Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers
Abstract
1. Introduction
- (1)
- At a macro scale, karst landforms are characterized by rugged terrain units such as peak clusters, depressions, and gorges, resulting in a highly fragmented surface. Land cover patches are typically small in area, irregular in shape, and have fuzzy boundaries, forming a complex landscape with a tightly interwoven mosaic of vegetation, soil, and exposed bedrock.
- (2)
- The phenomena of same object, different spectra and different objects, similar spectra are especially prominent in karst areas. For example, weathered carbonate rock outcrops and urban impervious surfaces such as concrete rooftops and roads exhibit very similar high reflectance in the visible and near-infrared bands, making them extremely difficult to distinguish in high-resolution imagery. Similarly, seasonally dry croplands and sparsely vegetated grasslands or shrubs often share highly similar spectral features. Even the same tree species can display drastically different spectral responses on sun-facing versus shaded slopes due to differences in illumination intensity and angle.
- (3)
- The dramatic topographic relief in karst regions leads to widespread terrain shadows, especially on steep mountain slopes. These shaded areas receive very weak electromagnetic signals, resulting in significant loss of land surface information and becoming a major source of classification errors.
- (4)
- Subtropical karst regions (such as Southwest China) are frequently shrouded in clouds and fog, and their humid, rainy climate severely limits the availability of high-quality optical remote sensing imagery. This makes it difficult to construct complete and continuous time-series datasets [14].
2. Analysis of Karst Complex Environments and Challenges in LULC Remote Sensing Classification
2.1. Evolution of LULC Remote Sensing Classification Research in Karst Regions
2.2. Impact of Fragmented Surface and Spatial Heterogeneity on Classification Accuracy
2.3. Mechanisms and Mitigation Strategies of Spectral Confusion
2.3.1. Different Objects, Similar Spectra: Spectral Confusion Among Distinct Land Cover Types
2.3.2. Same Object, Different Spectra: Spectral Variability Within the Same Land Cover Type
2.3.3. Spectral Gradient Characteristics of Different KRD Levels
2.3.4. Seasonal Variability and Its Interference with Remote Sensing Data, and Improvement Methods
2.4. Remote Sensing Correction Challenges of Terrain Shadow and Radiometric Distortion
2.5. Limitations of Optical Remote Sensing Due to Weather Conditions and Temporal Discontinuity
2.6. Remote Sensing Identification Features and Challenges of KRD Land Cover Types
3. Technical Pathways and Applicability Assessment of LULC Classification in Karst Regions
3.1. Multi-Source Remote Sensing Data Systems
3.1.1. Comparison of Optical Remote Sensing Data Sources for Applicability
3.1.2. The Critical Complementary Role of SAR in Karst Environments
3.1.3. Light Detection and Ranging (LiDAR) Data
Data Type | Representative Platform/Sensor | Spatial Resolution | Advantages | Limitation | Typical Applications |
---|---|---|---|---|---|
Satellite LiDAR [118] | ICESat-2 ATLAS, GEDI (GSFC, Greenbelt, MD, USA) | 10–25 m | Good global-scale consistency, suitable for large-scale vegetation monitoring. | Sparse spatial sampling, unable to generate continuous coverage. | Biomass estimation and classification of forest vertical structures |
UAV-LiDAR [119] | RIEGL miniVUX (RIEG, Horn, Austria), DJI Zenmuse L1 (DJI, Shenzhen, Guangdong, China) | 0.02–0.5 m (point cloud at centimeter level) | High flexibility, capable of accurately obtaining three-dimensional terrain and vegetation structure, making it suitable for detailed local classification. | Limited by flight altitude and endurance, high cost with restricted data coverage. | DEM/DSM extraction, urban built-up area classification, and karst micro-landform identification |
Terrestrial LiDAR (TLS) [120] | RIEGL VZ Series (RIEG, Horn, Austria), Leica ScanStation (RIEG, Horn, Austria, Heerbrugg, St. Gallen, Switzerland) | Millimeter to centimeter level | Extremely high accuracy, suitable for validation and sample construction. | Slow data acquisition, with limited scene coverage. | Vegetation vertical structure measurement and classification sample validation |
3.1.4. UAV-Based Multi-Source Remote Sensing
3.2. Review of Classification Methods
3.2.1. Pixel-Based Classification Methods: From Traditional Statistics to Improved Logic
3.2.2. GEOBIA: Workflow and Suitability in Karst Environments
3.2.3. Applicability of Machine Learning Methods in Karst Regions
3.2.4. Comparison of the Performance, Cost, and Applicability of Classification Methods
3.3. Classification Accuracy Assessment Methods and Uncertainty Modeling
3.3.1. Principles and Strategies for Sample Collection
3.3.2. Construction and Applicability of Classification Accuracy Assessment Metrics
3.3.3. Sources of Classification Uncertainty
3.3.4. Methods for Quantifying and Visualizing Uncertainty
4. Identification of Core Bottlenecks and Prospects for Intelligent Development
4.1. Core Technical Bottlenecks in Karst LULC Remote Sensing Classification Research
4.1.1. From Sample Scarcity to the Dilemma of Sample Dependence Under the Data-Driven Paradigm
4.1.2. Data-Driven Karst LULC Remote Sensing Classification Lacks Support from Geoscientific Knowledge
4.1.3. Lack of a Theoretical Framework for Deep Multimodal Information Fusion Adapted to Complex Karst Environments
4.1.4. Uncertainty Modeling Is a Key Technical Bottleneck in LULC Classification for Karst Regions
4.2. Future Research Directions and Outlook
4.2.1. Data Level: Integration of Knowledge Graph Structures and Full-Time-Series Coordinated Observation
4.2.2. Algorithm Level: Few-Shot, Highly Generalizable, and Explainable Geo-AI
4.2.3. Application Level: Automated Monitoring Solutions for Key Ecological Issues
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mercier, A.; Betbeder, J.; Rumiano, F.; Baudry, J.; Gond, V.; Blanc, L.; Bourgoin, C.; Cornu, G.; Ciudad, C.; Marchamalo, M. Evaluation of Sentinel-1 and 2 time series for land cover classification of forest–agriculture mosaics in temperate and tropical landscapes. Remote Sens. 2019, 11, 979. [Google Scholar] [CrossRef]
- Li, D.; Tian, P.; Luo, H.; Hu, T.; Dong, B.; Cui, Y.; Khan, S.; Luo, Y. Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau. Sci. Total Environ. 2020, 742, 140570. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and temporal variation, simulation and prediction of land use in ecological conservation area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.; Houghton, R.A.; Lu, C.; Tian, H.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Cao, X.; Wang, Y.; Zhang, W.; Cheng, X. A review of regional and Global scale Land Use/Land Cover (LULC) mapping products generated from satellite remote sensing. ISPRS J. Photogramm. Remote Sens. 2023, 206, 311–334. [Google Scholar] [CrossRef]
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, S.; Ouyang, C.; Chen, M.; Liu, C.; Zhang, J.; Yu, L.; Wang, F.; Xie, Y.; Li, J. Artificial intelligence for geoscience: Progress, challenges and perspectives. Innovation 2024, 5, 100691. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P.D. Karst Hydrogeology and Geomorphology; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Ning, X.; Wu, X.; Huang, J.; Wu, H.; Liu, W.; Peng, X. Main results of the fourth rocky desertification survey in Karst area and analysis of rocky desertification control situation. For. Grassl. Resour. Res. 2023, 9, 9–14. [Google Scholar]
