Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Equipment
2.2. Experimental Material
2.3. Clustering Analysis Methods
2.4. Random Forest Prediction Method
3. Results
3.1. Nanoindentation
3.2. Micro-Area XRD
3.3. Clustering Analysis
3.4. Random Forest Prediction Model
4. Discussion
5. Conclusions
- (1)
- A quantitative classification system for conglomerate microscopic mechanical properties was established using clustering analysis. Through 208 effective nanoindentation test data points, conglomerate microscopic components were successfully divided into three lithofacies categories with significant mechanical differences: hard lithofacies, medium-hard lithofacies, and soft lithofacies, with elastic moduli of 81.90 GPa, 54.97 GPa, and 25.21 GPa, respectively, and hardness values of 7.83 GPa, 3.87 GPa, and 1.15 GPa, respectively. This provides a scientific basis for quantitative characterization of conglomerate heterogeneity.
- (2)
- The control mechanisms of mineral composition on conglomerate microscopic mechanical properties were elucidated. Quartz content exhibits significant positive correlation with both elastic modulus and hardness, with correlation coefficients of 0.52 and 0.51, respectively. Clay mineral and plagioclase contents show negative correlations with mechanical properties. When indentation areas simultaneously cover multiple mineral components, the weakening effects of clay and plagioclase on microscopic strength exceed the strengthening effect of quartz, resulting in micro-areas exhibiting soft rock characteristics. Spatial distribution differences in mineral composition constitute the fundamental cause of strong heterogeneity in conglomerate.
- (3)
- An intelligent prediction model for mineral content based on mechanical parameters was constructed. Using random forest algorithms, high-precision inversion from nanoindentation mechanical parameters to mineral composition was achieved. Determination coefficients for quartz and clay mineral content prediction reached 0.8106 and 0.8529, respectively, with normalized root mean square error of approximately 0.10. This provides effective technical means for real-time lithology identification and mechanical parameter prediction during conglomerate formation drilling processes. By correlating downhole sensor data with the model’s required mechanical inputs, it becomes possible to perform on-the-fly mineralogy prediction. This capability would enable the dynamic optimization of drilling parameters to adapt to changing formation hardness, providing a powerful technical means to enhance efficiency and safety during drilling in complex conglomerate formations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Class | Rock Sample | Test Point | Young’s Modulus (GPa) | Hardness (GPa) | Mineral Composition | Mineral Content (%) |
---|---|---|---|---|---|---|
1 | 1 | 3 | 108.95 | 13.02 | Quartz | 70.3 |
Plagioclase | 18.3 | |||||
Clay minerals | 11.4 | |||||
1 | 4 | 4 | 84.12 | 6.14 | Quartz | 53.5 |
K-feldspar | 10.1 | |||||
Plagioclase | 18.6 | |||||
Siderite | 8.7 | |||||
Clay minerals | 9.1 | |||||
1 | 9 | 1 | 79.46 | 6.10 | Quartz | 54.5 |
K-feldspar | 7.0 | |||||
Plagioclase | 15.7 | |||||
Clay minerals | 11.4 |
