Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Manufacturing and Sterilization
2.2. Fluoride Release
2.3. Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and Fourier-Transform Raman Spectroscopy (FT-Raman)
2.4. Antimicrobial Properties
- C. albicans: Sabouraud Dextrose Agar (Biomaxima) (37 °C, 24 h, aerobic);
- S. mutans: BHI Agar- Brain Heart Infusion Agar (Biomaxima) (37 °C, 24 h, increased level of CO2);
- L. rhamnosus: MRS Agar-de Man, Rogosa and Sharpe Agar (Biomaxima) (37 °C, 24 h, anaerobically).
2.4.1. Assessment of Antimicrobial Properties
2.4.2. Adhesion of Microorganisms and Biofilm Formation
2.4.3. Confocal Microscopy
2.5. Antiviral Properties
2.6. Cytotoxicity and Direct Cell Assay
2.6.1. Cell Lines
2.6.2. Direct Contact Assay
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Sugars and Dental Caries. Available online: https://www.who.int/news-room/fact-sheets/detail/sugars-and-dental-caries (accessed on 7 July 2025).
- Naaman, R.; El-Housseiny, A.A.; Alamoudi, N. The Use of Pit and Fissure Sealants-a Literature Review. Dent. J. 2017, 5, 34. [Google Scholar] [CrossRef]
- Małyszek, A.; Zawiślak, I.; Kulus, M.; Watras, A.; Kensy, J.; Kotela, A.; Styczyńska, M.; Janeczek, M.; Matys, J.; Dobrzyński, M. Assessment of Fluoride Intake Risk via Infusions of Commercial Leaf Teas Available in Poland Using the Target Hazard Quotient Index Approach. Foods 2025, 14, 2944. [Google Scholar] [CrossRef]
- Okamoto, M.; Yamashita, S.; Mendonca, M.; Brueckner, S.; Achong-Bowe, R.; Thompson, J.; Kuriki, N.; Mizuhira, M.; Benjamin, Y.; Duncan, H.F.; et al. Ultrastructural Evaluation of Adverse Effects on Dentine Formation from Systemic Fluoride Application in an Experimental Mouse Model. Int. Endod. J. 2025, 58, 128–140. [Google Scholar] [CrossRef]
- Sidhu, S.; Nicholson, J. A Review of Glass-Ionomer Cements for Clinical Dentistry. J. Funct. Biomater. 2016, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Khoroushi, M.; Keshani, F. A Review of Glass-Ionomers: From Conventional Glass-Ionomer to Bioactive Glass-Ionomer. Dent. Res. J. 2013, 10, 411–420. [Google Scholar]
- Iranparvar, P.; Ghasemi, A.; Iranparvar, P. Adhesion of Glass Ionomer Cements to Primary Dentin Using a Universal Adhesive. Dent. Med. Probl. 2024, 61, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Hafshejani, T.M.; Zamanian, A.; Venugopal, J.R.; Rezvani, Z.; Sefat, F.; Saeb, M.R.; Vahabi, H.; Zarrintaj, P.; Mozafari, M. Antibacterial Glass-Ionomer Cement Restorative Materials: A Critical Review on the Current Status of Extended Release Formulations. J. Control. Release 2017, 262, 317–328. [Google Scholar] [CrossRef]
- Ge, K.X.; Lam, W.Y.; Chu, C.-H.; Yu, O.Y. Updates on the Clinical Application of Glass Ionomer Cement in Restorative and Preventive Dentistry. J. Dent. Sci. 2024, 19, S1–S9. [Google Scholar] [CrossRef]
- Croll, T.P.; Nicholson, J.W. Glass Ionomer Cements in Pediatric Dentistry: Review of the Literature. Pediatr. Dent. 2002, 24, 423–429. [Google Scholar] [PubMed]
- Almuhaiza, M. Glass-Ionomer Cements in Restorative Dentistry: A Critical Appraisal. J. Contemp. Dent. Pract. 2016, 17, 331–336. [Google Scholar] [CrossRef]
- ResearchAndMarkets. Glass Ionomer Filling Market: Market Size, Trends, Opportunities and Forecast by Defect Class, End-User Type, Product Type, Region, By Country: 2020–2030; ResearchAndMarkets: Dublin, Ireland, 2024. [Google Scholar]
- SDI. Riva Conditioner Brochure. Available online: https://www.sdi.com.au/wp-content/uploads/instructions/instruction_PL/in_riva_con_pl.pdf (accessed on 7 July 2025).
