A Novel DRL-Transformer Framework for Maximizing the Sum Rate in Reconfigurable Intelligent Surface-Assisted THz Communication Systems
Abstract
1. Introduction
1.1. Related Works
1.2. Research Gaps and Motivations
1.3. Paper Contributions
- We formulate a joint RIS phase shift and transmit power control problem for RIS-assisted THz communication in 6G networks, aiming to maximize the achievable sum rate under strict power constraints at both the base station and RIS.
- To address the dynamic and non-stationary nature of THz environments, we develop a DRL framework that enables adaptive control without requiring explicit channel modeling.
- To enhance the agent’s temporal awareness and improve decision making over sequential channel variations, we integrate a Transformer encoder into the DRL agent, enabling effective long-term dependency modeling.
- We introduce a novel HBBO algorithm as a meta-optimizer to automatically tune the critical hyperparameters of both the DRL agent and the Transformer encoder, ensuring stable and efficient learning.
- Extensive simulations under realistic THz channel conditions demonstrate that our proposed DRL+Transformer+HBBO framework significantly outperforms conventional optimization baselines and DRL-only counterparts in terms of the sum rate, energy efficiency, and THz coverage region.
1.4. Paper Organization
2. System Model and Problem Formulation
3. Materials and Methods
3.1. Transformer Encoder
3.2. Reinforcement Learning
3.3. Proposed HBBO
3.4. Proposed ODRL-Transformer Model
4. Results
4.1. Simulation Set-Up
4.2. Optimization Parameters
4.3. Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chafii, M.; Bariah, L.; Muhaidat, S.; Debbah, M. Twelve Scientific Challenges for 6G: Rethinking the Foundations of Communications Theory. IEEE Commun. Surv. Tutor. 2023, 25, 868–904. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The Road Towards 6G: A Comprehensive Survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Mahdi, M.N.; Ahmad, A.R.; Qassim, Q.S.; Natiq, H.; Subhi, M.A.; Mahmoud, M. From 5G to 6G Technology: Meets Energy, Internet-of-Things and Machine Learning: A Survey. Appl. Sci. 2021, 11, 8117. [Google Scholar] [CrossRef]
- Najafi, F.; Kaveh, M.; Mosavi, M.R.; Brighente, A.; Conti, M. EPUF: An Entropy-Derived Latency-Based DRAM Physical Unclonable Function for Lightweight Authentication in Internet of Things. IEEE Trans. Mob. Comput. 2024, 24, 2422–2436. [Google Scholar] [CrossRef]
- Ahmad, H.F.; Rafique, W.; Rasool, R.U.; Alhumam, A.; Anwar, Z.; Qadir, J. Leveraging 6G, Extended Reality, and IoT Big Data Analytics for Healthcare: A Review. Comput. Sci. Rev. 2023, 48, 100558. [Google Scholar] [CrossRef]
- Yu, H.; Shokrnezhad, M.; Taleb, T.; Li, R.; Song, J. Toward 6G-Based Metaverse: Supporting Highly-Dynamic Deterministic Multi-User Extended Reality Services. IEEE Netw. 2023, 37, 30–38. [Google Scholar] [CrossRef]
- Jamshed, M.A.; Haq, B.; Mohsin, M.A.; Nauman, A.; Yanikomeroglu, H. Artificial Intelligence, Ambient Backscatter Communication and Non-Terrestrial Networks: A 6G Commixture. IEEE Internet Things Mag. 2025, 8, 88–94. [Google Scholar] [CrossRef]