- Gu, Z.; Zeng, M. The use of artificial intelligence and satellite remote sensing in land cover change detection: Review and perspectives. Sustainability 2024, 16, 274. [Google Scholar] [CrossRef]
- Dangayach, R.; Pandey, A.K. Technologies and methods for land use and land cover: A comprehensive review. In Remote Sensing and GIS Application in Forest Conservation Planning; Springer: Singapore, 2025; pp. 369–390. [Google Scholar]
- Huang, D.; Zhou, Z.; Peng, R.; Zhu, M.; Yin, L.; Zhang, Y.; Xiao, D.; Li, Q.; Hu, L.; Huang, Y. Challenges and main research advances of low-altitude remote sensing for crops in southwest plateau mountains. J. Guizhou Norm. Univ. Nat. Sci. 2021, 39, 51–59. [Google Scholar]
- Qi, X.; Zhang, C.; Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous karst region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiong, K.; Song, S.; Zhang, W. Realizing the value of grassland ecosystem services: Global practice and its inspiration for the karst desertification control area. Front. Sustain. Food Syst. 2024, 7, 1240431. [Google Scholar] [CrossRef]
- Wan, J.; Zhou, Z.; Zhu, M.; Wang, J.; Zheng, J.; Wang, C.; Wu, X.; Liu, R. Deep Learning Approach for Studying Forest Types in Restored Karst Rocky Landscapes: A Case Study of Huajiang, China. Forests 2024, 15, 2122. [Google Scholar] [CrossRef]
- Kim, J.; Hong, I. Evaluation of the Usability of UAV LiDAR for Analysis of Karst (Doline) Terrain Morphology. Sensors 2024, 24, 7062. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, B.; Sun, X.; Yao, H.; Zhang, S.; Wu, Y.; Kuang, H.; Deng, T. Effects of multi-growth periods UAV images on classifying karst wetland vegetation communities using object-based optimization stacking algorithm. Remote Sens. 2023, 15, 4003. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Li, Y.; Wang, D.; Tao, J.; Yang, Y.; Lin, J.; Zhang, Q.; Wu, L. Machine learning algorithm for estimating karst rocky desertification in a peak-cluster depression basin in southwest Guangxi, China. Sci. Rep. 2022, 12, 19121. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, X.; Huang, Y.; Yang, J.; Lu, J. Identification and factor analysis of rocky desertification severity levels in large-scale karst areas based on deep learning image segmentation. Ecol. Indic. 2024, 167, 112565. [Google Scholar] [CrossRef]
- Jun, W.; Yun-long, C. Applying linear spectral unmixing approach to the research of land cover change in Karst area: A case in Guanling County of Guizhou Province. Geogr. Res. 2003, 22, 439–446. [Google Scholar]
- Sun, Y.; Zhou, Z.; Zhao, Y.; Fang, M.; Wu, Y. Evolution an dDistribution pattern of land use and rocky desertification in karst mountainous area. Res. Soil Water Conserv. 2022, 29, 311–318. [Google Scholar]
- Wang, L.; Zhou, Z.; Zhao, X.; Kong, J.; Zhang, S. Spatiotemporal evolution of karst rocky desertification abandoned cropland based on farmland-parcels time-series remote sensing. J. Soil Water Conserv. 2020, 34, 92–99, 107. [Google Scholar]
- Xi, J.; Jiang, Q.; Liu, H.; Gao, X. Karst rocky desertification mapping and causes analysis based on Sentinel-2A imagery. J. Jilin Univ. Earth Sci. Ed. 2023, 53, 1301–1312. [Google Scholar]
- Wang, Z.; Dai, L. Assessment of land use/cover changes and its ecological effect in karst mountainous cities in central Guizhou Province: Taking Huaxi District of Guiyang City as a case. Acta Ecol. Sin. 2021, 41, 3429–3440. [Google Scholar] [CrossRef]
- Peng, J.; Xu, Y.; Cai, Y.; Xiao, H. The role of policies in land use/cover change since the 1970s in ecologically fragile karst areas of Southwest China: A case study on the Maotiaohe watershed. Environ. Sci. Policy 2011, 14, 408–418. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Li, R. Karst rocky desertification: Formation background, evolution and comprehensive taming. Quat. Sci. 2003, 23, 657–666. [Google Scholar]
- Song, L. Progress and trend of karst geomorphology study. Prog. Geogr. 2000, 19, 193–202. [Google Scholar]
- Li, X.; Zhou, L.; Su, F.; Wu, W. Application of InSAR technology in landslide hazard: Progress and prospects. Natl. Remote Sens. Bull. 2021, 25, 614–629. [Google Scholar] [CrossRef]
- Pu, G.; Wang, K.; Mo, L.; Zeng, D.; Chen, X. Research progress on evolution and vegetation ecosystem of karst Tiankeng in China. Guihaia 2021, 41, 1632–1643. [Google Scholar]
- Huang, D.; Zhou, Z.; Zhang, Z.; Zhu, M.; Peng, R.; Zhang, Y.; Li, Q.; Xiao, D.; Hu, L. Extraction of agricultural plastic film mulching in karst fragmented arable lands based on unmanned aerial vehicle visible light remote sensing. J. Appl. Remote Sens. 2022, 16, 036511. [Google Scholar] [CrossRef]
- Fu, B. A study on reflectance spectra features of carbonate rocks and its application. Rock Miner. Anal. 1996, 15, 207–209. [Google Scholar]
- Zhang, N.; Xiong, K.; Xiao, H.; Zhang, J.; Shen, C. Ecological environment dynamic monitoring and driving force analysis of karst world heritage sites based on remote-sensing: A case study of Shibing Karst. Land 2023, 12, 184. [Google Scholar] [CrossRef]
- Li, X.; Yang, Q.; Zhou, K.; Luo, W. Distribution characteristics of rural settlement on different lithology in karst area: A case study of Pingguo City. Carsologica Sin. 2021, 40, 355–362. [Google Scholar]
- Zhang, X.; Wei, C.-F.; Ni, J.-P.; Zhang, S.-C. Research on the distribution of rural settlements in relation to landform factors in karst trough valley of Chongqing Municipality. Carsologica Sin. 2012, 31, 59–66. [Google Scholar]
- Yang, Y.; Zhou, Z.; Huang, D.; Zhang, F.; Deng, F.; Du, S. A comparative analysis of the applicability of typical land cover datasets in the karst strongly heterogeneous terrain in Southern China. Geocarto Int. 2024, 39, 2395318. [Google Scholar] [CrossRef]
- Liu, P.; Pei, J.; Guo, H.; Tian, H.; Fang, H.; Wang, L. Evaluating the accuracy and spatial agreement of five global land cover datasets in the ecologically vulnerable south China Karst. Remote Sens. 2022, 14, 3090. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Ying, B.; Liu, T.; Ke, L.; Xiong, K.; Li, S.; Sun, R.; Zhu, F. Identifying the landscape security pattern in karst rocky desertification area based on ecosystem services and ecological sensitivity: A case study of Guanling county, Guizhou province. Forests 2023, 14, 613. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, Y.; Duan, Y.; Yu, L. DEM assisted shadow detection and topography correction of satellite remote sensing images in mountainous area. Acta Geod. Cartogr. Sin. 2018, 47, 113. [Google Scholar]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Gu, D.; Gillespie, A. Topographic normalization of Landsat TM images of forest based on subpixel sun–canopy–sensor geometry. Remote Sens. Environ. 1998, 64, 166–175. [Google Scholar] [CrossRef]
- Colby, J.D. Topographic normalization in rugged terrain. Photogramm. Eng. Remote Sens. 1991, 57, 531–537. [Google Scholar]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Liu, X.; Luo, W.; Wu, L.; Zhu, L. Spectral analysis of seasonal rock and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102337. [Google Scholar] [CrossRef]
- Cao, J.; Wen, X.; Zhang, M.; Luo, D.; Tan, Y. Information extraction and prediction of rocky desertification based on remote sensing data. Sustainability 2022, 14, 13385. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, H.; Li, X.; Qin, X.; Yan, L. Classification of Karst Rocky Desertification Levels in Jinsha County Using a Feature Space Method Based on SDGSAT-1 Multispectral Data. Remote Sens. 2024, 16, 4786. [Google Scholar] [CrossRef]