- SDI. Riva Light Cure Brochure. Available online: https://www.sdi.com.au/images/stories/instructions/instructions_pdf/riva_lc/in_riva_lc_en.pdf (accessed on 7 July 2025).
- Oppermann, R.V.; Johansen, J.R. Effect of Fluoride and Non-fluoride Salts of Copper, Silver and Tin on the Acidogenicity of Dental Plaque in Vivo. Eur. J. Oral. Sci. 1980, 88, 476–480. [Google Scholar] [CrossRef]
- Cordeiro, J.M.; Nagay, B.E.; Dini, C.; Souza, J.G.S.; Rangel, E.C.; da Cruz, N.C.; Yang, F.; van den Beucken, J.J.J.P.; Barão, V.A.R. Copper Source Determines Chemistry and Topography of Implant Coatings to Optimally Couple Cellular Responses and Antibacterial Activity. Biomater. Adv. 2022, 134, 112550. [Google Scholar] [CrossRef]
- Gutiérrez, M.F.; Malaquias, P.; Hass, V.; Matos, T.P.; Lourenço, L.; Reis, A.; Loguercio, A.D.; Farago, P.V. The Role of Copper Nanoparticles in an Etch-and-Rinse Adhesive on Antimicrobial Activity, Mechanical Properties and the Durability of Resin-Dentine Interfaces. J. Dent. 2017, 61, 12–20. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Vakhnovetsky, J.; Vakhnovetsky, A. Functional Role of Inorganic Trace Elements in Dentin Apatite—Part II: Copper, Manganese, Silicon, and Lithium. J. Trace Elem. Med. Biol. 2022, 72, 126995. [Google Scholar] [CrossRef]
- Li, Y.; Luo, W.; Liu, Y.; Lu, Y.; Geng, W.; Lin, J. Copper-Containing Titanium Alloys Promote the Coupling of Osteogenesis and Angiogenesis by Releasing Copper Ions. Biochem. Biophys. Res. Commun. 2023, 681, 157–164. [Google Scholar] [CrossRef]
- Aguilar-Perez, D.; Vargas-Coronado, R.; Cervantes-Uc, J.M.; Rodriguez-Fuentes, N.; Aparicio, C.; Covarrubias, C.; Alvarez-Perez, M.; Garcia-Perez, V.; Martinez-Hernandez, M.; Cauich-Rodriguez, J.V. Antibacterial Activity of a Glass Ionomer Cement Doped with Copper Nanoparticles. Dent. Mater. J. 2020, 39, 389–396. [Google Scholar] [CrossRef]
- Renné, W.G.; Lindner, A.; Mennito, A.S.; Agee, K.A.; Pashley, D.H.; Willett, D.; Sentelle, D.; Defee, M.; Schmidt, M.; Sabatini, C. Antibacterial Properties of Copper Iodide-Doped Glass Ionomer-Based Materials and Effect of Copper Iodide Nanoparticles on Collagen Degradation. Clin. Oral. Investig. 2017, 21, 369–379. [Google Scholar] [CrossRef]
- Okamoto, M.; Ali, M.; Komichi, S.; Watanabe, M.; Huang, H.; Ito, Y.; Miura, J.; Hirose, Y.; Mizuhira, M.; Takahashi, Y.; et al. Surface Pre-Reacted Glass Filler Contributes to Tertiary Dentin Formation through a Mechanism Different Than That of Hydraulic Calcium-Silicate Cement. J. Clin. Med. 2019, 8, 1440. [Google Scholar] [CrossRef] [PubMed]
- Zijnge, V.; van Leeuwen, M.B.M.; Degener, J.E.; Abbas, F.; Thurnheer, T.; Gmür, R.; Harmsen, H.J.M. Oral Biofilm Architecture on Natural Teeth. PLoS ONE 2010, 5, e9321. [Google Scholar] [CrossRef] [PubMed]
