A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Insect-Protein Preparation
2.3. Enzymatic Hydrolysis of Cricket-Protein Powder
Optimization of Enzymatic Hydrolysis Conditions
2.4. Spray Drying
2.5. Characterization of Spray-Dried Cricket-Protein Hydrolysates
2.5.1. Total Solids, Moisture, Protein Content, and Water Activity (aw)
2.5.2. Hygroscopicity
2.5.3. Bulk and Tapped Density
2.5.4. Flowability
2.5.5. Solubility
2.5.6. Foaming Capacity and Stability
2.5.7. Emulsifying Properties (EAI and ESI)
3. Statistical Analysis
4. Results and Discussion
4.1. Optimization of Hydrolyzed Insect-Protein Powder
- C: p = 0.0008; BC: p = 0.0472; B2: p = 0.0138; C2: 0.0496.
- C: p ≤ 0.0001.
Test | Solids-to-Liquid Ratio (S/L Ratio) | Hydrolysis Time (min) | Enzyme-to-Substrate Ratio (E/S Ratio, %) | Solids Recovery (%) | Solubility (%) |
---|---|---|---|---|---|
* 1 | 1:5 | 120 | 1.5 | 56.59 | 56.12 |
2 | 1:6 | 120 | 0.5 | 57.29 | 53.78 |
3 | 1:5 | 180 | 0.5 | 53.66 | 54.18 |
* 4 | 1:5 | 120 | 1.5 | 54.20 | 57.60 |
5 | 1:4 | 120 | 2.5 | 47.31 | 60.16 |
* 6 | 1:5 | 120 | 1.5 | 53.55 | 58.39 |
7 | 1:6 | 120 | 2.5 | 48.93 | 60.75 |
8 | 1:4 | 180 | 1.5 | 50.61 | 57.60 |
9 | 1:5 | 60 | 2.5 | 38.99 | 60.58 |
10 | 1:5 | 60 | 0.5 | 54.06 | 53.22 |
11 | 1:6 | 60 | 1.5 | 52.52 | 55.54 |
12 | 1:6 | 180 | 1.5 | 51.87 | 58.64 |
13 | 1:4 | 120 | 0.5 | 56.07 | 54.69 |
14 | 1:5 | 180 | 2.5 | 48.25 | 60.77 |
15 | 1:4 | 60 | 1.5 | 50.23 | 58.20 |
Alcalase®–HCP | 1:4 | 117 | 1.2 | 51.44 | 58.28 ± 0.5 |
Factor | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Solids recovery (%) | |||||
Model | 280.64 | 9 | 31.18 | 9.16 | 0.0126 |
Residual | 17.02 | 5 | 3.40 | ||
LoF | 11.89 | 3 | 3.96 | 1.55 | 0.4158 |
PE | 5.13 | 2 | 2.56 | ||
Total | 297.66 | 14 | |||
R2 | 0.9428 | ||||
Solubility (%) | |||||
Model | 93.51 | 9 | 10.39 | 15.37 | 0.0039 |
Residual | 3.38 | 5 | 0.6760 | ||
LoF | 0.7241 | 3 | 0.2414 | 0.1818 | 0.9008 |
PE | 2.66 | 2 | 1.33 | ||
Total | 96.89 | 14 | |||
R2 | 0.9651 |
- B: p = 0.0253; C: p = 0.0112; B2: p = 0.0257.