- Ghadi, F.; Kaveh, M.; Wong, K.K. Performance Analysis of FAS-Aided Backscatter Communications. IEEE Wirel. Commun. Lett. 2024, 13, 2412–2416. [Google Scholar] [CrossRef]
- Ghadi, F.R.; Kaveh, M.; Wong, K.K.; Jäntti, R.; Yan, Z. On Performance of FAS-Aided Wireless Powered NOMA Communication Systems. In Proceedings of the 2024 IEEE 20th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Vilamoura, Portugal, 14–16 October 2024; pp. 496–501. [Google Scholar]
- Kaveh, M.; Ghadi, F.R.; Jäntti, R.; Yan, Z. Secrecy Performance Analysis of Backscatter Communications with Side Information. Sensors 2023, 23, 8358. [Google Scholar] [CrossRef]
- Petkova, R.; Bozhilov, I.; Manolova, A.; Tonchev, K.; Poulkov, V. On the Way to Holographic-Type Communications: Perspectives and Enabling Technologies. IEEE Access 2024, 12, 59236–59259. [Google Scholar] [CrossRef]
- Gupta, M.S.; Srivastava, A.; Kumar, K. RORA: Reinforcement Learning Based Optimal Distributed Resource Allocation Strategies in Vehicular Cognitive Radio Networks for 6G. Veh. Commun. 2025, 52, 100882. [Google Scholar] [CrossRef]
- Fernando, X.; Lăzăroiu, G. Energy-Efficient Industrial Internet of Things in Green 6G Networks. Appl. Sci. 2024, 14, 8558. [Google Scholar] [CrossRef]
- Ghadi, F.R.; Kaveh, M.; Wong, K.K.; Martín, D. Physical Layer Security Performance of Cooperative Dual-RIS-Aided V2V NOMA Communications. IEEE Syst. J. 2024, 18, 2074–2084. [Google Scholar] [CrossRef]
- Kaveh, M.; Mosavi, M.R. A Lightweight Mutual Authentication for Smart Grid Neighborhood Area Network Communications Based on Physically Unclonable Function. IEEE Syst. J. 2020, 14, 4535–4544. [Google Scholar] [CrossRef]
- Rojek, I.; Kotlarz, P.; Dorożyński, J.; Mikołajewski, D. Sixth-Generation (6G) Networks for Improved Machine-to-Machine (M2M) Communication in Industry 4.0. Electronics 2024, 13, 1832. [Google Scholar] [CrossRef]
- Sinha, G.; Agarwal, A. Dynamic Trust Management and AI-Based Multi-Factor Authentication for 6G Machine Type Communications. In Proceedings of the 2025 First International Conference on Advances in Computer Science, Electrical, Electronics, and Communication Technologies (CE2CT), Bengaluru, India, 20–22 February 2025; pp. 560–565. [Google Scholar]
- Balapuwaduge, I.A.; Pussewalage, H.S.G.; Oleshchuk, V.A. Secure Inter-Cluster Machine-Type D2D Communication for 5G and Beyond. In Proceedings of the IEEE EUROCON 2025—21st International Conference on Smart Technologies, Oslo, Norway, 23–26 June 2025; pp. 1–6. [Google Scholar]
- Langde, P.; Jain, T.K.; Parate, M.R.; Singh, S.K. A Journey of Terahertz Communication: An IRS Integration Perspective. Phys. Commun. 2025, 68, 102572. [Google Scholar] [CrossRef]
- Ajayan, J. Recent Developments in Terahertz Wave Detectors for Next Generation High Speed Terahertz Wireless Communication Systems: A Review. Infrared Phys. Technol. 2024, 141, 105467. [Google Scholar] [CrossRef]