- Elbahie, D.M.; Badawy, R.E.-S.; Ibrahim, S.A.M.; Hassan, M.; Habib, N.A. Assessment of the Antibacterial Activity of Glass Ionomer Cements Modified by Polyamidoamine and Bioactive Glass: An in Vitro Study. Dent. Med. Probl. 2025. Ahead of Print. [Google Scholar] [CrossRef] [PubMed]
- Dennison, D.K.; Meredith, G.M.; Shillitoe, E.J.; Caffesse, R.G. The Antiviral Spectrum of Listerine Antiseptic. Oral Pathol. Oral Radiol. Endodontology 1995, 79, 442–448. [Google Scholar] [CrossRef]
- Jaros, S.W.; Florek, M.; Bażanów, B.; Panek, J.; Krogul-Sobczak, A.; Oliveira, M.C.; Król, J.; Śliwińska-Hill, U.; Nesterov, D.S.; Kirillov, A.M.; et al. Silver Coordination Polymers Driven by Adamantoid Blocks for Advanced Antiviral and Antibacterial Biomaterials. ACS Appl. Mater. Interfaces 2024, 16, 13411–13421. [Google Scholar] [CrossRef]
- Shalaby, H.A.; Soliman, N.K.; Al–Saudi, K.W. Antibacterial and Preventive Effects of Newly Developed Modified Nano-Chitosan/Glass-Ionomer Restoration on Simulated Initial Enamel Caries Lesions: An in Vitro Study. Dent. Med. Probl. 2024, 61, 353–362. [Google Scholar] [CrossRef]
- O’Hern, C.I.Z.; Djoko, K.Y. Copper Cytotoxicity: Cellular Casualties of Noncognate Coordination Chemistry. mBio 2022, 13, e00434-22. [Google Scholar] [CrossRef]
- Skłodowski, K.; Chmielewska-Deptuła, S.J.; Piktel, E.; Wolak, P.; Wollny, T.; Bucki, R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int. J. Mol. Sci. 2023, 24, 2104. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Chen, X.; Jiang, T.; Xue, J.; Liber, K.; Liu, H.; Yang, J. Copper Induces Cytotoxicity in Freshwater Bivalve Anodonta Woodiana Hemocytes. Chemosphere 2024, 362, 142595. [Google Scholar] [CrossRef]
- Ching, H.S.; Luddin, N.; Kannan, T.P.; Ab Rahman, I.; Abdul Ghani, N.R.N. Modification of Glass Ionomer Cements on Their Physical-Mechanical and Antimicrobial Properties. J. Esthet. Restor. Dent. 2018, 30, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Elshenawy, E.A.; El-Ebiary, M.A.; Kenawy, E.R.; El-Olimy, G.A. Modification of Glass-Ionomer Cement Properties by Quaternized Chitosan-Coated Nanoparticles. Odontology 2023, 111, 328–341. [Google Scholar] [CrossRef]
- Valanezhad, A.; Odatsu, T.; Udoh, K.; Shiraishi, T.; Sawase, T.; Watanabe, I. Modification of Resin Modified Glass Ionomer Cement by Addition of Bioactive Glass Nanoparticles. J. Mater. Sci. Mater. Med. 2016, 27, 3. [Google Scholar] [CrossRef] [PubMed]
- Moshaverinia, A.; Ansari, S.; Movasaghi, Z.; Billington, R.W.; Darr, J.A.; Rehman, I.U. Modification of Conventional Glass-Ionomer Cements with N-Vinylpyrrolidone Containing Polyacids, Nano-Hydroxy and Fluoroapatite to Improve Mechanical Properties. Dent. Mater. 2008, 24, 1381–1390. [Google Scholar] [CrossRef]
