Improving Vertical Dimensional Accuracy in PBF-LB/M Through Artefact-Based Evaluation and Correction
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Specimen Fabrication
2.2. 3D Scanning and Evaluation
3. Results
3.1. Unscaled Artefacts
3.2. Z-Scaled Artefacts
3.3. Flatness of Vertical Side Faces
4. Discussion
4.1. Repeatability and Systematic Error Trends
4.2. Effectiveness of Z-Scaling Compensation
4.3. Limitations
4.4. Implications for Qualification and Future Research
5. Conclusions
- 1.
- High measurement and manufacturing repeatability was confirmed in two build jobs, with 52% of all three times repeated measurements showing deviations of less than 5 µm.
- 2.
- Above a certain height range, systematic undersizing in the build direction was observed, indicating a linear trend due to thermal shrinkage.
- 3.
- By applying a shrinkage compensation factor in the z-direction () of 1.0017, the achievable IT grades based on averaged step height values were improved from IT 9–11 to IT 5–9. However, this classification does not take into account local dimensional deviations such as elevated edges or surface roughness, which may exceed the specified tolerances.
- 4.
- The remaining deviations ranged from −40 µm to 34 µm, with a root mean square error (RMSE) below the 30 µm layer thickness, which underscores the effectiveness of the correction strategy.
- 5.
- Limitations in improving the vertical dimensional accuracy arise from layer discretization, local surface effects (e.g., roughness, elevated edges), and possible thermal variations due to the arrangement of adjacent parts in the build volume. Layer discretization errors are intentionally introduced and should be carefully considered during evaluation. To mitigate elevated edge effects without modifying process parameters, a design-based suggestion has been proposed. The thermal influence of adjacent parts should also be taken into account, which could be further investigated through simulation.
- 6.
- The approach does not require any changes to process parameters and is therefore suitable for regulated industries that rely on prequalified parameter sets.
- 7.
- The standardized Z-artefact is suitable for detecting and correcting build-height-dependent dimensional deviations and may support Factory Acceptance Tests (FATs), Site Acceptance Tests (SATs), and Process Qualification (PQ) in the context of qualification and revalidation processes in regulated AM environments.
- 8.
- Further studies should address application-oriented geometries, transferability to other systems and materials, and thermomechanical simulations to investigate the effects of thermal deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBF-LB/M | Laser-based Powder Bed Fusion of Metals |
RMSE | Root Mean Square Error |
AM | Additive Manufacturing |
MJM | Multi-Jet Modeling |
ADAM | Atomic Diffusion Additive Manufacturing |
FDM | Fused Deposition Modelling |
SCF | Shrinkage Compensation Factor |
FAT | Factory Acceptance Test |
SAT | Site Acceptance Test |
PQ | Process Qualification |
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Schneck, M.; Gollnau, M.; Lutter-Günther, M.; Haller, B.; Schlick, G.; Lakomiec, M.; Reinhart, G. Evaluating the Use of Additive Manufacturing in Industry Applications. Proced. CIRP 2019, 81, 19–23. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Bai, Q. Defect Formation Mechanisms in Selective Laser Melting: A Review. Chin. J. Mech. Eng. 2017, 30, 515–527. [Google Scholar] [CrossRef]
- Pratap Singh, S.; Kumar Gupta, R.; Agarwal, A.; Govind. Processing and characterization of Al-Si-Mg alloy made through 3D printing and comparison with equivalent cast alloy. Mater. Today Proc. 2022, 67, 422–430. [Google Scholar] [CrossRef]