- Jornet, J.M.; Elayan, H.; Nagatsuma, T.; Juntti, M.; Pinto, E.T.; Kürner, T.; Guerboukha, H.; Mittleman, D.M.; Knightly, E. Mobile Terahertz Communication and Sensing Systems: A Future Look. IEEE Veh. Technol. Mag. 2024, 19, 20–35. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; El-Absi, M.; Han, B.; Di Renzo, M.; Schotten, H.D.; Luo, F.L.; et al. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review. IEEE Commun. Surv. Tutor. 2024, 26, 2326–2381. [Google Scholar] [CrossRef]
- Othman, W.M.; Ateya, A.A.; Nasr, M.E.; Muthanna, A.; ElAffendi, M.; Koucheryavy, A.; Hamdi, A.A. Key Enabling Technologies for 6G: The Role of UAVs, Terahertz Communication, and Intelligent Reconfigurable Surfaces in Shaping the Future of Wireless Networks. J. Sens. Actuator Netw. 2025, 14, 30. [Google Scholar] [CrossRef]
- Kaveh, M.; Mosavi, M.R.; Martin, D.; Aghapour, S. An Efficient Authentication Protocol for Smart Grid Communication Based on On-Chip-Error-Correcting Physical Unclonable Function. Sustain. Energy Grids Netw. 2023, 36, 101228. [Google Scholar] [CrossRef]
- Ullah, R.; Ullah, S.; Ren, J.; Alwageed, H.S.; Mao, Y.; Qi, Z.; Wang, F.; Khan, S.A.; Farooq, U. Beyond Fiber: Toward Terahertz Bandwidth in Free-Space Optical Communication. Sensors 2025, 25, 2109. [Google Scholar] [CrossRef]
- Mahmood, A.; Kiah, M.L.M.; Azizul, Z.H.; Azzuhri, S.R. Analysis of Terahertz (THz) Frequency Propagation and Link Design for Federated Learning in 6G Wireless Systems. IEEE Access 2024, 12, 23782–23797. [Google Scholar] [CrossRef]
- Hassan, S.S.; Park, Y.M.; Tun, Y.K.; Saad, W.; Han, Z.; Hong, C.S. SpaceRIS: LEO Satellite Coverage Maximization in 6G Sub-THz Networks by MAPPO DRL and Whale Optimization. IEEE J. Sel. Areas Commun. 2024, 42, 1262–1278. [Google Scholar] [CrossRef]
- Lotfy, A.; Kaveh, M.; Martín, D.; Mosavi, M.R. An Efficient Design of Anderson PUF by Utilization of the Xilinx Primitives in the SLICEM. IEEE Access 2021, 9, 23025–23034. [Google Scholar] [CrossRef]
- Liou, J.J.; Ziegler, M.; Schwierz, F. Gigahertz and Terahertz Transistors for 5G, 6G, and Beyond Mobile Communication Systems. Appl. Phys. Rev. 2024, 11, 031301. [Google Scholar] [CrossRef]
- Guo, X.; Bertling, K.; Donose, B.C.; Bruenig, M.; Cernescu, A.; Govyadinov, A.A.; Rakić, A.D. Terahertz Nanoscopy: Advances, Challenges, and the Road Ahead. Appl. Phys. Rev. 2024, 11, 021301. [Google Scholar] [CrossRef]
- Elbir, A.M.; Mishra, K.V.; Chatzinotas, S.; Bennis, M. Terahertz-Band Integrated Sensing and Communications: Challenges and Opportunities. IEEE Aerosp. Electron. Syst. Mag. 2024, 39, 3476228. [Google Scholar] [CrossRef]
- Kundu, N.K.; McKay, M.R.; Mallik, R.K. Wireless Quantum Key Distribution at Terahertz Frequencies: Opportunities and Challenges. IET Quantum Commun. 2024, 5, 450–461. [Google Scholar] [CrossRef]
- Miri, S.; Kaveh, M.; Shahhoseini, H.S.; Mosavi, M.R.; Aghapour, S. On the Security of “An Ultra-Lightweight and Secure Scheme for Communications of Smart Meters and Neighborhood Gateways by Utilization of an ARM Cortex-M Microcontroller”. IET Inf. Secur. 2023, 17, 544–551. [Google Scholar] [CrossRef]
- Karacora, Y.; Umra, A.; Sezgin, A. Robust Communication Design in RIS-Assisted THz Channels. IEEE Open J. Commun. Soc. 2025, 6, 3029–3043. [Google Scholar] [CrossRef]
