Generative Denoising Method for Geological Images with Pseudo-Labeled Non-Matching Datasets
Abstract
1. Introduction
2. Research Significance
- Our contributions are summarized as follows:
- We present the generative denoising method for geological images with pseudo-labeled non-matching datasets (GD-PND) to reduce manpower, which takes two types of unpaired images as input to achieve automatic generation and denoising enhancement of noiseless results.
- A non-matching dataset of images with noise and pseudo-noiseless images is built by region detection and filling, overcoming quantity limitations and production difficulties effectively.
- The style transfer-based generative model for noiseless images is created with cycleGAN and excitation networks of global features to achieve high-quality generation from images with noise to noiseless counterparts.
- An iterative denoising enhancement module is designed to obtain better results with smooth boundaries by multiple contour fillings. Extensive experiments are conducted to prove that the model and each of its modules are effective.
3. Materials and Methods
3.1. Method Overview
Algorithm 1: Overall process of the GD-PND method. |
3.2. The Style Transfer-Based Generative Model
Excitation Networks of Global Features
3.3. Training Process of STGnet Model
3.3.1. Training Losses for the Generator
3.3.2. Training Losses for the Discriminator
3.4. Iterative Denoising Enhancement Module
4. Results and Discussion
4.1. Experimental Setup
4.1.1. Evaluation Metric
4.1.2. Construction of Non-Matching Dataset
4.1.3. Methodological Details
4.2. Visualization Results of Denoising
4.3. Comparative Experiments
4.3.1. Comparison with Other Methods
4.3.2. Comparative Experiments on Different Datasets
4.4. Ablation Experiment
4.4.1. Ablation of Various Modules
4.4.2. Visual Analysis of Individual Variants
4.4.3. Ablation on Small Pieces of the Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Liu, G.; He, Z.; Zhang, X.; Wu, C. Current situation and prospect of structure-attribute integrated 3D geological modeling technology for geological big data. Bull. Geol. Sci. Technol. 2020, 39, 51–58. [Google Scholar]
- Feng, R.; Grana, D.; Mukerji, T.; Mosegaard, K. Application of Bayesian generative adversarial networks to geological facies modeling. Math. Geosci. 2022, 54, 831–855. [Google Scholar] [CrossRef]
- Bi, Z.; Wu, X. Implicit structural modeling of geological structures with deep learning. In Proceedings of the First International Meeting for Applied Geoscience & Energy, Denver, CO, USA, 26 September–1 October 2021. [Google Scholar]
- Liu, Y.; Zhang, W.; Duan, T.; Lian, P.; Li, M.; Zhao, H. Progress of deep learning in oil and gas reservoir geological modeling. Bull. Geol. Sci. Technol. 2021, 40, 235–241. [Google Scholar]
- Li, J.; Meng, Y.; Xia, J.; Xu, K.; Sun, J. A Physics-Constrained Two-Stage GAN for Reservoir Data Generation: Enhancing Predictive Accuracy. Eng. Res. Express 2025, 7, 035257. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Wang, P.; Tu, Z.; Kong, X.; Luo, Y.; Jia, Y.; Zhao, Z.; Hu, X. Dual-driven gas reservoir productivity prediction with small sample data: Integrating physical constraints and GAN-based data augmentation. Geoenergy Sci. Eng. 2025, 247, 213711. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtually, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Li, F.; Liu, H.; Wang, W.; Ma, J. Swin transformer for seismic denoising. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7501905. [Google Scholar] [CrossRef]
- Wang, H.; Lin, J.; Li, Y.; Dong, X.; Tong, X.; Lu, S. Self-supervised pretraining transformer for seismic data denoising. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5907525. [Google Scholar] [CrossRef]