- Venturi, F.; Taylor, R. Additive Manufacturing in the Context of Repeatability and Reliability. J. Mater. Eng. Perform. 2023, 32, 6589–6609. [Google Scholar] [CrossRef]
- Chen, Z.; Han, C.; Gao, M.; Kandukuri, S.Y.; Zhou, K. A review on qualification and certification for metal additive manufacturing. Virtual Phys. Prototyp. 2022, 17, 382–405. [Google Scholar] [CrossRef]
- Zaeh, M.F.; Branner, G. Investigations on residual stresses and deformations in selective laser melting. Prod. Eng. Res. Devel. 2010, 4, 35–45. [Google Scholar] [CrossRef]
- Mugwagwa, L.; Dimitrov, D.; Matope, S.; Yadroitsev, I. Investigation of the effect of scan vector length on residual stresses in selective laser melting of maraging steel 300. S. Afr. J. Ind. Eng. 2019, 30, 60–70. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Hu, J.; Liu, H.; Wu, Y.; Zhou, Q. Optimization of surface roughness and dimensional accuracy in LPBF additive manufacturing. Opt. Laser Technol. 2021, 142, 107246. [Google Scholar] [CrossRef]
- Calignano, F. Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys. Prototyp. 2018, 13, 97–104. [Google Scholar] [CrossRef]
- Boban, J.; Ahmed, A. Electric discharge aided surface post-treatment of laser powder bed fused non-planar metallic components for enhanced form accuracy. J. Manuf. Process. 2024, 109, 564–582. [Google Scholar] [CrossRef]
- Peng, X.; Kong, L.; Fuh, J.Y.H.; Wang, H. A Review of Post-Processing Technologies in Additive Manufacturing. J. Manuf. Mater. Process. 2021, 5, 38. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, H.; Zhang, S.; Wang, G.; Zeng, X. Fabricating high dimensional accuracy LPBFed Ti6Al4V part by using bi-parameter method. Opt. Laser Technol. 2019, 117, 79–86. [Google Scholar] [CrossRef]
- Ahmed, A.; Majeed, A.; Atta, Z.; Jia, G. Dimensional Quality and Distortion Analysis of Thin-Walled Alloy Parts of AlSi10Mg Manufactured by Selective Laser Melting. J. Manuf. Mater. Process. 2019, 3, 51. [Google Scholar] [CrossRef]
- Giorgetti, A.; Ceccanti, F.; Baldi, N.; Kemble, S.; Arcidiacono, G.; Citti, P. Axiomatic Design of a Test Artifact for PBF-LM Machine Capability Monitoring. Machines 2024, 12, 199. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, D. Investigation into the shrinkage in Z-direction of components manufactured by selective laser melting (SLM). Int. J. Adv. Manuf. Technol. 2017, 90, 2913–2923. [Google Scholar] [CrossRef]
- Fotovvati, B.; Asadi, E. Size effects on geometrical accuracy for additive manufacturing of Ti-6Al-4V ELI parts. Int. J. Adv. Manuf. Technol. 2019, 104, 2951–2959. [Google Scholar] [CrossRef]
- Brenner, S.; Nedeljkovic-Groha, V. Enhancing Dimensional Accuracy in Laser Powder Bed Fusion by Scaling Factor Optimization and 3D Scanner Capability Analysis. RTe J. 2024. [Google Scholar] [CrossRef]
- Giganto, S.; Martínez-Pellitero, S.; Cuesta, E.; Zapico, P.; Barreiro, J. Proposal of design rules for improving the accuracy of selective laser melting (SLM) manufacturing using benchmarks parts. Rapid Prototyp. J. 2022, 28, 1129–1143. [Google Scholar] [CrossRef]
- Montero, J.; Weber, S.; Petroll, C.; Brenner, S.; Bleckmann, M.; Paetzold, K.; Nedeljkovic-Groha, V. Geometrical Benchmarking of Laser Powder Bed Fusion Systems Based on Designer Needs. Proc. Des. Soc. 2021, 1, 1657–1666. [Google Scholar] [CrossRef]
- Maleki, E.; Salehnasab, B.; Paul, M.; Shao, S.; Shamsaei, N. Dimensional accuracy of fabricated geometries through powder bed fusion: An overview and a new benchmark artifact proposal. Mater. Des. 2025, 257, 114361. [Google Scholar] [CrossRef]