Class | Rock Sample | Test Point | Young’s Modulus (GPa) | Hardness (GPa) | Mineral Composition | Mineral Content (%) |
---|---|---|---|---|---|---|
2 | 1 | 5 | 68.22 | 3.77 | Quartz | 61.5 |
Plagioclase | 11.3 | |||||
Calcite | 34.5 | |||||
Clay minerals | 8.4 | |||||
2 | 2 | 17 | 42.17 | 1.04 | Quartz | 50.2 |
K-feldspar | 2.5 | |||||
Plagioclase | 9.7 | |||||
Clay minerals | 37.6 | |||||
2 | 3 | 4 | 48.63 | 4.20 | Quartz | 41.9 |
K-feldspar | 6.1 | |||||
Plagioclase | 23.9 | |||||
Calcite | 4.3 | |||||
Siderite | 7.1 | |||||
Clay minerals | 16.6 | |||||
2 | 3 | 14 | 54.86 | 5.50 | Quartz | 28.8 |
K-feldspar | 9.4 | |||||
Plagioclase | 18.6 | |||||
Calcite | 5.2 | |||||
Siderite | 9.7 | |||||
Clay minerals | 28.3 | |||||
2 | 5 | 13 | 49.69 | 1.92 | Quartz | 33.5 |
K-feldspar | 5.8 | |||||
Plagioclase | 40.3 | |||||
Calcite | 9.4 | |||||
Clay minerals | 11.1 | |||||
2 | 6 | 3 | 42.109 | 1.79 | Quartz | 28.7 |
K-feldspar | 4.0 | |||||
Plagioclase | 37.1 | |||||
Calcite | 16.0 | |||||
Clay minerals | 14.2 | |||||
2 | 6 | 15 | 40.13 | 1.55 | Quartz | 52.5 |
K-feldspar | 2.4 | |||||
Plagioclase | 26.8 | |||||
Calcite | 2.0 | |||||
Clay minerals | 16.3 | |||||
2 | 7 | 16 | 73.29 | 7.14 | Quartz | 70.7 |
K-feldspar | 2.2 | |||||
Plagioclase | 6.1 | |||||
Clay minerals | 18.6 | |||||
2 | 8 | 18 | 61.26 | 5.33 | Quartz | 34.3 |
K-feldspar | 12.0 | |||||
Plagioclase | 16.7 | |||||
Siderite | 3.6 | |||||
Clay minerals | 23.4 | |||||
2 | 9 | 3 | 47.40 | 3.55 | Quartz | 44.1 |
K-feldspar | 5.4 | |||||
Plagioclase | 28.7 | |||||
Calcite | 7.2 | |||||
Clay minerals | 7.6 |
Class | Rock Sample | Test Point | Young’s Modulus (GPa) | Hardness (GPa) | Mineral Composition | Mineral Content (%) |
---|---|---|---|---|---|---|
3 | 2 | 20 | 18.35 | 0.29 | Quartz | 61.5 |
Plagioclase | 11.3 | |||||
Clay minerals | 27.2 | |||||
3 | 3 | 11 | 24.56 | 0.7790 | Quartz | 41.1 |
K-feldspar | 4.9 | |||||
Plagioclase | 29.2 | |||||
Calcite | 2.7 | |||||
Siderite | 7.2 | |||||
Clay minerals | 14.8 | |||||
3 | 10 | 6 | 29.3 | 1.14 | Quartz | 34.8 |
K-feldspar | 4.7 | |||||
Plagioclase | 33.0 | |||||
Calcite | 1.3 | |||||
Clay minerals | 19.5 | |||||
3 | 10 | 17 | 18.63 | 0.79 | Quartz | 9.0 |
K-feldspar | 5.6 | |||||
Plagioclase | 55.8 | |||||
Calcite | 8.2 | |||||
Clay minerals | 16.9 |
References
- Hou, B.; Zeng, C.; Chen, D.; Fan, M.; Chen, M. Prediction of wellbore stability in conglomerate formation using discrete element method. Arab. J. Sci. Eng. 2017, 42, 1609–1619. [Google Scholar] [CrossRef]
- Peng, N.; Ma, T.; Zhu, G.; Su, Q. Anti-drilling ability of Ziliujing conglomerate formation in Western Sichuan Basin of China. Petroleum 2023, 9, 41–52. [Google Scholar] [CrossRef]
- Shi, J.; Yang, Z.; Li, G.; Qiu, Z.; Mu, Z.; Sun, Z.; Zhao, K.; Yan, J. Investigations on optimal parameters for enhancing penetration efficiency during axial-torsional coupled impact drilling in hard rock. Geoenergy Sci. Eng. 2025, 247, 213668. [Google Scholar] [CrossRef]
- Kumar, V.; Sondergeld, C.H.; Rai, C.S. Nano to macro mechanical characterization of shale. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012. Paper SPE-159804-MS. [Google Scholar]
- Sun, J.; Yang, J.; Lv, K.; Bai, Y.; Liu, J.; Huang, X. Research Status and Prospect of Deep and Ultra-deep Drilling Technology. Xinjiang Oil Gas 2025, 21, 1–14. [Google Scholar]