- Klochikhina, E.; Crawley, S.; Chemingui, N. Seismic image denoising with convolutional neural network. In Proceedings of the SEG International Exposition and Annual Meeting, Denver, CO, USA, 26 September–1 October 2021; SEG: Houston, TX, USA, 2021; p. D011S124R005. [Google Scholar]
- Li, J.; Wu, X.; Hu, Z. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5901611. [Google Scholar]
- Zhang, H.; Wu, C.; Lu, J.; Wang, L.; Hu, F.; Zhang, L. An Unsupervised Automatic Denoising Method Based on Visual Features of Geological Images. CN202211291834.3, 20 January 2023. [Google Scholar]
- Wu, C.; Zhang, H.; Wang, B.; Zhang, L.; Wang, L.; Hu, F. Multiscale Contrastive Learning Networks for Automatic Denoising of Geological Sedimentary Model Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4709212. [Google Scholar] [CrossRef]
- Huo, C.; Gu, L.; Zhao, C.; Yan, W.; Yang, Q. Integrated reservoir geological modeling based on seismic, log and geological data. Acta Pet. Sin. 2007, 28, 66. [Google Scholar]
- Wu, S.; Li, Y. Reservoir modeling: Current situation and development prospect. Mar. Orig. Pet. Geol. 2007, 12, 53–60. [Google Scholar]
- Jia, A.; Guo, Z.; Guo, J.; Yan, H. Research achievements on reservoir geological modeling of China in the past three decades. Acta Pet. Sin. 2021, 42, 1506. [Google Scholar]
- Oliver, M.A.; Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging; Technical report; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Liu, C.; Wang, B.; Yang, G. Rock Mass Wave Velocity Visualization Model Based on the Ordinary Kriging Method. Soil Eng. Found. 2017, 31, 6. [Google Scholar]
- Abulkhair, S.; Madani, N. Stochastic modeling of iron in coal seams using two-point and multiple-point geostatistics: A case study. Mining, Metall. Explor. 2022, 39, 1313–1331. [Google Scholar] [CrossRef]
- Liu, Y. Using the Snesim program for multiple-point statistical simulation. Comput. Geosci. 2006, 32, 1544–1563. [Google Scholar] [CrossRef]
- Zhang, T.; Switzer, P.; Journel, A. Filter-based classification of training image patterns for spatial simulation. Math. Geol. 2006, 38, 63–80. [Google Scholar] [CrossRef]
- Zhang, T.; Xie, J.; Hu, X.; Wang, S.; Yin, J.; Wang, S. Multi-Point Geostatistical Sedimentary Facies Modeling Based on Three-Dimensional Training Images. Glob. J. Earth Sci. Eng. 2020, 7, 37–53. [Google Scholar] [CrossRef]
- Ba, N.T.; Quang, T.P.H.; Bao, M.L.; Thang, L.P. Applying multi-point statistical methods to build the facies model for Oligocene formation, X oil field, Cuu Long basin. J. Pet. Explor. Prod. Technol. 2019, 9, 1633–1650. [Google Scholar] [CrossRef]
- Song, S.; Mukerji, T.; Hou, J. Geological Facies modeling based on progressive growing of generative adversarial networks (GANs). Comput. Geosci. 2021, 25, 1251–1273. [Google Scholar] [CrossRef]
- Bai, T.; Tahmasebi, P. Hybrid geological modeling: Combining machine learning and multiple-point statistics. Comput. Geosci. 2020, 142, 104519. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tilke, P.; Dupont, E.; Zhu, L.C.; Liang, L.; Bailey, W. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 2019, 16, 541–549. [Google Scholar] [CrossRef]
- Zhang, C.; Song, X.; Azevedo, L. U-net generative adversarial network for subsurface facies modeling. Comput. Geosci. 2021, 25, 553–573. [Google Scholar] [CrossRef]
- Jiang, J.; Ren, H.; Zhang, M. A convolutional autoencoder method for simultaneous seismic data reconstruction and denoising. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Al-Fakih, A.; Kaka, S.; Koeshidayatullah, A. Utilizing GANs for Synthetic Well Logging Data Generation: A Step Towards Revolutionizing Near-Field Exploration. In Proceedings of the EAGE/AAPG Workshop on New Discoveries in Mature Basins. European Association of Geoscientists & Engineers, Kuala Lumpur, Malaysia, 30–31 January 2024; Volume 2024, pp. 1–5. [Google Scholar]