- Rebaioli, L.; Fassi, I. A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes. Int. J. Adv. Manuf. Technol. 2017, 93, 2571–2598. [Google Scholar] [CrossRef]
- Li, W.; Wang, K.; Fang, S. Benchmark Test Artifacts for Selective Laser Melting—A Critical Review. Recent Pat. Eng. 2022, 16, 76–86. [Google Scholar] [CrossRef]
- de Pastre, M.-A.; Toguem Tagne, S.-C.; Anwer, N. Test artefacts for additive manufacturing: A design methodology review. CIRP J. Manuf. Sci. Technol. 2020, 31, 14–24. [Google Scholar] [CrossRef]
- Moylan, S.; Slotwinski, J.; Cooke, A.; Jurrens, K.; Donmez, M.A. An Additive Manufacturing Test Artifact. J. Res. Natl. Inst. Stand. Technol. 2014, 119, 429–459. [Google Scholar] [CrossRef] [PubMed]
- Castillo, L. Study About the Rapid Manufacturing of Complex Parts of Stainless Steel and Titanium; TNO Report with the Collaboration of AIMME; TNO: Hague, The Netherlands, 2005; pp. 1–31. [Google Scholar]
- Yasa, E.; Kandemir, I.; Atik, I. On the Z-dimensional accuracy of L-powder bed fusion. J. Addit. Manuf. Technol. 2021, 1, 533. [Google Scholar] [CrossRef]
- Sercombe, T.B.; Hopkinson, N. Process Shrinkage and Accuracy during Indirect Laser Sintering of Aluminium. Adv. Eng. Mater. 2006, 8, 260–264. [Google Scholar] [CrossRef]
- Seifi, M.; Gorelik, M.; Waller, J.; Hrabe, N.; Shamsaei, N.; Daniewicz, S.; Lewandowski, J.J. Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. JOM 2017, 69, 439–455. [Google Scholar] [CrossRef]
- ISO/ASTM 52902:2023; Additive Manufacturing—Test Artefacts—Geometric Capability Assessment of Additive Manufacturing Systems. DIN Media GmbH: Berlin, Germany, 2023.
- Elsevier—Scopus Document Search. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 18 July 2025).
- Berez, J.; Praniewicz, M.; Saldana, C. Assessing laser powder bed fusion system geometric errors through artifact-based methods. Procedia Manuf. 2021, 53, 395–406. [Google Scholar] [CrossRef]
- Carolo, L.C.B.; O, R.E.C.; de Oliveira, M.F.; Da Silva, J.V.L. The effects of varying wall thickness on the surface roughness of Ti-6Al-4V by electron beam powder bed fusion. Surf. Topogr. Metrol. Prop. 2023, 11, 35012. [Google Scholar] [CrossRef]
- Krasniqi, M.; Löffler, F.; Tutsch, R. Influence of scanning strategies on dimensional accuracy in laser powder bed fusion. Meas. Sens. 2025, 38, 101840. [Google Scholar] [CrossRef]
- Grabe, T.; Biermann, T.; Wolf, A.; Al-Nuwaider, J.; Krauss, H.; August, J.; Yu, W.; Heinz, J.B.; Bayerl, M.; Xu, K.; et al. Application-inspired additive manufacturing of Raman optics. Opt. Laser Technol. 2023, 165, 109574. [Google Scholar] [CrossRef]
- Monzón, E.; Bordón, P.; Paz, R.; Monzón, M. Dimensional Characterization and Hybrid Manufacturing of Copper Parts Obtained by Atomic Diffusion Additive Manufacturing, and CNC Machining. Materials 2024, 17, 1437. [Google Scholar] [CrossRef]
- Spitaels, L.; Rivière-Lorphèvre, E.; Demarbaix, A.; Ducobu, F. Adaptive benchmarking design for additive manufacturing processes. Meas. Sci. Technol. 2022, 33, 64003. [Google Scholar] [CrossRef]
- Flierl, F.; Spies, B.C.; Rothlauf, S.; Vach, K.; Kohal, R.J.; Lüchtenborg, J. Effects of monomer contamination during post-rinsing in vat photopolymerization on dimensional stability. Sci. Rep. 2025, 15, 10139. [Google Scholar] [CrossRef]
- ANSYS, Inc. Ansys Workbench | Simulation Integration Platform. Available online: https://www.ansys.com/products/ansys-workbench (accessed on 1 July 2025).
- Nikon SLM Solutions. AlSi10Mg DIN EN 1706/EN AC-43000. Available online: https://www.slm-solutions.com/fileadmin/Content/Powder/MDS/nw/2024/MDS_AlSi10Mg_2024-04.1_EN.pdf (accessed on 2 June 2025).