Test | Solids-to-liquid Ratio (S/L ratio) | Hydrolysis Time (min) | Enzyme-to-Substrate Ratio (E/S Ratio, %) | Solids Recovery (%) | Solubility (%) |
---|---|---|---|---|---|
* 1 | 1:5 | 120 | 1.5 | 51.52 | 65.15 |
2 | 1:6 | 120 | 0.5 | 48.68 | 60.50 |
3 | 1:5 | 180 | 0.5 | 49.53 | 59.45 |
* 4 | 1:5 | 120 | 1.5 | 50.13 | 68.65 |
5 | 1:4 | 120 | 2.5 | 49.54 | 64.95 |
* 6 | 1:5 | 120 | 1.5 | 50.41 | 63.77 |
7 | 1:6 | 120 | 2.5 | 48.01 | 61.63 |
8 | 1:4 | 180 | 1.5 | 51.46 | 61.84 |
9 | 1:5 | 60 | 2.5 | 50.31 | 57.23 |
10 | 1:5 | 60 | 0.5 | 52.19 | 47.90 |
11 | 1:6 | 60 | 1.5 | 51.90 | 55.43 |
12 | 1:6 | 180 | 1.5 | 54.45 | 57.17 |
13 | 1:4 | 120 | 0.5 | 48.62 | 49.75 |
14 | 1:5 | 180 | 2.5 | 49.54 | 65.48 |
15 | 1:4 | 60 | 1.5 | 48.77 | 55.46 |
Flavourzyme®–HCP | 1:4 | 127 | 1.8 | 61.25 ± 0.8 |
Factor | SS | df | MS | F-Value | p-Value |
---|---|---|---|---|---|
Solids recovery (%) | |||||
Model | 22.77 | 9 | 2.53 | 0.6966 | 0.7001 |
Residual | 18.16 | 5 | 3.63 | ||
LoF | 17.08 | 3 | 5.69 | 10.53 | 0.0879 |
PE | 1.08 | 2 | 0.5405 | ||
Total | 40.93 | 14 | |||
R2 | 0.5563 | ||||
Solubility (%) | |||||
Model | 434.04 | 9 | 48.23 | 5.42 | 0.0386 |
Residual | 44.45 | 5 | 8.89 | ||
LoF | 31.80 | 3 | 10.60 | 1.67 | 0.3950 |
PE | 12.66 | 2 | 6.33 | ||
Total | 478.50 | 14 | |||
R2 | 0.9071 |
4.2. Techno-Functional Characterization
4.2.1. Flowability: Hausner Ratio and Carr’s Compressibility Index
4.2.2. Solubility
4.2.3. Foaming Properties
4.2.4. Emulsification
5. Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCP | Hydrolyzed cricket protein |
EH | Enzymatic hydrolysis |
RC | Non-hydrolyzed cricket-protein control |
FDA | Food and Drug Administration |
USA | United States of America |
HCI | Hydrochloric acid |
SDS | Sodium dodecyl sulphate |
BBD | Box–Behnken design |
RSM | Response surface methodology |
HR | Hausner ratio |
CI | Carr’s compressibility index |
FC | Foaming capacity |
FS | Foaming stability |
EAI | Emulsifying activity index |
ESI | Emulsion stability index |
References
- Liceaga, A.M. Edible insects, a valuable protein source from ancient to modern times. Adv. Food Nutr. Res. 2022, 101, 129–152. [Google Scholar]
- Orkusz, A.; Dymińska, L.; Banaś, K.; Harasym, J. Chemical and Nutritional Fat Profile of Acheta domesticus, Gryllus bimaculatus, Tenebrio molitor and Rhynchophorus ferrugineus. Foods 2023, 13, 32. [Google Scholar] [CrossRef]
- Anusha, S.; Negi, P.S. Edible insects and gut health. In Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- Fuso, A.; Leni, G.; Prandi, B.; Lolli, V.; Caligiani, A. Novel foods/feeds and novel frauds: The case of edible insects. Trends Food Sci. Technol. 2024, 147, 104457. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Larouche, J.; Campbell, B.; Hénault-Éthier, L.; Banks, I.J.; Tomberlin, J.K.; Preyer, C.; Deschamps, M.-H.; Vandenberg, G.W. The edible insect sector in Canada and the United States. Anim. Front. 2023, 13, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Liceaga, A.M.; Tomberlin, J. Approaches for Utilizing Insect Protein for Human Consumption: Effect of Enzymatic Hydrolysis on Protein Quality and Functionality. Ann. Èntomol. Soc. Am. 2019, 112, 529–532. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’HAire, M.E.; Liceaga, A.M. Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef]
- Batish, I.; Brits, D.; Valencia, P.; Miyai, C.; Rafeeq, S.; Xu, Y.; Galanopoulos, M.; Sismour, E.; Ovissipour, R. Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects 2020, 11, 876. [Google Scholar] [CrossRef]
- Verni, M.; Squeo, G.; Perri, G.; Demarinis, C.; Rizzello, C.G.; Caponio, F.; Faino, L.; Pontonio, E. Optimizing Tenebrio molitor powder as ingredient in breadmaking: Impact of enzymatic hydrolysis on dough techno-functional properties and bread quality. Futur. Foods 2025, 11, 100665. [Google Scholar] [CrossRef]