- Al-Fakih, A.; Koeshidayatullah, A.; Mukerji, T.; Al-Azani, S.; Kaka, S.I. Well log data generation and imputation using sequence based generative adversarial networks. Sci. Rep. 2025, 15, 11000. [Google Scholar] [CrossRef]
- Azevedo, L.; Paneiro, G.; Santos, A.; Soares, A. Generative adversarial network as a stochastic subsurface model reconstruction. Comput. Geosci. 2020, 24, 1673–1692. [Google Scholar] [CrossRef]
- Garcia, L.G.; Ramos, G.D.O.; de Oliveira, J.M.M.T.; Da Silveira, A.S. Enhancing Synthetic Well Logs with PCA-Based GAN Models. In Proceedings of the 2024 International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 18–20 December 2024; IEEE: Miami, FL, USA, 2024; pp. 1350–1355. [Google Scholar]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Proceedings of the Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Proceedings, Part I 21. Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Pan, X.; Ge, C.; Lu, R.; Song, S.; Chen, G.; Huang, Z.; Huang, G. On the integration of self-attention and convolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 815–825. [Google Scholar]
- Li, S.; Chen, J.; Xiang, J. Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Comput. Appl. 2020, 32, 2037–2053. [Google Scholar] [CrossRef]
- Das, V.; Mukerji, T. Petrophysical properties prediction from prestack seismic data using convolutional neural networks. Geophysics 2020, 85, N41–N55. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J. Deep learning reservoir porosity prediction using integrated neural network. Arab. J. Sci. Eng. 2022, 47, 11313–11327. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Zhang, M.; Zhang, H. Dropout-Based Robust Self-Supervised Deep Learning for Seismic Data Denoising. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8027205. [Google Scholar] [CrossRef]
- Sang, W.; Yuan, S.; Yong, X.; Jiao, X.; Wang, S. DCNNs-based denoising with a novel data generation for multidimensional geological structures learning. IEEE Geosci. Remote Sens. Lett. 2020, 18, 1861–1865. [Google Scholar] [CrossRef]
- Du, H.; An, Y.; Ye, Q.; Guo, J.; Liu, L.; Zhu, D.; Childs, C.; Walsh, J.; Dong, R. Disentangling noise patterns from seismic images: Noise reduction and style transfer. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4513214. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, W. Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs). Energies 2022, 15, 6569. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Li, Y.; Ma, H. A patch based denoising method using deep convolutional neural network for seismic image. IEEE Access 2019, 7, 156883–156894. [Google Scholar] [CrossRef]
- Liu, G.; Liu, Y.; Li, C.; Chen, X. Weighted multisteps adaptive autoregression for seismic image denoising. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1342–1346. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, H.; Li, Y. Noise attenuation for seismic image using a deep residual learning. In Proceedings of the SEG Technical Program Expanded Abstracts 2018, Anaheim, CA, USA, 14–19 October 2018; Society of Exploration Geophysicists: Houston, TX, USA, 2018; pp. 2176–2180. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Ganomaly: Semi-supervised anomaly detection via adversarial training. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Cham, Switzerland, 2018; pp. 622–637. [Google Scholar]
- Xia, X.; Pan, X.; Li, N.; He, X.; Ma, L.; Zhang, X.; Ding, N. GAN-based anomaly detection: A review. Neurocomputing 2022, 493, 497–535. [Google Scholar] [CrossRef]
Size | Images with Noise | Pseudo Labels | Total |
---|---|---|---|