- VDI 3405 Part 2.6; Additive Manufacturing Processes—Powder Bed Fusion of Metal Using a Laser Beam (PBF-LB/M)—Presentation of Material Properties in Material Data Sheets. Beuth Verlag GmbH: Berlin, Germany, 2022.
- Keyence. VL-550 3D Scanner. Available online: https://www.keyence.com/products/3d-measure/3d-scanner/vl/models/vl-550/ (accessed on 2 June 2025).
- Keyence. VR-5200 3D-Profilometer. Available online: https://www.keyence.com/products/3d-measure/roughness-measure/vr-3000/models/vr-5200/ (accessed on 2 June 2025).
- Dentaco. Induscan‘Spray. Available online: https://www.dentaco.de/english-1/for-the-industry/indu-scan/ (accessed on 2 June 2025).
- ISO 286-1:2019-09; Geometrical Product Specifications (GPS), ISO Code System for Tolerances on Linear Sizes: Part 1: Basis of Tolerances, Deviations and Fits. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Silva, E.C.; Lopes, A.C.; Sampaio, Á.M.; Pontes, A.J. Influence of layer thickness on dimensional and geometrical properties of aluminium parts produced by powder bed fusion. Int. J. Adv. Manuf. Technol. 2025, 138, 4755–4766. [Google Scholar] [CrossRef]
- Lu, Y.; Badarinath, R.; Lehtihet, E.A.; de Meter, E.C.; Simpson, T.W. Experimental sampling of the Z-axis error and laser positioning error of an EOSINT M280 DMLS machine. Addit. Manuf. 2018, 21, 501–516. [Google Scholar] [CrossRef]
- Yang, P.; Deibler, L.A.; Bradley, D.R.; Stefan, D.K.; Carroll, J.D. Microstructure evolution and thermal properties of an additively manufactured, solution treatable AlSi10Mg part. J. Mater. Res. 2018, 33, 4040–4052. [Google Scholar] [CrossRef]
- Lubis, D.Z.; Aminnudin, A.; Perwira, A.H. Punch Tool Speed and Material Effect on Keychain Cranioplasty Plate Dimensions Using Finite Element Method. Key Eng. Mater. 2020, 851, 105–110. [Google Scholar] [CrossRef]
- Yasa, E.; Deckers, J.; Craeghs, T.; Badrossamay, M.; Kruth, J.-P. Investigation on Occurrence of Elevated Edges in Selective Laser Melting. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 3–5 August 2009; University of Texas at Austin: Austin, TX, USA, 2009. [Google Scholar]
- Matache, G.; Vladut, M.; Paraschiv, A.; Condruz, R.M. Edge and corner effects in selective laser melting of IN 625 alloy. Manuf. Rev. 2020, 7, 8. [Google Scholar] [CrossRef]
- Pant, M.; Patpatiya, P.; Nagdeve, L.; Moona, G.; Kumar, H. Reverse Engineering and Dimensional Limits Analysis of Samples Fabricated Using Selective Laser Melting Process. Mapan—J. Metrol. Soc. India 2023, 38, 795–804. [Google Scholar] [CrossRef]
- Calignano, F.; Galati, M.; Iuliano, L. A Metal Powder Bed Fusion Process in Industry: Qualification Considerations. Machines 2019, 7, 72. [Google Scholar] [CrossRef]
- Brenner, S.; Moser, M.; Strauß, L.; Nedeljkovic-Groha, V.; Löwisch, G. Recoater crashes during powder bed fusion of metal with laser beam: Simulative prediction of interference and experimental evaluation of resulting part quality. Prog. Addit. Manuf. 2023, 8, 759–768. [Google Scholar] [CrossRef]
- Craeghs, T.; Clijsters, S.; Yasa, E.; Kruth, J.-P. Online Quality Control of Selective Laser Melting. In Proceedings of the 20th Solid Freeform Fabrication (SFF) Symposium, Austin, TX, USA, 8–10 August 2011; pp. 212–226. [Google Scholar]
- Morvayova, A.; Fabbiano, L.; Contuzzi, N.; Caiazzo, F.; Casalino, G. On the influence of building position on dimensional accuracy and surface quality of aluminum blocks manufactured by L-PBF. Opt. Laser Technol. 2023, 167, 109830. [Google Scholar] [CrossRef]
- Afazov, S.; Denmark, W.A.; Lazaro Toralles, B.; Holloway, A.; Yaghi, A. Distortion prediction and compensation in selective laser melting. Addit. Manuf. 2017, 17, 15–22. [Google Scholar] [CrossRef]
- Strumza, E.; Yeheskel, O.; Hayun, S. The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg. Addit. Manuf. 2019, 29, 100762. [Google Scholar] [CrossRef]
- ISO/ASTM/TS 52930:2021; Additive Manufacturing—Qualification Principles—Installation, Operation and Performance (IQ/OQ/PQ) of PBF-LB Equipment. DIN Media GmbH: Berlin, Germany, 2021.
