, S.A.; Urbano, B.F. Rhodamine-loaded surface modified mesoporous silica particles embedded into a thermoresponsive composite hydrogel for prolonged release. Eur. Polym. J. 2017, 95, 358–367. [Google Scholar] [CrossRef]
- Miyajima, T.; Abry, S.; Zhou, W.; Albela, B.; Bonneviot, L.; Oumi, Y.; Sano, T.; Yoshitake, H. Estimation of spacing between 3-bromopropyl functions grafted on mesoporous silica surfaces by a substitution reaction using diamine probe molecules. J. Mater. Chem. 2007, 17, 3901–3909. [Google Scholar] [CrossRef]
- Buttersack, C. General Cluster Sorption Isotherm. Microporous Mesoporous Mater. 2021, 316, 110909. [Google Scholar] [CrossRef]
- Popova, M.; Szegedi, A.; Yoncheva, K.; Konstantinov, S.; Petrova, G.P.; Aleksandrov, H.A.; Vayssilov, G.N.; Shestakova, P. New method for preparation of delivery systems of poorly soluble drugs on the basis of functionalized mesoporous MCM-41 nanoparticles. Microporous Mesoporous Mater. 2014, 198, 247–255. [Google Scholar] [CrossRef]
- Sun, Y.; Lyu, H.; Gai, L.; Sun, P.; Shen, B.; Tang, J. Biochar-anchored low-cost natural iron-based composites for durable hexavalent chromium removal. Chem. Eng. J. 2023, 476, 146604. [Google Scholar] [CrossRef]
- Verma, R.; Maji, P.K.; Sarkar, S. Removal of hexavalent chromium from impaired water: Polyethylenimine-based sorbents—A review. J. Environ. Chem. Eng. 2023, 11, 109598. [Google Scholar] [CrossRef]
- Losev, V.N.; Didukh-Shadrina, S.L.; Orobyeva, A.S.; Metelitsa, S.I.; Samoilo, A.S.; Zhizhaev, A.M.; Trofimchuk, A.K. Effective separation of chromium species in technological solutions using amino-immobilized silica prior to their determination. J. Hazard. Mater. 2021, 407, 124383. [Google Scholar] [CrossRef]
- Pattnaik, S.; Dash, D.; Mohapatra, S.; Pattnaik, M.; Marandi, A.K.; Das, S.; Samantaray, D.P. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Chemosphere 2020, 240, 124895. [Google Scholar] [CrossRef]
- Wu, J.; Yan, M.; Lv, S.; Yin, W.; Bu, H.; Liu, L.; Li, P.; Deng, H.; Zheng, X. Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere 2021, 262, 127733. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Hu, J.; Zheng, Q.; Zhao, Y.; Lv, G.; Liao, L. Clay minerals and clay-based materials for heavy metals pollution control. Sci. Total Environ. 2024, 954, 176193. [Google Scholar] [CrossRef]
- Abbou, B.; Lebkiri, I.; Ouaddari, H. Evaluation of Illitic-Kaolinite clay as an adsorbent for Cr3+ removal from synthetic aqueous solutions: Isotherm, kinetic, and thermodynamic analyses. Chem. Phys. Impact 2024, 8, 100527. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation: Eden Praire, MN, USA, 1992; ISBN 0-9627026-2-5. [Google Scholar]
Sample/ Parameter | Sg (m2·g−1) a | Vp (cm3·g−1) a | Dp (nm) b | C a | Functional Group Loading (mmol·g−1) c | d (mmol·nm−2) | PZC d |
---|---|---|---|---|---|---|---|
MCM 41 | 991 | 0.7 | 3.1 | 95.7 | - | - | 3.1 |
MCM 41-N | 715 | 0.4 | 2.2 | 41.0 | 1.3 | 11.0 | 8.6 |
MCM 41-NN | 605 | 0.3 | 2.0 | 39.5 | 1.5 | 14.9 | 8.1 |
Sample/Parameter | qm Cr(VI) a (mg·g−1) | qm Cr(tot) b (mg·g−1) | Cr(III)/Cr(VI) c |
---|---|---|---|
MCM-41-N | 129.9 | 107.1 | 1.1 |
MCM-41-NN | 133.3 | 122.1 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Castellón, E.; Ballesteros-Plata, D.; Fellenz, N. Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture. Appl. Sci. 2025, 15, 9370. https://doi.org/10.3390/app15179370
Rodríguez-Castellón E, Ballesteros-Plata D, Fellenz N. Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture. Applied Sciences. 2025; 15(17):9370. https://doi.org/10.3390/app15179370
Chicago/Turabian StyleRodríguez-Castellón, Enrique, Daniel Ballesteros-Plata, and Nicolas Fellenz. 2025. "Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture" Applied Sciences 15, no. 17: 9370. https://doi.org/10.3390/app15179370
APA StyleRodríguez-Castellón, E., Ballesteros-Plata, D., & Fellenz, N. (2025). Conversion of Cr(VI) to Cr(III) in Water Using Amino-Modified Ordered Mesoporous Silicas: Influence of the Functional Group Architecture. Applied Sciences, 15(17), 9370. https://doi.org/10.3390/app15179370