- Ruggeri, M.; Bianchi, E.; Vigani, B.; Sánchez-Espejo, R.; Spano, M.; Fila, C.T.; Mannina, L.; Viseras, C.; Rossi, S.; Sandri, G. Nutritional and Functional Properties of Novel Italian Spray-Dried Cricket Powder. Antioxidants 2023, 12, 112. [Google Scholar] [CrossRef]
- Vargas, D.A.; Vargas, N.; Osorio-Doblado, A.M.; Ruano-Ortiz, J.A.; de Medeiros, F.G.M.; Hoskin, R.T.; Moncada, M. Valorization of Hibiscus flower (Hibiscus sabdariffa L.) anthocyanins to produce sustainable spray-dried ingredients. Sustainability 2024, 16, 5523. [Google Scholar] [CrossRef]
- Queiroz, L.S.; Silva, N.F.N.; Jessen, F.; Mohammadifar, M.A.; Stephani, R.; de Carvalho, A.F.; Perrone, Í.T.; Casanova, F. Edible insect as an alternative protein source: A review on the chemistry and functionalities of proteins under different processing methods. Heliyon 2023, 9, e14831. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.-J.; Lee, J.-C.; Hwang, I.-K.; Nho, C.W.; Kim, S.-H. Physicochemical properties of mealworm (Tenebrio molitor) powders manufactured by different industrial processes. LWT 2019, 116, 108514. [Google Scholar] [CrossRef]
- da Silva, E.S.; Xiong, J.; de Medeiros, F.G.M.; Grace, M.; Moncada, M.; Lila, M.A.; Hoskin, R.T. Spray dried insect protein-polyphenol particles deliver health-relevant value-added food ingredients. Futur. Foods 2024, 9, 100315. [Google Scholar] [CrossRef]
- Hoskin, R.T.; Grace, M.H.; Xiong, J.; Lila, M.A. Spray-drying microencapsulation of blackcurrant and cocoa polyphenols using underexplored plant-based protein sources. J. Food Sci. 2023, 88, 2665–2678. [Google Scholar] [CrossRef]
- Correia, R.; Grace, M.H.; Esposito, D.; Lila, M.A. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food Chem. 2017, 235, 76–85. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Sihag, M.K.; Tomar, S.; Arora, S.; Sabikhi, L.; Singh, A. Development and physico-chemical characterization of microencapsulated flaxseed oil powder: A functional ingredient for omega-3 fortification. Powder Technol. 2015, 286, 527–537. [Google Scholar] [CrossRef]
- Zhang, Q.-T.; Tu, Z.-C.; Xiao, H.; Wang, H.; Huang, X.-Q.; Liu, G.-X.; Liu, C.-M.; Shi, Y.; Fan, L.-L.; Lin, D.-R. Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food Bioprod. Process. 2014, 92, 30–37. [Google Scholar] [CrossRef]
- Mishyna, M.; Keppler, J.K.; Chen, J. Techno-functional properties of edible insect proteins and effects of processing. Curr. Opin. Colloid Interface Sci. 2021, 56, 101508. [Google Scholar] [CrossRef]
- McClements, D.J.; Grossmann, L. Next-Generation Plant-Based Foods: Challenges and Opportunities. Annu. Rev. Food Sci. Technol. 2024, 15, 79–101. [Google Scholar] [CrossRef]
- Saifullah, M.; Yusof, Y.; Chin, N.; Aziz, M. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technol. 2016, 301, 396–404. [Google Scholar] [CrossRef]
- Garcia, D.; de Medeiros, F.; Hoskin, R.; Marvin, M. Optimizing processing parameters to produce a novel spray dried hydrolyzed rice-derived ingredient using response surface methodology. J. Food Meas. Charact. 2024, 18, 10038–10048. [Google Scholar] [CrossRef]
- Suhag, R.; Kellil, A.; Razem, M. Factors Influencing Food Powder Flowability. Powders 2024, 3, 65–76. [Google Scholar] [CrossRef]
- Hazlett, R.; Schmidmeier, C.; O’MAhony, J. Approaches for improving the flowability of high-protein dairy powders post spray drying—A review. Powder Technol. 2021, 388, 26–40. [Google Scholar] [CrossRef]
- Gravel, A.; Doyen, A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innov. Food Sci. Emerg. Technol. 2020, 59, 102272. [Google Scholar] [CrossRef]