- Alevkayalı, Ç.; Yayla, O.; Atayeter, Y. Monitoring and classification of karst rocky desertification with Landsat 8 OLI images using spectral indices, multi-endmember spectral mixture analysis and support vector machine. Int. J. Eng. Geosci. 2023, 8, 277–289. [Google Scholar] [CrossRef]
- Bi, X.; Yao, Y.; Wang, Z.; Li, C.; Cao, D.; Wen, L.; Jing, L.; Sun, B. Improving monitoring Karst rocky desertification using high-frequency Landsat observations: A generalized framework and its application to a typical karst region in southeast China. Catena 2024, 241, 108045. [Google Scholar] [CrossRef]
- Yang, X.; Guan, X.; Jiang, Z. Bedrock type mediates the response of vegetation activity to seasonal precipitation in the karst forest. Sustainability 2024, 16, 1281. [Google Scholar] [CrossRef]
- Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sens. 2015, 7, 11105–11124. [Google Scholar] [CrossRef]
- Lei, T.C.; Wan, S.; Wu, Y.C.; Wang, H.-P.; Hsieh, C.-W. Multi-temporal data fusion in MS and SAR images using the dynamic time warping method for paddy Rice classification. Agriculture 2022, 12, 77. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Chen, G.; Wang, T.; Wang, Q.; Wang, K.; Miao, T. Spatio-Temporal Fusion of Landsat and MODIS Data for Monitoring of High-Intensity Fire Traces in Karst Landscapes: A Case Study in China. Remote Sens. 2025, 17, 1852. [Google Scholar] [CrossRef]
- Du, X.; Huang, D.; Dai, L.; Du, X. Recognition of plastic film in terrain-fragmented areas based on drone visible light images. Agriculture 2024, 14, 736. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.; Vogelmann, J.E.; Gao, F.; Jin, S. A simple and effective method for filling gaps in Landsat ETM + SLC-off images. Remote Sens. Environ. 2011, 115, 1053–1064. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Guo, Q.; Cao, R.; Zhu, X. Restoration of information obscured by mountainous shadows through Landsat TM/ETM+ images without the use of DEM data: A new method. IEEE Trans. Geosci. Remote Sens. 2013, 52, 313–328. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Y.; Zhu, Y. Wetland mapping of Donting Lake Basin based on time-series MODIS data and object-oriented method. J. Remote Sens. 2017, 21, 479–492. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Huang, D.; Zhou, Z.; Wu, Y.; Zhu, M.; Yin, L.J.; Cui, L. Identification of Yam Plants in Karst Plateau Hill basin based on visible light images of an unmanned aerial vehicle. Trop. Geogr. 2019, 39, 571–582. [Google Scholar]
- Lin, H.; Zhang, H. Tropical and subtropical remote sensing: Needs, challenges, and opportunities. J. Remote Sens. 2021, 25, 276–291. [Google Scholar] [CrossRef]
- Wu, L.; Sun, G.; Miao, Z.; Feng, H.; Hu, J.; Yang, Z.; Wang, W.; Chen, B.; Tang, Y. On subtropical remote sensing in China: Research status, key tasks and innovative development approaches. Natl. Remote Sens. Bull. 2022, 26, 1483–1503. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.; Wang, X.; Ju, M.; Zhang, D. A Review of Remote Sensing Image Dehazing. Sensors 2021, 21, 3926. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Q.; Wu, Y.; Zhou, Z.; Dan, Y. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI. Remote Sens. Land Resour. 2020, 32, 23–31. [Google Scholar]
- Harrison, B.A.; Jupp, D.L.B.; Lewis, M.; Forster, B.; Mueller, N.; Smith, C.; Phinn, S.; Hudson, D.; Grant, I.; Coppa, I. Earth Observation: Data, Processing and Applications. Volume 1X: Data—Appendices; Australia and New Zealand CRC for Spatial Information: Melbourne, Australia, 2016. [Google Scholar]
- Yi, S.; Huang, Y.; Liu, Z.; Long, F.; Li, S.; Sun, L.; Luo, L.; Su, H. Spatiotemporal evolution of karst rocky desertification and its driving factors on a large spatial scale utilizing google earth engine. Environ. Earth Sci. 2025, 84, 275. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Jia, X.; Somers, B.; Wu, J.; Coppin, P. A quantitative analysis of virtual endmembers’ increased impact on the collinearity effect in spectral unmixing. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2945–2956. [Google Scholar] [CrossRef]
- Bateson, C.A.; Asner, G.P.; Wessman, C.A. Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 2002, 38, 1083–1094. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Wu, X. Dynamic monitoring and control benefits of vegetation in rocky desertification areas based on Landsat images. Trans. Chin. Soc. Agric. Eng. 2019, 35, 221–229. [Google Scholar]
- Cai, J.; Yu, W.; Fang, Q.; Zi, R.; Fang, F.; Zhao, L. Extraction of rocky desertification information in the karst area based on the red-NIR-SWIR spectral feature space. Remote Sens. 2023, 15, 3056. [Google Scholar] [CrossRef]
- Li, Y.; Li, H. Dynamic monitoring of desertification based on multi-features in the red soil region, Southern China: A case in Dongjiang source area. Nat. Hazards 2023, 115, 619–640. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Delalay, M.; Tiwari, V.; Ziegler, A.D.; Gopal, V.; Passy, P. Land-use and land-cover classification using Sentinel-2 data and machine-learning algorithms: Operational method and its implementation for a mountainous area of Nepal. J. Appl. Remote Sens. 2019, 13, 014530. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on Landsat time series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 data for land cover/use mapping: A review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Wei, X.; Gu, X.; Yu, T.; Wei, Z.; Zhou, X.; Jia, K.; Li, J.; Liu, M. Land-cover classification using multi-temporal GF-1 wide field view data. Int. J. Remote Sens. 2018, 39, 6914–6930. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, J.; Li, C.; Wang, L.; Gao, D.; Bai, Y.; Qin, F. Effective Cultivated Land Extraction in Complex Terrain Using High-Resolution Imagery and Deep Learning Method. Remote Sens. 2025, 17, 931. [Google Scholar] [CrossRef]
- Qian, C.; Qiang, H.; Qin, C.; Wang, Z.; Li, M. Spatiotemporal evolution analysis and future scenario prediction of rocky desertification in a subtropical karst region. Remote Sens. 2022, 14, 292. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Wang, X.; Niu, Z.; Kelly, M.; Song, X.-P.; Huang, N.; Geng, J.; Tian, H.; Yu, Y. Time series of Landsat imagery shows vegetation recovery in two fragile karst watersheds in southwest china from 1988 to 2016. Remote Sens. 2019, 11, 2044. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Qi, X.; Wang, K.; Zhang, C. Effectiveness of ecological restoration projects in a karst region of southwest China assessed using vegetation succession mapping. Ecol. Eng. 2013, 54, 245–253. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Liu, S.; Huang, X.; Ma, R.; Sun, B.; Ji, C. Application of regional rocky desertification monitoring based on GF-6 remote sensing data. Satell. Appl. 2022, 11, 44–50. [Google Scholar]
- Li, Y.; Sun, B.; Gao, Z.; Su, W.; Wang, B.; Yan, Z.; Gao, T. Extraction of rocky desertification information in karst area by using different multispectral sensor data and multiple endmember spectral mixture analysis method. Front. Environ. Sci. 2022, 10, 996708. [Google Scholar] [CrossRef]
- Han, Z.; Huang, Y.; Jia, G.; Jing, L.; Huang, S.; Li, C.; Lei, W.; Hu, W. The addition of GF-6 red edge bands optimizes the mapping of karst rocky desertification grades. Adv. Space Res. 2025, 75, 6222–6236. [Google Scholar] [CrossRef]
- Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens. 2017, 9, 498. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Suxin, Y.; Xia, Z.; Tong, S.; Hui, L. Estimating Karst Rocky Desertification Feature Abundance by Pixel Unmixing. Remote Sens. Technol. Appl. 2014, 29, 823–832. [Google Scholar]
- Wu, S.; Cao, J.-M.; Zhao, X.-Y. Land cover classification of high-resolution remote sensing images based on improved spectral clustering. PLoS ONE 2025, 20, e0316830. [Google Scholar] [CrossRef]
- Momeni, R.; Aplin, P.; Boyd, D.S. Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef]
- Pandey, P.C.; Koutsias, N.; Petropoulos, G.P.; Srivastava, P.K.; Ben Dor, E. Land use/land cover in view of earth observation: Data sources, input dimensions, and classifiers—A review of the state of the art. Geocarto Int. 2021, 36, 957–988. [Google Scholar] [CrossRef]
- Zhang, R.; Tang, X.; You, S.; Duan, K.; Xiang, H.; Luo, H. A novel feature-level fusion framework using optical and SAR remote sensing images for land use/land cover (LULC) classification in cloudy mountainous area. Appl. Sci. 2020, 10, 2928. [Google Scholar] [CrossRef]
- De Beyer, L.H. The Integrated Use of Polarimetric Synthetic Aperture Radar (SAR) and Optical Image Data for Land Cover Mapping Using an Object-Based Approach. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2015. [Google Scholar]
- Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Sigismondi, S.; Solimini, D. The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass. IEEE Trans. Geosci. Remote Sens. 2002, 35, 5–17. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S.; Yu, Q. Object-based urban detailed land cover classification with high spatial resolution IKONOS imagery. Int. J. Remote Sens. 2011, 32, 3285–3308. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, H.; Lin, H.; Fang, C. Textural–spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery. Remote Sens. 2015, 8, 24. [Google Scholar] [CrossRef]
- Sibiya, B.; Lottering, R.; Odindi, J. Discriminating commercial forest species using image texture computed from a worldview-2 pan-sharpened image and partial least squares discriminant analysis. Remote Sens. Appl. Soc. Environ. 2021, 23, 100605. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K. A simplified subsurface soil salinity estimation using synergy of SENTINEL-1 SAR and SENTINEL-2 multispectral satellite data, for early stages of wheat crop growth in Rupnagar, Punjab, India. Land Degrad. Dev. 2021, 32, 3905–3919. [Google Scholar] [CrossRef]
- Dahhani, S.; Raji, M.; Hakdaoui, M.; Lhissou, R. Land cover mapping using sentinel-1 time-series data and machine-learning classifiers in agricultural sub-saharan landscape. Remote Sens. 2022, 15, 65. [Google Scholar] [CrossRef]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Z. Extracting built-up areas from TerraSAR-X data using object-oriented classification method. IOP Conf. Ser. Earth Environ. Sci. 2017, 57, 012036. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, H.; Ge, J.; Shi, Z.; Xu, L.; Tang, Y.; Wu, F.; Wang, Y.; Wang, C. Built-up area extraction in PolSAR imagery using real-complex polarimetric features and feature fusion classification network. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104144. [Google Scholar] [CrossRef]
- Xiang, H.; Luo, H.; Liu, G.; Yang, R.; Lei, X.; Chen, Y.; Chen, J. Land Cover Classification in Mountain Areas Based on Sentinel-1A Polarimetric SAR Data and Object Oriented Method. J. Nat. Resour. 2017, 32, 2136–2148. [Google Scholar]
- Ma, Q.; Wang, J.; Shang, J.; Wang, P. Assessment of multi-temporal RADARSAT-2 polarimetric SAR data for crop classification in an urban/rural fringe area. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 314–319. [Google Scholar]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 2009, 64, 434–449. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Q.; Hu, J. Generation of complete SAR geometric distortion maps based on DEM and neighbor gradient algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar] [CrossRef]
- Toca, L.; Morrison, K.; Artz, R.; Gimona, A.; Quaife, T. High resolution C-band SAR backscatter response to peatland water table depth and soil moisture: A laboratory experiment. Int. J. Remote Sens. 2022, 43, 5231–5251. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Shui, W.; Li, H.; Zhang, Y.; Jiang, C.; Zhu, S.; Wang, Q.; Liu, Y.; Zong, S.; Huang, Y.; Ma, M. Is an Unmanned Aerial Vehicle (UAV) Suitable for Extracting the Stand Parameters of Inaccessible Underground Forests of Karst Tiankeng? Remote Sens. 2022, 14, 4128. [Google Scholar] [CrossRef]
- Gallo, I.G.; Martínez-Corbella, M.; Sarro, R.; Iovine, G.; López-Vinielles, J.; Hérnandez, M.; Robustelli, G.; Mateos, R.M.; García-Davalillo, J.C. An integration of UAV-based photogrammetry and 3D modelling for rockfall hazard assessment: The Cárcavos case in 2018 (Spain). Remote Sens. 2021, 13, 3450. [Google Scholar] [CrossRef]
- Gou, J.; Lee, H.; Park, J.; Jang, S.; Lee, J.; Kim, D.; Song, I. Comparative analysis of DTM generation method for stream area using UAV-Based lidar and SfM. J. Korean Soc. Agric. Eng. 2024, 66, 1–14. [Google Scholar]
- Jiang, F.; Sun, H.; Ma, K.; Fu, L.; Tang, J. Improving aboveground biomass estimation of natural forests on the Tibetan Plateau using spaceborne LiDAR and machine learning algorithms. Ecol. Indic. 2022, 143, 109365. [Google Scholar] [CrossRef]
- Jeanpert, J.; Genthon, P.; Maurizot, P.; Folio, J.L.; Vendé-Leclerc, M.; Sérino, J.; Join, J.L.; Iseppi, M. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: The case of southern Grande Terre in New Caledonia (SW Pacific). Earth Surf. Process. Landf. 2016, 41, 1854–1868. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S. The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef]
- Moskal, L.M.; Zheng, G. Retrieving forest inventory variables with terrestrial laser scanning (TLS) in urban heterogeneous forest. Remote Sens. 2012, 4, 1–20. [Google Scholar] [CrossRef]
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens. Lett. 2014, 12, 552–556. [Google Scholar] [CrossRef]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Renfang, G.; Bolin, F.; Shuanggen, J.; Jiangtao, C.; Wanxuan, G.; Peiqing, L. Object-based Karst wetland vegetation classification using UAV images. Bull. Surv. Mapp. 2020, 13, 13–18. [Google Scholar]
- Kim, J.; Hong, I. Analysis of Doline Microtopography in Karst Mountainous Terrain Using UAV LiDAR: A Case Study of ‘Gulneomjae’ in Mungyeong City, South Korea. Sensors 2025, 25, 4350. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Maes, W.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo Madrigal, V.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Ullah, S.; Ilniyaz, O.; Eziz, A.; Ullah, S.; Fidelis, G.D.; Kiran, M.; Azadi, H.; Ahmed, T.; Elfleet, M.S.; Kurban, A. Multi-Temporal and Multi-Resolution RGB UAV Surveys for Cost-Efficient Tree Species Mapping in an Afforestation Project. Remote Sens. 2025, 17, 949. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14–27. [Google Scholar] [CrossRef]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Fu, B.; Deng, L.; Sun, W.; He, H.; Li, H.; Wang, Y.; Wang, Y. Quantifying vegetation species functional traits along hydrologic gradients in karst wetland based on 3D mapping with UAV hyperspectral point cloud. Remote Sens. Environ. 2024, 307, 114160. [Google Scholar] [CrossRef]
- Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef]
