EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers
Abstract
1. Introduction
2. Materials and Methods
2.1. Improved YOLOv11n Detection Model
2.2. C3UltraPConv Model
2.3. RFAConv
2.4. Bidirectional Feature Pyramid Network
2.5. Improvement of the Loss Function
3. Dataset Building
4. Experimental Results and Analysis
4.1. Evaluation Indicators
4.2. Experimental Environment and Parameter Settings
4.3. Optimizing the Module Ablation Experiment
4.4. Loss Function Improvement and Performance Evaluation
4.5. Performance Comparison of Different Detection Algorithms
4.6. Comparative Analysis of Overall Detection Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Su, J.; Xu, C.; Zhang, Y. An Intelligent Method for Detecting Surface Defects in Aluminium Profiles Based on the Improved YOLOv5 Algorithm. Electronics 2022, 11, 2304. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Y.; Huang, M.; Huang, Q.; Cheng, J.; Tang, S. A Lightweight Detector Based on Attention Mechanism for Aluminum Strip Surface Defect Detection. Comput. Ind. 2022, 136, 103585. [Google Scholar] [CrossRef]
- Le, H.F.; Zhang, L.J.; Liu, Y.X. Surface Defect Detection of Industrial Parts Based on YOLOv5. IEEE Access 2022, 10, 130784–130794. [Google Scholar] [CrossRef]
- Ma, Y.; Yin, J.; Huang, F.; Li, Q. Surface defect inspection of industrial products with object detection deep networks: A systematic review. Artif. Intell. Rev. 2024, 57, 333. [Google Scholar] [CrossRef]
- Shi, J.; Yang, J.; Zhang, Y. Research on Steel Surface Defect Detection Based on YOLOv5 with Attention Mechanism. Electronics 2022, 11, 3735. [Google Scholar] [CrossRef]
- Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 2023, 82, 9243–9275. [Google Scholar] [CrossRef]
- Bao, W.; Du, X.; Wang, N.; Yuan, M.; Yang, X. A Defect Detection Method Based on BC-YOLO for Transmission Line Components in UAV Remote Sensing Images. Remote Sens. 2022, 14, 5176. [Google Scholar] [CrossRef]
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Zhong, H.; Fu, D.; Xiao, L.; Zhao, F.; Liu, J.; Hu, Y.; Wu, B. STFE-Net: A multi-stage approach to enhance statistical texture feature for defect detection on metal surfaces. Adv. Eng. Inform. 2024, 61, 102437. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, S.-f.; Hong, J.; Xie, Q.; Zhou, F.; Ran, S.-l. An improved defect recognition framework for casting based on DETR algorithm. J. Iron Steel Res. Int. 2023, 30, 949–959. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, J.; Zhou, X.; Qian, S.; Yu, J. Enhanced Feature Fusion Structure of YOLOv5 for Detecting Small Defects on Metal Surfaces. Int. J. Mach. Learn. Cybern. 2023, 14, 2041–2051. [Google Scholar] [CrossRef]
- He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features. IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, L.; Li, R.; Zhang, M. RFAConv-CBM-ViT: Enhanced vision transformer for metal surface defect detection. J. Supercomput. 2025, 81, 155. [Google Scholar] [CrossRef]
- Mo, H.; Wei, L. Fine Segmentation of Chinese Character Strokes Based on Coordinate Awareness and Enhanced BiFPN. Sensors 2024, 24, 3480. [Google Scholar] [CrossRef]
- Huang, P.; Tian, S.; Su, Y.; Tan, W.; Dong, Y.; Xu, W. IA-CIOU: An Improved IOU Bounding Box Loss Function for SAR Ship Target Detection Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10569–10582. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Ren, D.; Liu, W.; Ye, R.; Hu, Q.; Zuo, W. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation. IEEE Trans. Cybern. 2022, 52, 8574–8586. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M. YOLOv11: An Overview of the Key Architectural Enhancements. arXiv 2024, arXiv:2410.17725. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, L.; Li, X.; Yan, X. A semi-supervised convolutional neural network-based method for steel surface defect recognition. Robot. Comput.-Integr. Manuf. 2020, 61, 101825. [Google Scholar] [CrossRef]
- Shen, K.; Zhou, X.; Liu, Z. MINet: Multiscale Interactive Network for Real-Time Salient Object Detection of Strip Steel Surface Defects. IEEE Trans. Ind. Inform. 2024, 20, 7842–7852. [Google Scholar] [CrossRef]
- He, L.; Zheng, L.; Xiong, J. FMV-YOLO: A Steel Surface Defect Detection Algorithm for Real-World Scenarios. Electronics 2025, 14, 1143. [Google Scholar] [CrossRef]
- Zhao, J.; Miao, S.; Kang, R.; Cao, L.; Zhang, L.; Ren, Y. Insulator Defect Detection Algorithm Based on Improved YOLOv11n. Sensors 2025, 25, 1327. [Google Scholar] [CrossRef]
- Chen, J.; Kao, S.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031. [Google Scholar]