- Lee, M.J.; Kwon, J.S.; Kim, J.Y.; Ryu, J.H.; Seo, J.Y.; Jang, S.; Kim, K.M.; Hwang, C.J.; Choi, S.H. Bioactive Resin-Based Composite with Surface Pre-Reacted Glass-Ionomer Filler and Zwitterionic Material to Prevent the Formation of Multi-Species Biofilm. Dent. Mater. 2019, 35, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
- Kosior, P.; Dobrzyński, M.; Korczyński, M.; Herman, K.; Czajczyńska-Waszkiewicz, A.; Kowalczyk-Zając, M.; Piesiak-Pańczyszyn, D.; Fita, K.; Janeczek, M. Long-Term Release of Fluoride from Fissure Sealants—In Vitro Study. J. Trace Elem. Med. Biol. 2017, 41, 107–110. [Google Scholar] [CrossRef]
- Kosior, P.; Kaczmarek, U. Short-Term Fluoride Release from Conseal F Fissure Sealant in Some Media—An in Vitro Study. Ann. Acad. Med. Stetin. 2006, 52 (Suppl. S1), 61–65. [Google Scholar]
- Piszko, P.J.; Kulus, M.; Piszko, A.; Kiryk, J.; Kiryk, S.; Kensy, J.; Małyszek, A.; Michalak, M.; Dobrzyński, W.; Matys, J.; et al. The Influence of Calcium Ions and PH on Fluoride Release from Commercial Fluoride Gels in an In Vitro Study. Gels 2025, 11, 486. [Google Scholar] [CrossRef]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-Review. Res. Rev. J. Eng. Technol. 2017, 6. [Google Scholar] [PubMed]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of Multiple Methods for Quantification of Microbial Biofilms Grown in Microtiter Plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef]
- Solis-Velazquez, O.A.; Gutiérrez-Lomelí, M.; Guerreo-Medina, P.J.; Rosas-García, M.d.L.; Iñiguez-Moreno, M.; Avila-Novoa, M.G. Nosocomial Pathogen Biofilms on Biomaterials: Different Growth Medium Conditions and Components of Biofilms Produced in Vitro. J. Microbiol. Immunol. Infect. 2021, 54, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, M.; Ranque, S.; Prêcheur, I. Oral Fungal-Bacterial Biofilm Models in Vitro: A Review. Med. Mycol. 2018, 56, 653–667. [Google Scholar] [CrossRef]
- ISO 21702:2019; Measurement of Antiviral Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for in Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Heise, T.; Sawyer, A.Y.; Hirai, T.; Schaible, S.; Sy, H.; Wickramasekara, S. Report on Investigation of ISO 10993–12 Extraction Conditions. Regul. Toxicol. Pharmacol. 2022, 131, 105164. [Google Scholar] [CrossRef]
- Galal, M.M.; Ismail, A.G.; Nashaat, Y.; Hamdy, T.M. Evaluation of the Cytotoxicity, Apoptotic Effects, and Remineralization Potential of Recent Bioceramic-Based Root Canal Sealers. J. Oral. Biol. Craniofac Res. 2025, 15, 757–762. [Google Scholar] [CrossRef]
- ISO 10993-12:2021; Biological Evaluation of Medical Devices—Part 12: Sample Preparation and Reference Materials. International Organization for Standardization: Geneva, Switzerland, 2021.