- Su, X.; He, R.; Ai, B.; Niu, Y.; Wang, G. Channel Estimation for RIS Assisted THz Systems with Beam Split. IEEE Commun. Lett. 2024, 28, 637–641. [Google Scholar] [CrossRef]
- Kaveh, M.; Yan, Z.; Jäntti, R. Secrecy Performance Analysis of RIS-Aided Smart Grid Communications. IEEE Trans. Ind. Inform. 2024, 20, 5415–5427. [Google Scholar] [CrossRef]
- Kaveh, M.; Aghapour, S.; Martin, D.; Mosavi, M.R. A Secure Lightweight Signcryption Scheme for Smart Grid Communications Using Reliable Physically Unclonable Function. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; pp. 1–6. [Google Scholar]
- Kaveh, M.; Ghadi, F.R.; Li, Z.; Yan, Z.; Jäntti, R. Secure Backscatter Communications Through RIS: Modeling and Performance. arXiv 2024, arXiv:2410.01829. [Google Scholar]
- Ghadi, F.R.; Kaveh, M.; Martín, D. Performance Analysis of RIS/STAR-IOS-Aided V2V NOMA/OMA Communications over Composite Fading Channels. IEEE Trans. Intell. Veh. 2024, 9, 279–286. [Google Scholar] [CrossRef]
- Sokal, B.; de Almeida, A.L.; Makki, B.; Fodor, G. Structured Channel Estimation for RIS-Assisted THz Communications. IEEE Trans. Veh. Technol. 2025, 74, 5175–5180. [Google Scholar]
- Wu, J.; Kim, S.; Shim, B. Parametric Sparse Channel Estimation for RIS-Assisted Terahertz Systems. IEEE Trans. Commun. 2023, 71, 5503–5518. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Do, T.N.; Kaddoum, G.; da Costa, D.B.; Haas, Z.J. Channel Characterization for RIS-Aided Terahertz Communications: A Stochastic Approach. IEEE Wirel. Commun. Lett. 2022, 11, 1890–1894. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, S.; Kumar, M.H.; Singh, G. RIS-Assisted Terahertz Communications for 6G Networks: A Comprehensive Overview. IEEE Access 2025, 13, 96337–96364. [Google Scholar] [CrossRef]
- Noh, S.; Lee, J.; Lee, G.; Seo, K.; Sung, Y.; Yu, H. Channel Estimation Techniques for RIS-Assisted Communication: Millimeter-Wave and sub-THz Systems. IEEE Veh. Technol. Mag. 2022, 17, 64–73. [Google Scholar] [CrossRef]
- Amodu, O.A.; Nordin, R.; Abdullah, N.F.; Busari, S.A.; Otung, I.; Ali, M.; Behjati, M. Technical Advancements towards RIS-Assisted NTN-Based THz Communication for 6G and Beyond. IEEE Access 2024, 12, 183153–183181. [Google Scholar] [CrossRef]
- Ahmed, M.; Wahid, A.; Khan, W.U.; Khan, F.; Ihsan, A.; Ali, Z.; Rabie, K.; Shongwe, T.; Han, Z. A Survey on RIS Advances in Terahertz Communications: Emerging Paradigms and Research Frontiers. IEEE Access 2024, 12, 173867–173901. [Google Scholar] [CrossRef]
- Yang, F.; Pitchappa, P.; Wang, N. Terahertz Reconfigurable Intelligent Surfaces (RISs) for 6G Communication Links. Micromachines 2022, 13, 285. [Google Scholar] [CrossRef]
- Su, R.; Dai, L.; Ng, D.W.K. Wideband Precoding for RIS-Aided THz Communications. IEEE Trans. Commun. 2023, 71, 3592–3604. [Google Scholar] [CrossRef]
- Le, N.P.; Alouini, M.S. Performance Analysis of RIS-Aided THz Wireless Systems over α–μ Fading: An Approximate Closed-Form Approach. IEEE Internet Things J. 2023, 11, 1328–1343. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.; Alexandropoulos, G.C.; Xiong, K.; Wei, L.; Yuen, C.; Zhang, Z.; Debbah, M. Multi-Hop RIS-Empowered Terahertz Communications: A DRL-Based Hybrid Beamforming Design. IEEE J. Sel. Areas Commun. 2021, 39, 1663–1677. [Google Scholar] [CrossRef]