- Trinh, B.T.; Supawong, S. Enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein: Influence of Alcalase and Neutrase enzyme on functional properties of recovered protein. J. Sci. Technol. 2021, 10, 342–353. [Google Scholar] [CrossRef]
- Zayas, J. Foaming Properties of Proteins. In Functionality of Proteins in Food; Springer: Berlin/Heidelberg, Germany, 1997; pp. 260–309. [Google Scholar]
- Singh, H. Functional properties of milk proteins. In Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Stone, A.K.; Tanaka, T.; Nickerson, M.T. Protein quality and physicochemical properties of commercial cricket and mealworm powders. J. Food Sci. Technol. 2019, 56, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Burger, T.G.; Zhang, Y. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends Food Sci. Technol. 2019, 86, 25–33. [Google Scholar] [CrossRef]
- Padial-Domínguez, M.; Espejo-Carpio, F.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Optimization of the emulsifying properties of food protein hydrolysates for the production of fish oil-in-water emulsions. Foods 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Leni, G.; Soetemans, L.; Caligiani, A.; Sforza, S.; Bastiaens, L. Degree of hydrolysis affects the techno-functional properties of lesser mealworm protein hydrolysates. Foods 2020, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Li, H.; Selomulya, C. Effect of hydrolysis on the emulsification and antioxidant properties of plant-sourced proteins. Curr. Opin. Food Sci. 2022, 48, 100949. [Google Scholar] [CrossRef]
- Hall, F.; Johnson, P.E.; Liceaga, A. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem. 2018, 262, 39–47. [Google Scholar] [CrossRef]
- Wangorsch, A.; Jamin, A.; Spiric, J.; Vieths, S.; Scheurer, S.; Mahler, V.; Hofmann, S.C. Allergic Reaction to a Commercially Available Insect Snack Caused by House Cricket (Acheta domesticus) Tropomyosin. Mol. Nutr. Food Res. 2024, 68, e2300420. [Google Scholar] [CrossRef]
Test | Solid-to-Liquid Ratio (S/L Ratio) | Hydrolysis Time (min) | Enzyme-to-Substrate Ratio (E/S Ratio, %) |
---|---|---|---|
* 1 | 1:5 | 120 | 1.5 |
2 | 1:6 | 120 | 0.5 |
3 | 1:5 | 180 | 0.5 |
* 4 | 1:5 | 120 | 1.5 |
5 | 1:4 | 120 | 2.5 |
* 6 | 1:5 | 120 | 1.5 |
7 | 1:6 | 120 | 2.5 |
8 | 1:4 | 180 | 1.5 |
9 | 1:5 | 60 | 2.5 |
10 | 1:5 | 60 | 0.5 |
11 | 1:6 | 60 | 1.5 |
12 | 1:6 | 180 | 1.5 |
13 | 1:4 | 120 | 0.5 |
14 | 1:5 | 180 | 2.5 |
15 | 1:4 | 60 | 1.5 |
Parameter | RC | Optimized Alcalase®–HCP | Optimized Flavourzyme®–HCP |
---|---|---|---|
Moisture (%) | 2.63 ± 0.08 b | 2.88 ± 0.4 ab | 4.17 ± 0.4 a |
Water activity | 0.2351 ± 0.0002 a | 0.2501 ± 0.02 a | 0.2406 ± 0.03 a |
Hygroscopicity (%) | 1.14 ± 0.01 b | 1.25 ± 0.00 a | 1.28 ± 0.01 a |
Hausner ratio | 1.54 ± 0.06 b | 1.78 ± 0.02 a | 1.59 ± 0.05 ab |
Carr’s compressibility index (%) | 35.03 ± 2.5 b | 43.81 ± 0.6 a | 37.01 ± 2.0 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlamb, J.; Medeiros, F.G.M.d.; Hoskin, R.T.; Wainwright, K.; Moncada, M. A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients. Appl. Sci. 2025, 15, 9721. https://doi.org/10.3390/app15179721
Schlamb J, Medeiros FGMd, Hoskin RT, Wainwright K, Moncada M. A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients. Applied Sciences. 2025; 15(17):9721. https://doi.org/10.3390/app15179721
Chicago/Turabian StyleSchlamb, Jade, Fábio Gonçalves Macêdo de Medeiros, Roberta Targino Hoskin, Kathya Wainwright, and Marvin Moncada. 2025. "A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients" Applied Sciences 15, no. 17: 9721. https://doi.org/10.3390/app15179721
APA StyleSchlamb, J., Medeiros, F. G. M. d., Hoskin, R. T., Wainwright, K., & Moncada, M. (2025). A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients. Applied Sciences, 15(17), 9721. https://doi.org/10.3390/app15179721