- Szymanski, L.; Kiernozek, M.; Gromadka, B.; Straszecka, W.; Wiktorek-Smagur, A.; Matak, D. Chemical Characterization in Medical Device Evaluation: Current Practices, Regulatory Requirements, and Future Directions. Ann. Biomed. Eng. 2025, 53, 1068–1079. [Google Scholar] [CrossRef]
- Kumari, P.D.; Khijmatgar, S.; Chowdhury, A.; Lynch, E.; Chowdhury, C.R. Factors Influencing Fluoride Release in Atraumatic Restorative Treatment (ART) Materials: A Review. J. Oral. Biol. Craniofac Res. 2019, 9, 315–320. [Google Scholar] [CrossRef]
- Garcez, R.M.V.d.B.; Buzalaf, M.A.R.; Araújo, P.A. de Fluoride Release of Six Restorative Materials in Water and PH-Cycling Solutions. J. Appl. Oral Sci. 2007, 15, 406–411. [Google Scholar] [CrossRef]
- El Mallakh, B.F.; Sarkar, N.K. Fluoride Release from Glass-Ionomer Cements in de-Ionized Water and Artificial Saliva. Dent. Mater. 1990, 6, 118–122. [Google Scholar] [CrossRef]
- Tokarczuk, D.; Tokarczuk, O.; Kiryk, J.; Kensy, J.; Szablińska, M.; Dyl, T.; Dobrzyński, W.; Matys, J.; Dobrzyński, M. Fluoride Release by Restorative Materials after the Application of Surface Coating Agents: A Systematic Review. Appl. Sci. 2024, 14, 4956. [Google Scholar] [CrossRef]
- Attin, T.; Buchalla, W.; Siewert, C.; Hellwig, E. Fluoride Release/Uptake of Polyacid-modified Resin Composites (Compomers) in Neutral and Acidic Buffer Solutions. J. Oral. Rehabil. 1999, 26, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Dobrzyński, W.; Nikodem, A.; Diakowska, D.; Wiglusz, R.J.; Watras, A.; Dobrzyński, M.; Mikulewicz, M. Comparison of the Fluoride Ion Release from Nanofluoroapatite-Modified Orthodontic Cement under Different PH Conditions—An in Vitro Study. Acta Bioeng. Biomech. 2023, 25, 159–176. [Google Scholar] [CrossRef]
- Kosior, P.; Dobrzynski, M.; Zakrzewska, A.; Diakowska, D.; Nienartowicz, J.; Blicharski, T.; Nagel, S.; Sikora, M.; Wiglusz, K.; Watras, A.; et al. Comparison of the Fluoride Ion Release from Composite and Compomer Materials under Varying PH Conditions—Preliminary In Vitro Study. Appl. Sci. 2022, 12, 12540. [Google Scholar] [CrossRef]
- Klimas, S.; Kiryk, S.; Kiryk, J.; Kotela, A.; Kensy, J.; Michalak, M.; Rybak, Z.; Matys, J.; Dobrzyński, M. The Impact of Environmental and Material Factors on Fluoride Release from Metal-Modified Glass Ionomer Cements: A Systematic Review of In Vitro Studies. Materials 2025, 18, 3187. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Ozaki, Y.; Nakashima, K. Infrared, Raman, and near-Infrared Spectroscopic Evidence for the Coexistence of Various Hydrogen-Bond Forms in Poly(Acrylic Acid). Macromolecules 1997, 30, 1111–1117. [Google Scholar] [CrossRef]
- Dobrzynski, M.; Pajaczkowska, M.; Nowicka, J.; Jaworski, A.; Kosior, P.; Szymonowicz, M.; Kuropka, P.; Rybak, Z.; Bogucki, Z.A.; Filipiak, J.; et al. Study of Surface Structure Changes for Selected Ceramics Used in the CAD/CAM System on the Degree of Microbial Colonization, In Vitro Tests. Biomed. Res. Int. 2019, 2019, 9130806. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzynski, M.; Nowicka, J.; Pajaczkowska, M.; Szymonowicz, M.; Targonska, S.; Sobierajska, P.; Wiglusz, K.; Dobrzynski, W.; Lubojanski, A.; et al. The Influence of Ozonated Olive Oil-Loaded and Copper-Doped Nanohydroxyapatites on Planktonic Forms of Microorganisms. Nanomaterials 2020, 10, 1997. [Google Scholar] [CrossRef]