- Dingle Robertson, L.; King, D.J. Comparison of pixel-and object-based classification in land cover change mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Tang, G.; Luo, L.; Sun, T.; Pan, Y. Karst Forest Extraction from High Resolution Remote Sensing Images Using Convolutional Neural Network. Sci. Technol. Eng. 2020, 20, 6773–6777. [Google Scholar]
- Xue, Z.; Du, P.; Feng, L. Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1142–1156. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Im, J.; Jensen, J.; Tullis, J. Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [Google Scholar] [CrossRef]
- Toure, S.I.; Stow, D.A.; Shih, H.-C.; Weeks, J.; Lopez-Carr, D. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens. Environ. 2018, 210, 259–268. [Google Scholar] [CrossRef]
- Dai, Q.; Zhou, Z.; Huang, D.; Yang, Y.; Lu, H.; Li, Y. Response of land cover to multi-scale spatial effects in complex karst mountainous areas. Geocarto Int. 2025, 40, 2513520. [Google Scholar] [CrossRef]
- Jabari, S.; Zhang, Y. Very high resolution satellite image classification using fuzzy rule-based systems. Algorithms 2013, 6, 762–781. [Google Scholar] [CrossRef]
- Blaschke, T.; Kelly, M.; Merschdorf, H. Object-based image analysis: Evolution, history, state of the art, and future vision. In Remote Sensing Handbook, Volume II; CRC Press: Boca Raton, FL, USA, 2024; pp. 145–167. [Google Scholar]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21 July 2017; pp. 2881–2890. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7 June 2015; pp. 3431–3440. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zheng, S.; Duan, C.; Su, J.; Zhang, C. Multistage attention ResU-Net for semantic segmentation of fine-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 8009205. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. High-resolution aerial image labeling with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7092–7103. [Google Scholar] [CrossRef]
- Li, Y.; Deng, T.; Fu, B.; Lao, Z.; Yang, W.; He, H.; Fan, D.; He, W.; Yao, Y. Evaluation of decision fusions for classifying karst wetland vegetation using one-class and multi-class CNN models with high-resolution UAV images. Remote Sens. 2022, 14, 5869. [Google Scholar] [CrossRef]
- Liu, P.; Wang, C.; Ye, M.; Han, R. Coastal zone classification based on U-Net and remote sensing. Appl. Sci. 2024, 14, 7050. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Patel, V.M. SAR image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 2017, 24, 1763–1767. [Google Scholar] [CrossRef]
- Ferro-Famil, L.; Pottier, E.; Lee, J.-S. Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2332–2342. [Google Scholar] [CrossRef]
- Chen, Y.; He, X.; Xu, J.; Zhang, R.; Lu, Y. Scattering feature set optimization and polarimetric SAR classification using object-oriented RF-SFS algorithm in coastal wetlands. Remote Sens. 2020, 12, 407. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, B.; Zhang, J.; Zhang, Y. Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features. EURASIP J. Adv. Signal Process. 2009, 2010, 960831. [Google Scholar] [CrossRef]
- Alkhatib, M.Q.; Zitouni, M.S.; Al-Saad, M.; Aburaed, N.; Al-Ahmad, H. PolSAR image classification using shallow to deep feature fusion network with complex valued attention. Sci. Rep. 2025, 15, 24315. [Google Scholar] [CrossRef]
- Ghanbari, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F. A meta-analysis of convolutional neural networks for remote sensing applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3602–3613. [Google Scholar] [CrossRef]
- Ji, S.; Wang, D.; Luo, M. Generative adversarial network-based full-space domain adaptation for land cover classification from multiple-source remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3816–3828. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine learning in agriculture: A comprehensive updated review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4768–4777. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Montavon, G.; Samek, W.; Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, S.; Dsouza, H. Polarimetric Decomposition and Machine Learning-Based Classification of L-and S-Band Airborne SAR (LS-ASAR) Data. Earth Space Sci. 2023, 10, e2022EA002796. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Rensing Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Commission, M.R. Land Cover and Land Use Monitoring in the Lower Mekong Basin 2020—Technical Report; Mekong River Commission: Vientiane, Laos, 2020. [Google Scholar]
- Ahmed, S. Land use and land cover classification using machine learning algorithms in google earth engine. Earth Sci. Inform. 2023, 16, 3057–3073. [Google Scholar]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Communities: Luxembourg, 2006; Volume 51, pp. 1–60. [Google Scholar]
- Tsendbazar, N.; Herold, M.; Li, L.; Tarko, A.; De Bruin, S.; Masiliunas, D.; Lesiv, M.; Fritz, S.; Buchhorn, M.; Smets, B. Towards operational validation of annual global land cover maps. Remote Sens. Environ. 2021, 266, 112686. [Google Scholar] [CrossRef]
- Sathyanarayanan, S.; Tantri, B.R. Confusion matrix-based performance evaluation metrics. Afr. J. Biomed. Res. 2024, 27, 4023–4031. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Li, C.; Ma, Z.; Wang, L.; Yu, W.; Tan, D.; Gao, B.; Feng, Q.; Guo, H.; Zhao, Y. Improving the accuracy of land cover mapping by distributing training samples. Remote Sens. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Farhadpour, S.; Warner, T.A.; Maxwell, A.E. Selecting and interpreting multiclass loss and accuracy assessment metrics for classifications with class imbalance: Guidance and best practices. Remote Sens. 2024, 16, 533. [Google Scholar] [CrossRef]
- Beak, M.; Ichii, K.; Yamamoto, Y.; Wang, R.; Zhang, B.; Sharma, R.C.; Hiyama, T. Land cover classification for Siberia leveraging diverse global land cover datasets. Prog. Earth Planet. Sci. 2025, 12, 3. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Zhao, T.; Zhang, W.; Guan, L.; Bai, M.; Chen, X. GLC_FCS10: A global 10-m land-cover dataset with a fine classification system from Sentinel-1 and Sentinel-2 time-series data in Google Earth Engine. Earth Syst. Sci. Data Discuss. 2025, 2025, 4039–4062. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 8, 611. [Google Scholar] [CrossRef]
- Fonte, C.C.; Duarte, D.; Jesus, I.; Costa, H.; Benevides, P.; Moreira, F.; Caetano, M. Accuracy assessment and comparison of national, European and global land use land cover maps at the national scale—Case study: Portugal. Remote Sens. 2024, 16, 1504. [Google Scholar] [CrossRef]
- Altalhan, M.; Algarni, A.; Alouane, M.T.-H. Imbalanced data problem in machine learning: A review. IEEE Access 2025, 13, 13686–13699. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Fernández, A.; García, S.; Galar, M.; Prati, R.C.; Krawczyk, B.; Herrera, F. Learning from Imbalanced Data Sets; Springer: Cham, Switzerland, 2018; Volume 10. [Google Scholar]
- Sweet, L.-b.; Müller, C.; Anand, M.; Zscheischler, J. Cross-validation strategy impacts the performance and interpretation of machine learning models. Artif. Intell. Earth Syst. 2023, 2, e230026. [Google Scholar] [CrossRef]
- Szeghalmy, S.; Fazekas, A. A comparative study of the use of stratified cross-validation and distribution-balanced stratified cross-validation in imbalanced learning. Sensors 2023, 23, 2333. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 25 August 1995; pp. 1137–1145. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 569–575. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Huang, R.; You, H.; Han, X.; Yue, T.; Zhou, G. The effects of spatial resolution and resampling on the classification accuracy of wetland vegetation species and ground objects: A study based on high spatial resolution UAV images. Drones 2023, 7, 61. [Google Scholar] [CrossRef]