- Mehdi-Souzani, C.; Piratelli-Filho, A.; Anwer, N. Comparative Study for the Metrological Characterization of Additive Manufacturing artefacts. In Advances on Mechanics, Design Engineering and Manufacturing. Lecture Notes in Mechanical Engineering; Eynard, B., Nigrelli, V., Oliveri, S., Peris-Fajarnes, G., Rizzuti, S., Eds.; Lecture Notes in Mechanical Engineering; Springer: Cham, Germany, 2017. [Google Scholar]
- Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F.; Servetti, G.; Esposito, F.; Barbero, L. FEM Simulation of AlSi10Mg Artifact for Additive Manufacturing Process Calibration with Industrial-Computed Tomography Validation. Materials 2023, 16, 4754. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Lv, F.; Liang, H.; Shen, L.; Tian, Z.; Zhao, J.; Song, Y.; Shuai, C. Towards a comprehensive understanding of distortion in additive manufacturing based on assumption of constraining force. Virtual Phys. Prototyp. 2021, 16, S85–S97. [Google Scholar] [CrossRef]
- Brenner, S.; Nedeljkovic-Groha, V. Distortion Compensation of Thin-Walled Parts by Pre-Deformation in Powder Bed Fusion with Laser Beam. In Lectures Notes on Advanced Structured Materials 2; Altenbach, H., Hitzler, L., Johlitz, M., Merkel, M., Öchsner, A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2024; pp. 205–219. ISBN 978-3-031-49042-2. [Google Scholar]
- Taylor, H.C.; Garibay, E.A.; Wicker, R.B. Toward a common laser powder bed fusion qualification test artifact. Addit. Manuf. 2021, 39, 101803. [Google Scholar] [CrossRef]
Parameter | Volume | Border |
---|---|---|
Laser power (W) | 350 | 300 |
Scan speed (mm/s) | 1650 | 730 |
Hatch distance (mm) | 0.13 | - |
Stripe rotation angle after each layer (°) | 67 | - |
Layer thickness (µm) | 30 | |
Baseplate temperature (°C) | 150 | |
Inertization | Ar 4.6 (oxygen content < 500 ppm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brenner, S.; Nedeljkovic-Groha, V. Improving Vertical Dimensional Accuracy in PBF-LB/M Through Artefact-Based Evaluation and Correction. Appl. Sci. 2025, 15, 9756. https://doi.org/10.3390/app15179756
Brenner S, Nedeljkovic-Groha V. Improving Vertical Dimensional Accuracy in PBF-LB/M Through Artefact-Based Evaluation and Correction. Applied Sciences. 2025; 15(17):9756. https://doi.org/10.3390/app15179756
Chicago/Turabian StyleBrenner, Stefan, and Vesna Nedeljkovic-Groha. 2025. "Improving Vertical Dimensional Accuracy in PBF-LB/M Through Artefact-Based Evaluation and Correction" Applied Sciences 15, no. 17: 9756. https://doi.org/10.3390/app15179756
APA StyleBrenner, S., & Nedeljkovic-Groha, V. (2025). Improving Vertical Dimensional Accuracy in PBF-LB/M Through Artefact-Based Evaluation and Correction. Applied Sciences, 15(17), 9756. https://doi.org/10.3390/app15179756