- Qi, H.; Li, D.; Zhao, J.; Ma, H.; Wang, X.; Wang, X.; Zhu, B.; Lin, J.; Zhao, X. The experimental and numerical analysis of elastic rock mechanical properties in tight conglomerate rock samples: A case study in Junggar Basin. Front. Energy Res. 2024, 11, 1330550. [Google Scholar] [CrossRef]
- Hellvik, S.; Nygaard, R.; Hoel, E.; Andersen, M.; Francis, M. PDC cutter and Bit development for challenging Conglomerate Drilling in the Luno Field-Offshore Norway. In Proceedings of the SPE/IADC Drilling Conference and Exhibition, San Diego, CA, USA, 6–8 March 2012; p. SPE-151456-MS. [Google Scholar]
- Guoxin, L.; Jianhua, Q.; Chenggang, X.; Xibin, F.; Yi, D. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development: A case study of the Mahu oilfield, Junggar Basin, NW China. Pet. Explor. Dev. 2020, 47, 1275–1290. [Google Scholar] [CrossRef]
- Zongyu, L.; Fei, Z.; Ming, L.; Lingzhan, Z.; Jiangang, S.; Lubin, Z. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang. Pet. Drill. Tech. 2019, 47, 9–14. [Google Scholar]
- Li, G.; Mu, Z.; Tian, S.; Huang, Z.; Sun, Z. Research Status and Development Proposal of ROP Improvement Technology with Percussion Rock-Breaking Method. Xinjiang Oil Gas 2024, 20, 1–12. [Google Scholar]
- Liu, F.B.; Sun, J.; Wang, J.H. A Global Review of Technical Status and Development Trend of Drilling Fluids for Deep and Ultra-Deep Wells. Xinjiang Oil Gas 2023, 19, 34–39. [Google Scholar]
- Wang, J.; Ge, H.; Liu, J.; Shen, Y.; Zhang, Z.; Luo, S.; Liu, D. Effects of gravel size and content on the mechanical properties of conglomerate. Rock Mech. Rock Eng. 2022, 55, 2493–2502. [Google Scholar] [CrossRef]
- Duan, K.; Wang, L.; Li, J.; Zhang, Q.; Li, X.; Jiang, R. Micro-Mechanical Analysis of the Failure Process of Conglomerate: Insights from DEM Simulation with Physics-Based Gravel Structure. Rock Mech. Rock Eng. 2025, 58, 9415–9434. [Google Scholar] [CrossRef]
- Teng, W.-W.; Wang, J.-B.; Liu, J.-T.; Ge, H.-K.; Li, X.-D.; Zhang, Y.-K.; Zhao, T.-F. Study of micromechanical characteristics and failure mechanism of conglomerate reservoirs. Pet. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Xiong, J.; Liang, L.; Zhang, W. Research on mechanical properties and failure mode of conglomerate based on discrete element method. Appl. Sci. 2022, 13, 223. [Google Scholar] [CrossRef]
- Ma, Z.; Pathegama Gamage, R.; Zhang, C. Application of nanoindentation technology in rocks: A review. Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 6, 60. [Google Scholar] [CrossRef]
- Shukla, P.; Taneja, S.; Sondergeld, C.; Rai, C. Nanoindentation measurements on rocks. In Fracture, Fatigue, Failure, and Damage Evolution; Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 5, pp. 99–105. [Google Scholar]
- Bennett, K.C.; Berla, L.A.; Nix, W.D.; Borja, R.I. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Yan, W.; Pun, C.L.; Simon, G.P. Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites. Compos. Sci. Technol. 2012, 72, 1147–1152. [Google Scholar] [CrossRef]