- Wang, H.; Yang, H.; Huang, Y.; Wu, L.; Guo, Z.; Li, N. Classification of land cover in complex terrain using gaofen-3 SAR ascending and descending orbit data. Remote Sens. 2023, 15, 2177. [Google Scholar] [CrossRef]
- Fu, B.; Zuo, P.; Liu, M.; Lan, G.; He, H.; Lao, Z.; Zhang, Y.; Fan, D.; Gao, E. Classifying vegetation communities karst wetland synergistic use of image fusion and object-based machine learning algorithm with Jilin-1 and UAV multispectral images. Ecol. Indic. 2022, 140, 108989. [Google Scholar] [CrossRef]
- Cockx, K.; Van de Voorde, T.; Canters, F. Quantifying uncertainty in remote sensing-based urban land-use mapping. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 154–166. [Google Scholar] [CrossRef]
- Gawlikowski, J.; Tassi, C.R.N.; Ali, M.; Lee, J.; Humt, M.; Feng, J.; Kruspe, A.; Triebel, R.; Jung, P.; Roscher, R. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 2023, 56, 1513–1589. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, I.; Ng, H.K.T. On estimation of Shannon’s entropy of Maxwell distribution based on progressively first-failure censored data. Stats 2024, 7, 138–159. [Google Scholar] [CrossRef]
- Pandey, B. A method for classification of red, blue, and green galaxies using fuzzy set theory. Mon. Not. R. Astron. Soc. Lett. 2020, 499, L31–L35. [Google Scholar] [CrossRef]
- Goel, T.; Haftka, R.; Queipo, N.; Shyy, W. Performance estimate and simultaneous application of multiple surrogates. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, 6–8 September 2006; p. 7047. [Google Scholar]
- Ball, J.; Anderson, D.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [Google Scholar] [CrossRef]
- Joshi, K.; Diwakar, M.; Joshi, N.; Lamba, S. A concise review on latest methods of image fusion. Recent Adv. Comput. Sci. Commun. Former. Recent Pat. Comput. Sci. 2021, 14, 2046–2056. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Pun, M.-O. A crossmodal multiscale fusion network for semantic segmentation of remote sensing data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3463–3474. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.-L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, Y.; Li, X.; Lyu, S.; Xu, Z.; Zhao, H.; Zhao, Q.; Xiang, S. Change detection methods for remote sensing in the last decade: A comprehensive review. Remote Sens. 2024, 16, 2355. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Aryal, J. Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Cui, W.; Yao, M.; Hao, Y.; Wang, Z.; He, X.; Wu, W.; Li, J.; Zhao, H.; Xia, C.; Wang, J. Knowledge and geo-object based graph convolutional network for remote sensing semantic segmentation. Sensors 2021, 21, 3848. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Q.; Zhou, Z.; Zhao, X.; Luo, J.; Wu, T.; Sun, Y.; Liu, W.; Zhang, S.; Zhang, W. Crops planting structure and karst rocky desertification analysis by Sentinel-1 data. Open Geosci. 2021, 13, 867–879. [Google Scholar] [CrossRef]
- Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M.; Munoz-Mari, J. A survey of active learning algorithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process. 2011, 5, 606–617. [Google Scholar] [CrossRef]
- Růžička, V.; D’Aronco, S.; Wegner, J.D.; Schindler, K. Deep active learning in remote sensing for data efficient change detection. arXiv 2020, arXiv:2008.11201. [Google Scholar] [CrossRef]
- Gal, Y.; Islam, R.; Ghahramani, Z. Deep bayesian active learning with image data. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 1183–1192. [Google Scholar]
- Lenczner, G.; Chan-Hon-Tong, A.; Le Saux, B.; Luminari, N.; Le Besnerais, G. DIAL: Deep interactive and active learning for semantic segmentation in remote sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3376–3389. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L.K.; Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning; Springer Nature: Cham, Switzerland, 2019; Volume 11700. [Google Scholar]
- Ghaffarian, S.; Valente, J.; Van Der Voort, M.; Tekinerdogan, B. Effect of attention mechanism in deep learning-based remote sensing image processing: A systematic literature review. Remote Sens. 2021, 13, 2965. [Google Scholar] [CrossRef]
- Kotipalli, B. The Role of Attention Mechanisms in Enhancing Transparency and Interpretability of Neural Network Models in Explainable AI. Master’s Thesis, Harrisburg University of Science and Technology, Harrisburg, PA, USA, 2024. [Google Scholar]
- Zhao, X.; Zhou, Z.; Wu, G.; Long, Y.; Luo, J.; Huang, X.; Chen, J.; Wu, T. High-resolution dynamic monitoring of rocky desertification of agricultural land based on spatio-temporal fusion. Land 2024, 13, 2173. [Google Scholar] [CrossRef]
Development Stage | Core Method/Model | Primary Data Sources | Key Advantages and Features | Limitations and Challenges |
---|---|---|---|---|
Pre–2000s | ① Supervised/unsupervised classification: Maximum Likelihood Method, ISODATA, K-Means clustering; ② Linear Spectral Mixture Model. | Medium and low-resolution satellite imagery: Landsat MSS/TM, SPOT. | ① Beginning to use remote sensing data for large-scale LULC mapping; ② Suitable for monitoring regional-scale macro-level LULC changes. | Pixel-based classification often produces “salt-and-pepper” noise, ignores spatial and textural context, and struggles to handle the fragmented and heterogeneous landscapes of karst regions. |
2000s–2010s | ① Traditional Machine Learning: SVM, RF; ② OBIA: Multi-scale segmentation combined with spectral, shape, texture, and contextual features for classification; ③ Polarimetric SAR Target Decomposition: Wishart-H/α and Cloude-Pottier decomposition. | ① Medium- to high-resolution imagery: Landsat ETM+/OLI, ASTER; ② Fully polarimetric SAR data: RADARSAT-2, ALOS PALSAR; ③ Auxiliary data: DEM | ① Significant accuracy improvement; ② Overcomes surface fragmentation; ③ Cloud penetration: SAR data can operate all-day and under all-weather conditions. | ① The classification performance is highly dependent on the selection and design of manual features. ② Parameter tuning is complex. ③ Shadows in complex terrain and the spectral similarity of different land cover types remain challenging issues. |
2010s–Present | ① Deep Learning: Convolutional Neural Networks (CNN), U-Net, ResUNet, hybrid models (e.g., CNN-SVM); ② Multi-source Data Fusion: Integration of data from optical, LiDAR, SAR, and UAV platforms; ③ Phenological Feature Analysis. | ① High-resolution imagery: Sentinel-2, Gaofen (GF) series, Planet; ② UAV imagery: Centimeter-level visible, multispectral, and hyperspectral data; ③ LiDAR: High-precision point clouds and derived products such as DEM, DSM, and CHM. | Deep learning enhances classification accuracy in complex scenarios by integrating LiDAR/UAV structural and phenological features, effectively mitigating spectral confusion and reducing manual intervention. | Deep learning relies on high-quality samples, which are difficult to obtain in karst regions; models have limited generalization; training requires high computational power; and multi-source data registration and fusion face technical challenges. |
Impact Dimension | Performance | Challenges to LULC Remote Sensing Classification |
---|---|---|