- Longano, D.; Ditaranto, N.; Sabbatini, L.; Torsi, L.; Cioffi, N. Synthesis and Antimicrobial Activity of Copper Nanomaterials. In Nano-Antimicrobials; Springer: Berlin/Heidelberg, Germany, 2012; pp. 85–117. [Google Scholar]
- Saidin, S.; Jumat, M.A.; Mohd Amin, N.A.A.; Saleh Al-Hammadi, A.S. Organic and Inorganic Antibacterial Approaches in Combating Bacterial Infection for Biomedical Application. Mater. Sci. Eng. C 2021, 118, 111382. [Google Scholar] [CrossRef]
- Bogdanović, U.; Lazić, V.; Vodnik, V.; Budimir, M.; Marković, Z.; Dimitrijević, S. Copper Nanoparticles with High Antimicrobial Activity. Mater. Lett. 2014, 128, 75–78. [Google Scholar] [CrossRef]
- Santo, C.E.; Lam, E.W.; Elowsky, C.G.; Quaranta, D.; Domaille, D.W.; Chang, C.J.; Grass, G. Bacterial Killing by Dry Metallic Copper Surfaces. Appl. Environ. Microbiol. 2011, 77, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial Activity of Metals: Mechanisms, Molecular Targets and Applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Dupont, C.L.; Grass, G.; Rensing, C. Copper Toxicity and the Origin of Bacterial Resistance—New Insights and Applications. Metallomics 2011, 3, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Cortizo, M.C.; De Mele, M.F.L. Cytotoxicity of Copper Ions Released from Metal: Variation with the Exposure Period and Concentration Gradients. Biol. Trace Elem. Res. 2004, 102, 129–141. [Google Scholar] [CrossRef]
- Solangi, J.A.; Memon, T.F.; Umair, M.; Jabeen, S.; Kumar, H.; Ali, A.; Shaikh, S.H.; Phulpoto, A.H. Antimicrobial efficacy of copper nanoparticles: A comprehensive review. Insights J. Health Rehabil. 2024, 2, 243–254. [Google Scholar] [CrossRef]
- Agnihotri, R.; Gaur, S.; Albin, S. Nanometals in Dentistry: Applications and Toxicological Implications—A Systematic Review. Biol. Trace Elem. Res. 2019, 197, 70–88. [Google Scholar] [CrossRef]
- Abdulghafor, M.A.; Mahmood, M.K.; Tassery, H.; Tardivo, D.; Falguiere, A.; Lan, R. Biomimetic Coatings in Implant Dentistry: A Quick Update. J. Funct. Biomater. 2023, 15, 15. [Google Scholar] [CrossRef]
- Danelon, M.; Nunes, G.P.; Sterzenbach, T.; Hannig, C. Enhancing Antimicrobial Properties of Glass Ionomer Cement through Metallic Agent Reinforcement: A Systematic Review and Meta-Analysis. J. Dent. 2025, 160, 105892. [Google Scholar] [CrossRef]
- Kim, S.; Geryak, R.D.; Zhang, S.; Ma, R.; Calabrese, R.; Kaplan, D.L.; Tsukruk, V.V. Interfacial Shear Strength and Adhesive Behavior of Silk Ionomer Surfaces. Biomacromolecules 2017, 18, 2876–2886. [Google Scholar] [CrossRef]
- Sahli, A.; Daeniker, L.; Rossier, I.; Caseiro, L.; di Bella, E.; Krejci, I.; Bortolotto, T. Comparison of Class II Bulk-Fill, Self-Adhesive Composites, Alkasite, and High-Viscosity Glass Ionomer Restorations in Terms of Marginal and Internal Adaptation. Materials 2024, 17, 4373. [Google Scholar] [CrossRef]
- Pedrini, D.; Gaetti-Jardim Júnior, E.; de Vasconcelos, A.C. Retention of Oral Microorganisms on Conventional and Resin-Modified Glass-Ionomer Cements. Pesqui. Odontológica Bras. 2001, 15, 196–200. [Google Scholar] [CrossRef]