- Meng, S.; Li, D.; Wang, Q.; Tao, J.; Su, J.; Li, H.; Jin, X.; Yang, L. Nanoindentation-based three-parameter fracability evaluation method for continental shales. Front. Earth Sci. 2021, 9, 797405. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, C.; Gamage, R.P.; Zhang, G. Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation. Int. J. Min. Sci. Technol. 2022, 32, 283–294. [Google Scholar] [CrossRef]
- Veytskin, Y.B.; Tammina, V.K.; Bobko, C.P.; Hartley, P.G.; Clennell, M.B.; Dewhurst, D.N.; Dagastine, R.R. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry. Geomech. Energy Environ. 2017, 9, 21–35. [Google Scholar] [CrossRef]
- Yang, L.; Yang, D.; Li, Y.; Cai, J.; Jiang, X. Nanoindentation study on microscopic mineral mechanics and bedding characteristics of continental shales. Energy 2024, 312, 133614. [Google Scholar] [CrossRef]
- Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis, G.E.; Suresh, S. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 2020, 117, 7052–7062. [Google Scholar] [CrossRef]
- Puchi-Cabrera, E.S.; Rossi, E.; Sansonetti, G.; Sebastiani, M.; Bemporad, E. Machine learning aided nanoindentation: A review of the current state and future perspectives. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101091. [Google Scholar] [CrossRef]
- Xie, Q.; Tian, X.; Zeng, Y.; Liu, X.; Wang, L. Study on the influence of indentation depths on the fracture characterization and acoustic emission characteristics of minerals in granite using nanoindentation. Constr. Build. Mater. 2024, 450, 138516. [Google Scholar] [CrossRef]
- Kang, P. Prediction of rockburst classification using Random Forest. Trans. Nonferrous Met. Soc. China 2013, 23, 472–477. [Google Scholar] [CrossRef]
- Miah, M.I.; Ahmed, S.; Zendehboudi, S.; Butt, S. Machine learning approach to model rock strength: Prediction and variable selection with aid of log data. Rock Mech. Rock Eng. 2020, 53, 4691–4715. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Han, S.; Ren, Q.; Shi, J. Intelligent identification for rock-mineral microscopic images using ensemble machine learning algorithms. Sensors 2019, 19, 3914. [Google Scholar] [CrossRef]
- MacQueen, J. Multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statisticsand Probability, Berkeley, CA, USA, 21 June–18 July 1965, 27 December–7 January 1966; University of California Press: Berkley, CA, USA, 1967; pp. 281–297. [Google Scholar]
- Bishop, M.C.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ward, J.H., Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Zhang, W.; Li, P.; Zhao, Y.; Mu, Z.; Yang, Z. Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate. Appl. Sci. 2025, 15, 9541. https://doi.org/10.3390/app15179541
Guo Y, Zhang W, Li P, Zhao Y, Mu Z, Yang Z. Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate. Applied Sciences. 2025; 15(17):9541. https://doi.org/10.3390/app15179541
Chicago/Turabian StyleGuo, Yong, Wenbo Zhang, Pengfei Li, Yuxuan Zhao, Zongjie Mu, and Zhehua Yang. 2025. "Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate" Applied Sciences 15, no. 17: 9541. https://doi.org/10.3390/app15179541
APA StyleGuo, Y., Zhang, W., Li, P., Zhao, Y., Mu, Z., & Yang, Z. (2025). Machine Learning-Enhanced Nanoindentation for Characterizing Micromechanical Properties and Mineral Control Mechanisms of Conglomerate. Applied Sciences, 15(17), 9541. https://doi.org/10.3390/app15179541