Geometry influence | Image distortion (perspective contraction, overlap) | Increases the difficulty of accurate geometric and orthorectification, affecting the precision of patch localization. |
Radar image effects (overlay, foreshadowing, shadowing) | Reduces the usability of SAR data in mountainous areas, with significant information loss. | |
Radiation effects | Strong terrain shadows | Severe loss of land cover information in shadowed areas is a major source of misclassification and omission errors. |
Spectral variation caused by slope aspect (same object, different spectrum) | Severely distorts the intrinsic spectral characteristics of land cover features, reducing classifier performance. | |
Spatial pattern impact | Surface patches are extremely fragmented and have blurred boundaries | The mixed pixel problem is extremely severe, rendering traditional pixel-based classification methods ineffective. |
High landscape pattern index (patch density, shape index) | Poses challenges to the definition of classification units (pixel vs. object) and the selection of segmentation scales. | |
High intra-pixel heterogeneity | Increases the complexity and uncertainty of sub-pixel decomposition (spectral mixture analysis). |
KRD Level | Potential KRD | Light KRD | Moderate KRD | Severe/Extreme KRD |
---|---|---|---|---|
Features | Surface vegetation coverage is relatively high (typically >70%), and bedrock exposure rate is very low (<10%). | Vegetation coverage begins to decline (50–70%), and bedrock exposure rate increases (10–30%). | Vegetation degradation is evident, with coverage relatively low (30–50%), and bedrock exposure rate significantly increased (30–50%). | Vegetation coverage is extremely low (<30%), with extensive bedrock exposure (>50%). |
Image characteristics | Vegetation exhibits spectral characteristics similar to those of healthy ecosystems, but with more complex texture or more sensitive responses in vegetation indices under drought stress. | Spectral characteristics show a mixture of vegetation, soil, and rock components, with increasingly complex surface textures. | Spectral signals from rock and soil begin to dominate, displaying grayish-white or yellow-brown tones and forming fragmented patches. | Characterized by large areas of bright tones, with spectral features resembling pure rock; vegetation signals are very weak, and the landscape appears predominantly white. |
Real pictures | ||||
RS images |
Data Type | Represents Satellite/Sensor | Spatial Resolution | Band Range | Core Advantages | Main Challenges | Typical Application Scenarios |
---|---|---|---|---|---|---|
Medium Resolution | Landsat series (Landsat 8/9 OLI, TM/ETM+) [75] (NASA, Washington, DC, USA) | 30 m | 0.45–2.35 μm (visible light-shortwave infrared) | Longest global time series (>40 years), wide coverage, and freely accessible. | Severe mixed-pixel problem, making fragmented land cover types difficult to distinguish. | Large-scale LUCC monitoring and dynamic assessment of rocky desertification |
Sentinel-2 MSI [76] (ESA, Paris, France/Airbus Defence and Space, Toulouse, France) | 10–20 m | 0.443–2.19 μm (including red edge) | Fast revisit (5 days), with red-edge bands sensitive to vegetation health. | Significant cloud and fog interference, leading to missing time-series data in mountainous areas. | Vegetation classification, ecological monitoring, and stress diagnosis | |
Gaofen series (GF-1/6 WFV) [77] (CAST, Beijing, China) | 16 m | 0.45–0.89 μm (including red edge) | Dense observations in China, with extensive historical archive data. | Medium resolution, with persistent mixed-pixel issues. | Regional-scale LUCC monitoring and agricultural monitoring | |
High-Resolution | WorldView-3/4, GeoEye-1, Pleiades [78] (Maxar Technologies, Westminster, CO, USA/Toulouse, France) | 0.3–2 m | 0.04–1.0 μm (including near-infrared, partially including SWIR) | Rich detail, suitable for object-based classification. | High cost, limited coverage, and strong shadow effects. | Extraction of urban built-up areas and identification of small patches of rocky desertification |
Gaofen-2 (GF-2) [79] (CAST, Beijing, China) | 0.8–4 m | 0.45–0.89 μm (visible–near-infrared) | Well-suited for fine-scale applications. | Tasking and cost constraints, with very large data volumes. | Fine-scale LULC mapping |
Band Type | Representative Sensor | Spatial Resolution | Core Advantages | Main Challenges | Typical Application Scenarios |
---|---|---|---|---|---|
C-band (~5.6 cm) [103] | Sentinel-1 (ESA, Toulouse, France), RADARSAT-2 (CSA, Richmond, BC, Canada) | 3–30 m | All-weather and all-day observation, with sensitivity to soil moisture and surface roughness. | Limited penetration, with layover and geometric distortions in mountainous areas. | LULC monitoring in cloud-prone areas, as well as agricultural and wetland classification. |
L-band (~23.5 cm) [104] | ALOS PALSAR/PALSAR-2 (JAXA, Tokyo & Kamakura, Japan) | 10–100 m | Strong vegetation penetration, suitable for forest structure and biomass estimation. | Restricted temporal acquisition and very large data volumes. | Forest/grassland classification and rocky desertification monitoring. |
X-band (~3 cm) [105] | TerraSAR-X (DLR, Friedrichshafen, Germany), COSMO-SkyMed (ASI, Rome & Turin, Italy) | 1–10 m | High resolution, suitable for detailed mapping of urban areas and infrastructure. | Weak penetration, with limited sensitivity to soil and vegetation. | Identification of urban built-up areas and classification of urban–rural transitional zones. |
Multi-polarization/interferometric SAR [106] | Sentinel-1 (InSAR/ESA, Toulouse, France, ALOS PALSAR (PolSAR) JAXA, Tokyo & Kamakura, Japan) | 5–30 m | Provision of scattering mechanisms and deformation information, supporting surface deformation monitoring and vegetation structure discrimination. | Complex algorithms requiring high computational resources. | Forest type discrimination, terrain change monitoring, and rocky desertification monitoring. |
Data Type | Representative Sensor/Platform | Spatial Resolution | Advantages | Limitation | Typical Applications |
---|---|---|---|---|---|
Visible light RGB imagery [125] | DJI Phantom and Mavic series (DJI, Shenzhen, China) | 2–10 cm | Low cost and easy acquisition, suitable for rapid mapping. | Limited spectral information, easily affected by illumination. | Extraction of urban built-up areas and detailed classification of farmland |
Multispectral imagery [126] | Parrot Sequoia (Parrot Drones, Paris, France), MicaSense RedEdge (MicaSense, Seattle, WA, USA) | 5–20 cm | Provides vegetation indices (NDVI, EVI, etc.), suitable for agricultural and ecological monitoring. | Limited number of bands, with complex radiometric calibration. | Crop growth monitoring and forest cover classification |
Hyperspectral imagery [127] | Cubert UHD (Cubert GmbH, Ulm, Germany), Headwall Nano-Hyperspec (Headwall Photonics, Bolton, MA, USA) | 5–30 cm | High spectral resolution, capable of distinguishing spectrally similar but different objects. | Large data volume and complex processing, with high equipment cost. | Detailed vegetation type differentiation and mineral identification |
Thermal infrared imagery [128] | FLIR Vue(Teledyne FLIR, Wilsonville, OR, USA), Workswell WIRIS (Workswell, Prague, Czech Republic) | 10–50 cm | Provides land surface temperature information, suitable for water body and wetland monitoring. | Relatively low spatial resolution, highly influenced by climate. | Urban heat island studies and soil moisture inversion |