- Plant, C.G.; Tobias, R.S.; Rippin, J.W.; Brooks, J.W.; Browne, R.M. A Study of the Relationship among Pulpal Response, Microbial Microleakage, and Particle Heterogeneity in a Glass-Ionomer-Base Material. Dent. Mater. 1991, 7, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Duque, C.; Negrini, T.D.C.; Sacono, N.T.; Spolidorio, D.M.P.; De Souza Costa, C.A.; Hebling, J. Clinical and Microbiological Performance of Resin-Modified Glass-Ionomer Liners after Incomplete Dentine Caries Removal. Clin. Oral. Investig. 2009, 13, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Palenik, C.J.; Behnen, M.J.; Setcos, J.C.; Miller, C.H. Inhibition of Microbial Adherence and Growth by Various Glass Ionomers in Vitro. Dent. Mater. 1992, 8, 16–20. [Google Scholar] [CrossRef] [PubMed]
Sample Abbreviation | Sealant Content [wt.%] | Copper Content [wt.%] |
---|---|---|
RMGIC | 100 | 0 |
RMGIC + Cu | 98 | 2 |
Variable or Variables Interaction | p | ƞ2 |
---|---|---|
Intercept | <0.0001 | 0.99 |
pH | <0.0001 | 0.93 |
Cu presence | <0.0001 | 0.53 |
pH*Cu presence | <0.0001 | 0.62 |
Strain | RMGIC | RMGIC + Cu | Control | |
---|---|---|---|---|
C. albicans | CFU/mL | 6.7 × 107 ± 2.0 × 106 | 1.9 × 108 ± 2.1 × 108 | 3.5 × 108 ± 4.7 × 108 |
p-value | 0.491 | |||
S. mutans | CFU/mL | 1.7 × 108 ± 1.4 × 108 | 2.3 × 108 ± 2.0 × 108 | 4.3 × 109 ± 4.5 × 109 |
p-value | 0.193 | |||
L. rhamnosus | CFU/mL | 2.0 × 109 ± 8.8 × 108 | 1.1 × 109 ± 1.4 × 109 | 1.2 × 1010 ± 2.0 × 1010 |
p-value | 0.670 |
Strain | RMGIC | RMGIC + Cu | |
---|---|---|---|
C. albicans | CFU/mL | 3.6 × 105 ± 1.0 × 105 | 1.3 × 105 ± 1.8 × 104 |
p-value | 0.0495 | ||
S. mutans | CFU/mL | 4.7 × 106 ± 2.1 × 106 | 2.2 × 106 ± 4.0 × 105 |
p-value | 0.0463 | ||
L. rhamnosus | CFU/mL | 1.1 × 109 ± 1.3 × 109 | 5.6 × 107 ± 3.6 × 107 |
p-value | 0.0495 |
Virus | RMGIC | RMGIC + Cu |
---|---|---|
HSV-1 | 0 log (0%) | 0 log (0%) |
HAdV-5 | 2 log (99.00%) | 1.25 log (90.25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piszko, A.; Piszko, P.J.; Kulus, M.J.; Pajączkowska, M.; Nowicka, J.; Chwirot, A.; Rusak, A.; Chodaczek, G.; Szymonowicz, M.; Dobrzyński, M. Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper. Appl. Sci. 2025, 15, 9506. https://doi.org/10.3390/app15179506
Piszko A, Piszko PJ, Kulus MJ, Pajączkowska M, Nowicka J, Chwirot A, Rusak A, Chodaczek G, Szymonowicz M, Dobrzyński M. Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper. Applied Sciences. 2025; 15(17):9506. https://doi.org/10.3390/app15179506
Chicago/Turabian StylePiszko, Aleksandra, Paweł J. Piszko, Michał J. Kulus, Magdalena Pajączkowska, Joanna Nowicka, Aleksandra Chwirot, Agnieszka Rusak, Grzegorz Chodaczek, Maria Szymonowicz, and Maciej Dobrzyński. 2025. "Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper" Applied Sciences 15, no. 17: 9506. https://doi.org/10.3390/app15179506
APA StylePiszko, A., Piszko, P. J., Kulus, M. J., Pajączkowska, M., Nowicka, J., Chwirot, A., Rusak, A., Chodaczek, G., Szymonowicz, M., & Dobrzyński, M. (2025). Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper. Applied Sciences, 15(17), 9506. https://doi.org/10.3390/app15179506