11,904 | 11,904 | 23,808 | |
5184 | 5184 | 10,368 | |
Total | 17,088 | 17,088 | 34,176 |
Metrics | CAE | GAN | Unet | CLGAN | Transformer | GD-PND |
---|---|---|---|---|---|---|
Cosine Similarity ↑ | 0.9880 ± 0.0002 | 0.9880 ± 0.0001 | 0.9868 ± 0.0005 | 0.9879 ± 0.0003 | 0.9866 ± 0.0003 | 0.9894 ± 0.0001 |
Red-score ↓ | 0.0859 ± 0.0323 | 0.0996 ± 0.0084 | 0.0850 ± 0.0301 | 0.0753 ± 0.0298 | 0.0864 ± 0.0484 | 0.0749 ± 0.0027 |
Bhattacharyya ↓ | 0.1447 ± 0.0038 | 0.1413 ± 0.0003 | 0.1444 ± 0.0009 | 0.1450 ± 0.0021 | 0.1540 ± 0.0050 | 0.1409 ± 0.0002 |
Correlation ↑ | 0.9968 ± 0.0027 | 0.9994 ± 0.0003 | 0.9970 ± 0.0006 | 0.9966 ± 0.0014 | 0.9905 ± 0.0033 | 0.9998 ± 0.0002 |
Chi-square ↓ | 28,785.4 ± 5135 | 24,096.3 ± 512.2 | 28,321.9 ± 1179 | 29,123.9 ± 2714 | 40,985.3 ± 6745 | 23,630.3 ± 253.3 |
Data Conditions | Methods | Correlation ↑ | Bhattacharyya ↓ | Chi-Square ↓ | Cosine Similarity ↑ | Red-Score ↓ |
---|---|---|---|---|---|---|
Only | CLGAN | 0.9655 ± 0.0113 | 0.1716 ± 0.0062 | 74,116.9 ± 16,084 | 0.9823 ± 0.0007 | 0.2647 ± 0.0316 |
GAN | 0.9760 ± 0.0156 | 0.1629 ± 0.0129 | 62,721.5 ± 13,996 | 0.9835 ± 0.0012 | 0.2387 ± 0.0297 | |
AE | 0.9848 ± 0.0064 | 0.1558 ± 0.0057 | 46,377.0 ± 9337 | 0.9844 ± 0.0006 | 0.2013 ± 0.0238 | |
and | AE | 0.9990 ± 0.0006 | 0.1417 ± 0.0007 | 25,347.6 ± 41.84 | 0.9899 ± 0.0002 | 0.0907 ± 0.0017 |
GAN | 0.9954 ± 0.0010 | 0.1456 ± 0.0011 | 30,442.9 ± 1609 | 0.9893 ± 0.0001 | 0.1149 ± 0.0058 | |
CLGAN | 0.9995 ± 0.0002 | 0.1413 ± 0.0002 | 24,062.2 ± 320.7 | 0.9904 ± 0.0002 | 0.0790 ± 0.0023 | |
and | Dataset | 0.9685 ± 0.0034 | 0.1694 ± 0.0027 | 69,863.4 ± 4867 | 0.9865 ± 0.0002 | 0.2137 ± 0.0085 |
GD-PND | 0.9998 ± 0.0002 | 0.1409 ± 0.0002 | 23,630.3 ± 253.3 | 0.9894 ± 0.0001 | 0.0749 ± 0.0027 |
Data Conditions | Methods | Correlation ↑ | Bhattach ↓ | Chi-Square ↓ | Cosine Similarity ↑ | Red-Score ↓ |
---|---|---|---|---|---|---|
and | without ENGF | 0.9658 ± 0.0024 | 0.1715 ± 0.0019 | 73,677.7 ± 3474 | 0.9859 ± 0.0001 | 0.2218 ± 0.0054 |
without IDEM | 0.9920 ± 0.0058 | 0.1517 ± 0.0084 | 38,066.8 ± 11,236 | 0.9882 ± 0.0004 | 0.0389 ± 0.0225 | |
only First | 0.9964 ± 0.0003 | 0.1454 ± 0.0003 | 29,621.9 ± 552.0 | 0.9881 ± 0.0001 | 0.0535 ± 0.0022 | |
GD-PND | 0.9998 ± 0.0002 | 0.1409 ± 0.0002 | 23,630.3 ± 253.3 | 0.9894 ± 0.0001 | 0.0749 ± 0.0027 |
Methods | Correlation | Bhattacharyya | Chi-Square |
---|---|---|---|
SA + CA | 0.9809 ± 0.0023 | 0.1686 ± 0.0036 | 60,662.7 ± 4884 |
SA + CA + first | 0.9836 ± 0.0042 | 0.1644 ± 0.0066 | 54,959.2 ± 8945 |
only SA + IDEM | 0.9874 ± 0.0006 | 0.1534 ± 0.0006 | 42,463.6 ± 941.0 |
only CA + first | 0.9974 ± 0.0003 | 0.1440 ± 0.0003 | 27,807.3 ± 490.7 |
only CA + IDEM | 0.9995 ± 0.0001 | 0.1411 ± 0.0001 | 23,918.1 ± 116.7 |
SA + CA + IDEM | 0.9909 ± 0.0005 | 0.1533 ± 0.0007 | 40,040.3 ± 915.9 |
GD-PND | 0.9998 ± 0.0002 | 0.1409 ± 0.0002 | 23,630.3 ± 253.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wu, C.; Lu, J.; Zhao, W. Generative Denoising Method for Geological Images with Pseudo-Labeled Non-Matching Datasets. Appl. Sci. 2025, 15, 9620. https://doi.org/10.3390/app15179620
Zhang H, Wu C, Lu J, Zhao W. Generative Denoising Method for Geological Images with Pseudo-Labeled Non-Matching Datasets. Applied Sciences. 2025; 15(17):9620. https://doi.org/10.3390/app15179620
Chicago/Turabian StyleZhang, Huan, Chunlei Wu, Jing Lu, and Wenqi Zhao. 2025. "Generative Denoising Method for Geological Images with Pseudo-Labeled Non-Matching Datasets" Applied Sciences 15, no. 17: 9620. https://doi.org/10.3390/app15179620
APA StyleZhang, H., Wu, C., Lu, J., & Zhao, W. (2025). Generative Denoising Method for Geological Images with Pseudo-Labeled Non-Matching Datasets. Applied Sciences, 15(17), 9620. https://doi.org/10.3390/app15179620