UAV-LiDAR [128] | DJI Zenmuse L1 (DJI, Shenzhen, China), RIEGL miniVUX (RIEGL, Horn, Austria) | 2–10 cm | High-accuracy three-dimensional point clouds, supporting terrain and structural analysis. | High cost and demanding data processing requirements. | Forest vertical structure analysis and classification of urban–rural built-up areas |
Land Type | I | II | III |
---|---|---|---|
Arable Land | |||
Weeds | |||
Bare Soil | |||
Woodland | |||
Shrub | |||
Water | |||
Impervious Surface | |||
Asphalt Road | |||
Bare Rock |
Land Type | 30 m | 15 m | 10 m | 5 m | 2 m | 1 m |
---|---|---|---|---|---|---|
Cultivated field | ||||||
Grassland | ||||||
Woodland | ||||||
Water | ||||||
Construction land | ||||||
Bare rock |
Model Name | Fusion Data Types | Scenario Application/Features |
---|---|---|
U-Net [147] | RGB/Multispectral + DSM/NDVI | Pixel-level semantic segmentation with a simple architecture, suitable for small-scale vegetation classification in karst regions. |
PSPNet [148] | Multispectral + DSM + NDVI | Extracts global contextual features, making it suitable for identifying scattered vegetation patches in fragmented karst landscapes. |
DeepLabV3+ [149] | Sentinel-2/Gaofen data + DSM | Atrous (dilated) convolution enhances the ability to capture multi-scale land feature structures, making it well-suited for complex and undulating terrain. |
FCN [150] | High-resolution imagery | The earliest end-to-end semantic segmentation framework, suitable for fundamental research and comparative experiments. |
SegNet [151] | Multispectral + DSM | Encoder–decoder architecture, suitable for segmenting land features with clear boundaries (e.g., shrubs, bare rock). |
ResUNet [152] | RGB + DSM + Spectral Indices | Combines U-Net with residual connection architecture, making it suitable for handling scenes with significant terrain interference. |
Method | Accuracy (OA/Kappa) | Training Cost (Computation and Sample Requirements) | Applicability (Data Type/Scenario) | Typical References |
---|---|---|---|---|
RF | 75–88% (medium-resolution imagery) | Low (low sample requirements, fast training speed) | Optical and SAR; suitable for cases with limited samples | Belgiu and Drăguţ, 2016 [169] |
SVM | 76–85% (performance varies significantly across different kernel functions) | Moderate (requires parameter tuning) | Optical; performs better for classes with clear boundaries | Maxwell et al., 2018 [164] |
CNN | 82–90% (high-resolution optical imagery) | High (requires GPU and a large number of samples) | High-resolution optical; effective for classification of urban and vegetation areas | Zhu et al., 2017 [165] |
U-Net | 85–92% (very high-resolution urban or agricultural imagery) | Very high (requires large-scale samples and high memory capacity) | High-resolution optical; especially suitable for complex landscapes | Ma et al., 2019 [78] |
SAR methods (H/A/α decomposition, Wishart, etc.) | 70–83% (polarimetric SAR) | Moderate (requires polarimetric data and feature engineering) | Cloudy and rainy regions; suitable for karst mountainous areas | Verma et al., 2023 [170] |
Ensemble methods (Expert rules + ML) | 80–88% (more robust when samples are limited) | Moderate (requires domain knowledge support) | Karst mountainous areas; requires integration of geological and vegetation prior knowledge | Foody, 2020 [171] |
Time | Camera Image | Time | Camera Image | Time | Camera Image |
---|---|---|---|---|---|
01-01 | 05-01 | 09-03 | |||
02-01 | 06-02 | 09-28 | |||
03-01 | 07-01 | 11-01 | |||
04-01 | 08-02 | 12-01 |
Sampling Design | Principle | Advantages | Disadvantages and Challenges | Applicability in Karst Regions |
---|---|---|---|---|
Simple Random Sampling [177] | Randomly select sample points. | Conceptually simple, easy to implement, and statistically unbiased. | May result in uneven spatial distribution of samples, and rare classes (e.g., small water bodies) may not be sampled at all. | Not recommended. It cannot ensure representativeness of all key land cover types in the highly fragmented karst landscape. |
Systematic Sampling [178] | Sample at fixed spatial intervals (grid-based). | Ensures uniform spatial distribution of samples with good coverage. | If land cover patterns have periodicity similar to the sampling interval, bias may occur. | Use with caution. Suitable for analyzing broad spatial patterns, but may fail to capture the patch-level randomness of micro-landforms in karst areas. |
Stratified Random Sampling [179] | Use a classified map or prior knowledge to define “strata,” and perform random sampling within each stratum either proportionally or with a fixed number of samples. | Guarantees sufficient samples for all classes (including rare ones), improving the efficiency and reliability of accuracy estimation. | Relies on the quality of the stratification basis (e.g., classification map); errors in the stratification layer may introduce bias. | Highly recommended. This is the most commonly used and scientifically sound method for LULC accuracy assessment, effectively addressing the uneven area distribution of land cover types in karst regions. |
Spatially Balanced Sampling [180] | Apply specific algorithms to ensure spatial randomness while achieving uniform distribution of samples across space. | Balances randomness and spatial uniformity, offering better handling of spatial autocorrelation. | Algorithms are relatively complex. | Great potential. Particularly suitable for advanced studies involving spatial statistical analysis and uncertainty modeling, as it objectively reflects the spatial heterogeneity of karst environments. |
Metric Name | Definition | Applicable Scenario | Limitations |
---|---|---|---|
OA [182] | Number of correctly classified samples/Total number of samples | Overall evaluation of classification performance | Sensitive to class imbalance and may mask classification errors |
Kappa [183] | Degree of improvement in agreement over random classification | Adjusts for the bias introduced by random agreement | Influenced by the number and distribution of classes, making interpretation difficult |
UA [184] | Proportion of samples classified as a given class that actually belong to that class | Reflects the accuracy of interest to map users | Does not reflect omission errors |
PA [185] | Proportion of actual samples of a given class that are correctly classified | Reflects the sensitivity to omission errors for map producers | Does not reflect commission errors |
F1 Score [186] | Harmonic mean of UA (precision) and PA (recall) | Suitable for comprehensive evaluation under class imbalance conditions | Dependent on the accuracy of UA and PA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Zhou, Z.; Zhang, Z.; Dai, Q.; Lu, H.; Li, Y.; Huang, Y. Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers. Appl. Sci. 2025, 15, 9641. https://doi.org/10.3390/app15179641
Huang D, Zhou Z, Zhang Z, Dai Q, Lu H, Li Y, Huang Y. Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers. Applied Sciences. 2025; 15(17):9641. https://doi.org/10.3390/app15179641
Chicago/Turabian StyleHuang, Denghong, Zhongfa Zhou, Zhenzhen Zhang, Qingqing Dai, Huanhuan Lu, Ya Li, and Youyan Huang. 2025. "Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers" Applied Sciences 15, no. 17: 9641. https://doi.org/10.3390/app15179641
APA StyleHuang, D., Zhou, Z., Zhang, Z., Dai, Q., Lu, H., Li, Y., & Huang, Y. (2025). Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers. Applied Sciences, 15(17), 9641. https://doi.org/10.3390/app15179641