- Yuan, J.; Chen, G.; Wen, M.; Tafazolli, R.; Panayirci, E. Secure Transmission for THz-Empowered RIS-Assisted Non-Terrestrial Networks. IEEE Trans. Veh. Technol. 2022, 72, 5989–6000. [Google Scholar] [CrossRef]
- Pan, Y.; Pan, C.; Jin, S.; Wang, J. RIS-Aided Near-Field Localization and Channel Estimation for the Terahertz System. IEEE J. Sel. Top. Signal Process. 2023, 17, 878–892. [Google Scholar] [CrossRef]
- Du, H.; Zhang, J.; Guan, K.; Niyato, D.; Jiao, H.; Wang, Z.; Kürner, T. Performance and Optimization of Reconfigurable Intelligent Surface Aided THz Communications. IEEE Trans. Commun. 2022, 70, 3575–3593. [Google Scholar] [CrossRef]
- Yildirim, I.; Koc, A.; Basar, E.; Le-Ngoc, T. Multi-RIS Assisted Hybrid Beamforming Design for Terahertz Massive MIMO Systems. IEEE Open J. Commun. Soc. 2024, 5, 6150–6165. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Z.; Gao, F.; Di Renzo, M.; Alouini, M.S. Terahertz Massive MIMO with Holographic Reconfigurable Intelligent Surfaces. IEEE Trans. Commun. 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Mehrabian, A.; Wong, V.W. Joint Spectrum, Precoding, and Phase Shifts Design for RIS-Aided Multiuser MIMO THz Systems. IEEE Trans. Commun. 2024, 72, 5087–5101. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, L.; Li, X.; Liu, H.; Guo, K.; Li, Y. On the Performance of Active RIS-Assisted Mixed RF-THz Relaying Systems. IEEE Internet Things J. 2025, 12, 14938–14951. [Google Scholar] [CrossRef]
- Velez, V.R.; Pavia, J.P.C.; Souto, N.M.; Sebastiao, P.J.; Correia, A.M. Performance Assessment of a RIS-Empowered Post-5G/6G Network Operating at the mmWave/THz Bands. IEEE Access 2023, 11, 49625–49638. [Google Scholar] [CrossRef]
- Pan, K.; Li, M.; Lv, S.; Si, P.; Zhang, H.; Yu, F.R. Adaptive Resource Allocation for IoT with Computing Power Network Based on RIS-UAV-Aided NOMA-THz Communication. IEEE Trans. Veh. Technol. 2025, 74, 3588155. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.; Liang, Y.C. Near-Field Wideband Beamforming for RIS-Assisted THz Communications with FTTDs. IEEE Trans. Wirel. Commun. 2025, in press. [Google Scholar] [CrossRef]
- Do-Duy, T.; Masaracchia, A.; Canberk, B.; Nguyen, L.D.; Duong, T.Q. Throughput Maximisation in RIS-Assisted NOMA-THz Communication Network. IEEE Open J. Commun. Soc. 2024, 5, 5706–5717. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Y.; Zhang, S.; Zhang, Q. Stock Market Index Prediction Using Deep Transformer Model. Expert Syst. Appl. 2022, 208, 118128. [Google Scholar] [CrossRef]
- Jiang, J.; Ke, L.; Chen, L.; Dou, B.; Zhu, Y.; Liu, J.; Wei, G.W. Transformer Technology in Molecular Science. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2024, 14, e1725. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, M.; Hong, Y.; Xiao, H.; Chen, C. MSFT: A Multi-Scale Feature-Based Transformer Model for Arrhythmia Classification. Biomed. Signal Process. Control 2025, 100, 106968. [Google Scholar] [CrossRef]