- Zhang, X.; Liu, C.; Yang, D.; Song, T.; Ye, Y.; Li, K.; Song, Y. RFAConv: Innovating Spatial Attention and Standard Convolutional Operation. arXiv 2023, arXiv:2304.03198. [Google Scholar]
- Wang, S.; Xia, X.; Ye, L.; Yang, B. Automatic Detection and Classification of Steel Surface Defect Using Deep Convolutional Neural Networks. Metals 2021, 11, 388. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Z.; Cheng, H.; Zheng, H.; Du, Y. LF-YOLOv4: A lightweight detection model for enhancing the fusion of image features of surface defects in lithium batteries. Meas. Sci. Technol. 2024, 35, 025005. [Google Scholar] [CrossRef]
- Lv, Z.; Lu, Z.; Xia, K.; Zuo, H.; Jia, X.; Li, H.; Xu, Y. LAACNet: Lightweight adaptive activation convolution network-based defect detection on polished metal surfaces. Eng. Appl. Artif. Intell. 2024, 133, 108482. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IOU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot Object Detection. arXiv 2019, arXiv:1911.09516. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, C.; Yang, G.; Huang, Z.; Li, G. MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface. Sensors 2022, 22, 3467. [Google Scholar] [CrossRef] [PubMed]
- Alnaggar, O.A.M.F.; Jagadale, B.N.; Saif, M.A.N.; Ghaleb, O.A.M.; Ahmed, A.A.Q.; Aqlan, H.A.A.; Al-Ariki, H.D.E. Efficient artificial intelligence approaches for medical image processing in healthcare: Comprehensive review, taxonomy, and analysis. Artif. Intell. Rev. 2024, 57, 221. [Google Scholar] [CrossRef]
- Aliyu, Y.; Sarlan, A.; Danyaro, K.U.; Rahman, A.S.B.A.; Abdullahi, M. Sentiment Analysis in Low-Resource Settings: A Comprehensive Review of Approaches, Languages, and Data Sources. IEEE Access 2024, 12, 66883–66909. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Xin, Z. Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7. IEEE Access 2022, 10, 133936–133944. [Google Scholar] [CrossRef]
- Xia, K.; Lv, Z.; Zhou, C.; Gu, G.; Zhao, Z.; Liu, K.; Li, Z. Mixed Receptive Fields Augmented YOLO with Multi-Path Spatial Pyramid Pooling for Steel Surface Defect Detection. Sensors 2023, 23, 5114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IOU Loss for Accurate Bounding Box Regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Gu, Z.; Zhu, K.; You, S. Yolo-ssfs: A Method Combining SPD-Conv/STDL/IM-FPN/SIoU for Outdoor Small Target Vehicle Detection. Electronics 2023, 12, 3744. [Google Scholar] [CrossRef]
Name | Environment Configuration |
---|---|
Operating system | Linux |
CPU | Intel Xeon Platinum 8362 CPU |
GPU | NVIDIA RTX 4090D |
GPU graphics memory | 24 G |
memory | 60 G |
Model | C3UltraPConv | FourD | BiFPN-Concat | RFAConv | Params (M) | Precision | Recall(R) | mAP50 | mAP50–95 |
---|---|---|---|---|---|---|---|---|---|
Baseline | — | — | — | — | 2.58 | 0.676 | 0.588 | 0.622 | 0.341 |
FourD | √ | 3.42 | 0.659 | 0.597 | 0.634 | 0.351 | |||
BIFPN | — | — | √ | — | 2.58 | 0.706 | 0.593 | 0.625 | 0.348 |
RFAConv | — | — | — | √ | 3.01 | 0.714 | 0.589 | 0.589 | 0.349 |
EIM-A | √ | — | — | — | 2.5 | 0.666 | 0.62 | 0.632 | 0.35 |
EIM-B | √ | √ | — | — | 2.57 | 0.699 | 0.595 | 0.63 | 0.347 |
EIM-C | √ | √ | √ | — | 3.24 | 0.658 | 0.626 | 0.643 | 0.357 |
EIM YOLO | √ | √ | √ | √ | 3.25 | 0.714 | 0.595 | 0.648 | 0.353 |
Model | Params (M) | Precision | Recall(R) | mAP50 | mAP50–95 |
---|---|---|---|---|---|
CIoU | 3.249 | 0.689 | 0.585 | 0.641 | 0.353 |
GIoU | 3.249 | 0.651 | 0.609 | 0.636 | 0.355 |
DIoU | 3.249 | 0.656 | 0.615 | 0.637 | 0.355 |
SIoU | 3.249 | 0.685 | 0.599 | 0.638 | 0.354 |
INTER CIoU | 3.249 | 0.668 | 0.612 | 0.639 | 0.356 |
INTER SIoU | 3.249 | 0.714 | 0.595 | 0.648 | 0.353 |
Model | Precision | mAP50 | mAP50–95 | Parameters (M) | FPS |
---|---|---|---|---|---|
YOLOv8n | 0.668 | 0.621 | 0.344 | 2.686 | 208 |
YOLOv9s | 0.687 | 0.632 | 0.347 | 6.197 | 98 |
YOLOv10n | 0.635 | 0.584 | 0.335 | 2.697 | 178 |
YOLOv11n | 0.687 | 0.622 | 0.341 | 2.583 | 181 |
EIM-YOLO | 0.714 | 0.648 | 0.353 | 3.25 | 149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Yang, L. EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers. Appl. Sci. 2025, 15, 9380. https://doi.org/10.3390/app15179380
Wu Z, Yang L. EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers. Applied Sciences. 2025; 15(17):9380. https://doi.org/10.3390/app15179380
Chicago/Turabian StyleWu, Zhanjun, and Likang Yang. 2025. "EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers" Applied Sciences 15, no. 17: 9380. https://doi.org/10.3390/app15179380
APA StyleWu, Z., & Yang, L. (2025). EIM-YOLO: A Defect Detection Method for Metal-Painted Surfaces on Electrical Sealing Covers. Applied Sciences, 15(17), 9380. https://doi.org/10.3390/app15179380