- Luo, F.M.; Xu, T.; Lai, H.; Chen, X.H.; Zhang, W.; Yu, Y. A Survey on Model-Based Reinforcement Learning. Sci. China Inf. Sci. 2024, 67, 121101. [Google Scholar] [CrossRef]
- Shakya, A.K.; Pillai, G.; Chakrabarty, S. Reinforcement Learning Algorithms: A Brief Survey. Expert Syst. Appl. 2023, 231, 120495. [Google Scholar] [CrossRef]
- Khatami, S.S.; Shoeibi, M.; Salehi, R.; Kaveh, M. Energy-Efficient and Secure Double RIS-Aided Wireless Sensor Networks: A QoS-Aware Fuzzy Deep Reinforcement Learning Approach. J. Sens. Actuator Netw. 2025, 14, 18. [Google Scholar] [CrossRef]
- Shoeibi, M.; Oskouei, A.E.; Kaveh, M. A Novel Six-Dimensional Chimp Optimization Algorithm—Deep Reinforcement Learning-Based Optimization Scheme for Reconfigurable Intelligent Surface-Assisted Energy Harvesting in Batteryless IoT Networks. Future Internet 2024, 16, 460. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, X. A Biogeography-Based Optimization Algorithm with Local Search for Large-Scale Heterogeneous Distributed Scheduling with Multiple Process Plans. Neurocomputing 2024, 595, 127897. [Google Scholar] [CrossRef]
- Gao, C.; Li, T.; Gao, Y.; Zhang, Z. A Comprehensive Multi-Strategy Enhanced Biogeography-Based Optimization Algorithm for High-Dimensional Optimization and Engineering Design Problems. Mathematics 2024, 12, 435. [Google Scholar] [CrossRef]
- Fard, S.; Kaveh, M.; Mosavi, M.R.; Ko, S.B. An Efficient Modeling Attack for Breaking the Security of XOR-Arbiter PUFs by Using the Fully Connected and Long-Short Term Memory. Microprocess. Microsyst. 2022, 94, 104667. [Google Scholar] [CrossRef]
- Kaveh, M.; Mesgari, M.S.; Martín, D.; Kaveh, M. TDMBBO: A Novel Three-Dimensional Migration Model of Biogeography-Based Optimization (Case Study: Facility Design and Benchmark Problems). J. Supercomput. 2023, 79, 9715–9770. [Google Scholar] [CrossRef]
- Bono, F.M.; Polinelli, A.; Radicioni, L.; Benedetti, L.; Castelli-Dezza, F.; Cinquemani, S.; Belloli, M. Wireless Accelerometer Architecture for Bridge SHM: From Sensor Design to System Deployment. Future Internet 2025, 17, 29. [Google Scholar] [CrossRef]
Model | Parameter | Value |
---|---|---|
ODRL-Transformer | Learning rate | 0.001 |
Batch size | 64 | |
Feedforward hidden size | 2048 | |
Weight decay | 0.02 | |
Dropout rate | 0.2 | |
Number of attention heads | 8 | |
Number of encoder layers | 6 | |
Optimizer | HBBO | |
Discount factor () | 0.92 | |
-greedy value | 0.43 | |
Probability range for migration | [0, 1] | |
Mutation rate | 0.05 | |
Population size | 150 | |
Iteration | 300 | |
Transformer | Learning rate | 0.003 |
Batch size | 128 | |
Feedforward hidden size | 2048 | |
Weight decay | 0.02 | |
Dropout rate | 0.2 | |
Number of attention heads | 12 | |
Number of encoder layers | 6 | |
Activation function | GELU | |
Optimizer | SGD | |
BERT | Learning rate | 0.004 |
Batch size | 64 | |
Dropout rate | 0.1 | |
Number of self-attention heads per layer | 8 | |
Number of transformer encoder layers | 8 | |
Length of input time series window | 64 | |
Activation function | GELU | |
Optimizer | SGD | |
DRL | Learning rate | 0.002 |
Discount factor () | 0.97 | |
-greedy value | 0.41 | |
Batch size | 64 | |
Activation function | Adam | |
GAN | Learning rate | 0.003 |
Number of neurons in hidden layers | 32 | |
Batch size | 128 | |
Momentum term | 0.06 | |
Activation function | ReLU | |
Convergence threshold | 0.068 | |
Optimizer | Adam |
Model | RMSE | MAPE | |
---|---|---|---|
ODRL-Transformer | 0.03 | 0.97 | 0.52% |
DRL-Transformer | 2.09 | 0.91 | 2.19% |
Transformer-HBBO | 2.61 | 0.89 | 3.29% |
DRL-HBBO | 2.79 | 0.88 | 3.41% |
Transformer | 6.32 | 0.84 | 9.10% |
DRL | 7.46 | 0.83 | 10.12% |
BERT | 7.93 | 0.82 | 11.02% |
GAN | 9.12 | 0.81 | 14.26% |
Model | p Value | Results | |
---|---|---|---|
ODRL-Transformer vs. DRL-Transformer | 0.0005 | Significant | 0.01 |
ODRL-Transformer vs. Transformer-HBBO | 0.00009 | Significant | 0.01 |
ODRL-Transformer vs. DRL-HBBO | 0.00008 | Significant | 0.01 |
ODRL-Transformer vs. Transformer | 0.00005 | Significant | 0.01 |
Transformer vs. DRL | 0.00004 | Significant | 0.01 |
ODRL-Transformer vs. BERT | 0.00003 | Significant | 0.01 |
ODRL-Transformer vs. GAN | 0.00001 | Significant | 0.01 |
Proposed Methods | RMSE < 12 | RMSE < 8 | RMSE < 4 | RMSE < 2 |
---|---|---|---|---|
ODRL-Transformer | 25 | 59 | 87 | 153 |
DRL-Transformer | 121 | 193 | 394 | – |
Transformer-HBBO | 186 | 249 | 519 | – |
DRL-HBBO | 201 | 280 | 593 | – |
Transformer | 286 | 405 | – | – |
DRL | 309 | 486 | – | – |
BERT | 329 | 516 | – | – |
GAN | 390 | – | – | – |
Proposed Methods | Run Time (s) |
---|---|
ODRL-Transformer | 791 |
DRL-Transformer | 732 |
Transformer-HBBO | 593 |
DRL-HBBO | 561 |
Transformer | 469 |
DRL | 406 |
BERT | 516 |
GAN | 429 |
Proposed Methods | Variance |
---|---|
ODRL-Transformer | 0.00004 |
DRL-Transformer | 1.39654 |
Transformer-HBBO | 2.01856 |
DRL-HBBO | 2.28563 |
Transformer | 6.41236 |
DRL | 7.85369 |
BERT | 8.21459 |
GAN | 9.25806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghaddam, P.S.; Khatami, S.S.; Hernando-Gallego, F.; Martín, D. A Novel DRL-Transformer Framework for Maximizing the Sum Rate in Reconfigurable Intelligent Surface-Assisted THz Communication Systems. Appl. Sci. 2025, 15, 9435. https://doi.org/10.3390/app15179435
Moghaddam PS, Khatami SS, Hernando-Gallego F, Martín D. A Novel DRL-Transformer Framework for Maximizing the Sum Rate in Reconfigurable Intelligent Surface-Assisted THz Communication Systems. Applied Sciences. 2025; 15(17):9435. https://doi.org/10.3390/app15179435
Chicago/Turabian StyleMoghaddam, Pardis Sadatian, Sarvenaz Sadat Khatami, Francisco Hernando-Gallego, and Diego Martín. 2025. "A Novel DRL-Transformer Framework for Maximizing the Sum Rate in Reconfigurable Intelligent Surface-Assisted THz Communication Systems" Applied Sciences 15, no. 17: 9435. https://doi.org/10.3390/app15179435
APA StyleMoghaddam, P. S., Khatami, S. S., Hernando-Gallego, F., & Martín, D. (2025). A Novel DRL-Transformer Framework for Maximizing the Sum Rate in Reconfigurable Intelligent Surface-Assisted THz Communication Systems. Applied Sciences, 15(17), 9435. https://doi.org/10.3390/app15179435