Application of AI-Driven Software Diagnocat in Managing Diagnostic Imaging in Dentistry: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Data Collection
2.3. Imaging and Diagnocat Analysis
2.4. Human Assessment
2.5. Statistical Analysis
- Sensitivity (True Positive Rate): The proportion of actual positive cases correctly identified by the algorithm. This metric reflects the model’s capacity to detect a condition when it is truly present.
- Specificity (True Negative Rate): The proportion of actual negative cases correctly classified as such. It indicates the model’s ability to exclude a condition when it is genuinely absent.
- Accuracy: The overall proportion of correct classifications, comprising both true positives and true negatives, relative to the total number of evaluated cases. It provides a general measure of diagnostic correctness.
- Reliability: In the context of this study, reliability refers to the consistency of Diagnocat’s diagnostic outputs in comparison to the reference standard. It was assessed using inter-rater agreement metrics, specifically Cohen’s kappa coefficient.
2.5.1. ROC Analysis
2.5.2. Confusion Matrices and Visualization
2.5.3. Differential Analysis
3. Results
3.1. Study Design and Data Structure
3.2. Prevalence of Dental Conditions
3.3. Inter-Rater Agreement Analysis (Cohen’s Kappa)
3.4. Overall Performance (All Conditions Combined)
3.5. Caries Signs
3.6. Dental Restoration
3.7. Missing Teeth
3.8. Periodontal Bone Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PRs | Panoramic radiographs |
P-R | Precision–recall |
ROC | Receiver operating characteristic |
AI | Artificial intelligence |
ML | Machine learning |
DL | Deep learning |
CNNs | Convolutional neural networks |
CBCT | Cone beam computed tomography |
TP | True positive |
TN | True negative |
FP | False positive |
FN | False negative |
AUC | Area under curve |
References
- Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar] [CrossRef]
- Howard, J. Artificial intelligence: Implications for the future of work. Am. J. Ind. Med. 2019, 62, 917–926. [Google Scholar] [CrossRef]
- Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef] [PubMed]
- Amisha; Malik, P.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Family Med. Prim. Care 2019, 8, 2328–2331. [Google Scholar] [CrossRef] [PubMed]
- Old, O.; Friedrichson, B.; Zacharowski, K.; Kloka, J.A. Entering the new digital era of intensive care medicine: An overview of interdisciplinary approaches to use artificial intelligence for patients’ benefit. Eur. J. Anaesthesiol. Intensive Care 2023, 2, e0014. [Google Scholar] [CrossRef]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A Review of Further Directions for Artificial Intelligence, Machine Learning, and Deep Learning in Smart Logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Morid, M.A.; Borjali, A.; Del Fiol, G. A scoping review of transfer learning research on medical image analysis using ImageNet. Comput. Biol. Med. 2021, 128, 104115. [Google Scholar] [CrossRef] [PubMed]
- Heo, M.S.; Kim, J.E.; Hwang, J.J.; Han, S.S.; Kim, J.S.; Yi, W.J.; Park, I.W. Artificial intelligence in oral and maxillofacial radiology: What is currently possible? Dentomaxillofac. Radiol. 2021, 50, 20200375. [Google Scholar] [CrossRef]
- Shan, T.; Tay, F.R.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2021, 100, 232–244. [Google Scholar] [CrossRef]
- Carrillo-Perez, F.; Pecho, O.E.; Morales, J.C.; Paravina, R.D.; Della Bona, A.; Ghinea, R.; Pulgar, R.; Perez, M.D.M.; Herrera, L.J. Applications of artificial intelligence in dentistry: A comprehensive review. J. Esthet. Restor. Dent. 2022, 34, 259–280. [Google Scholar] [CrossRef]
- Rokhshad, R.; Ducret, M.; Chaurasia, A.; Karteva, T.; Radenkovic, M.; Roganovic, J.; Hamdan, M.; Mohammad-Rahimi, H.; Krois, J.; Lahoud, P.; et al. Ethical considerations on artificial intelligence in dentistry: A framework and checklist. J. Dent. 2023, 135, 104593. [Google Scholar] [CrossRef]
- Hwang, J.J.; Jung, Y.H.; Cho, B.H.; Heo, M.S. An overview of deep learning in the field of dentistry. Imaging Sci. Dent. 2019, 49, 1–7. [Google Scholar] [CrossRef]
- Thurzo, A.; Urbanova, W.; Novak, B.; Czako, L.; Siebert, T.; Stano, P.; Marekova, S.; Fountoulaki, G.; Kosnacova, H.; Varga, I. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare 2022, 10, 1269. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sanchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. J. Dent. 2019, 91, 103226. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Rahimi, H.; Motamedian, S.R.; Rohban, M.H.; Krois, J.; Uribe, S.E.; Mahmoudinia, E.; Rokhshad, R.; Nadimi, M.; Schwendicke, F. Deep learning for caries detection: A systematic review. J. Dent. 2022, 122, 104115. [Google Scholar] [CrossRef]
- Amasya, H.; Alkhader, M.; Serindere, G.; Futyma-Gabka, K.; Aktuna Belgin, C.; Gusarev, M.; Ezhov, M.; Rozylo-Kalinowska, I.; Onder, M.; Sanders, A.; et al. Evaluation of a Decision Support System Developed with Deep Learning Approach for Detecting Dental Caries with Cone-Beam Computed Tomography Imaging. Diagnostics 2023, 13, 3471. [Google Scholar] [CrossRef]
- Tuzoff, D.V.; Tuzova, L.N.; Bornstein, M.M.; Krasnov, A.S.; Kharchenko, M.A.; Nikolenko, S.I.; Sveshnikov, M.M.; Bednenko, G.B. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac. Radiol. 2019, 48, 20180051. [Google Scholar] [CrossRef]
- Estai, M.; Tennant, M.; Gebauer, D.; Brostek, A.; Vignarajan, J.; Mehdizadeh, M.; Saha, S. Deep learning for automated detection and numbering of permanent teeth on panoramic images. Dentomaxillofac. Radiol. 2022, 51, 20210296. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, Z.; Mirebeigi-Jamasbi, S.S.; Hassannia Dargah, M.; Nahvi, M.; Hosseinikhah Manshadi, S.A.; Akbarzadeh Fathabadi, Z. A novel deep learning-based model for automated tooth detection and numbering in mixed and permanent dentition in occlusal photographs. BMC Oral Health 2025, 25, 455. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Muramatsu, C.; Hayashi, T.; Zhou, X.; Hara, T.; Katsumata, A.; Fujita, H. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput. Biol. Med. 2017, 80, 24–29. [Google Scholar] [CrossRef]
- Orhan, K.; Bayrakdar, I.S.; Ezhov, M.; Kravtsov, A.; Ozyurek, T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int. Endod. J. 2020, 53, 680–689. [Google Scholar] [CrossRef]
- Sadr, S.; Mohammad-Rahimi, H.; Motamedian, S.R.; Zahedrozegar, S.; Motie, P.; Vinayahalingam, S.; Dianat, O.; Nosrat, A. Deep Learning for Detection of Periapical Radiolucent Lesions: A Systematic Review and Meta-analysis of Diagnostic Test Accuracy. J. Endod. 2023, 49, 248–261. [Google Scholar] [CrossRef]
- Patil, S.; Joda, T.; Soffe, B.; Awan, K.H.; Fageeh, H.N.; Tovani-Palone, M.R.; Licari, F.W. Efficacy of artificial intelligence in the detection of periodontal bone loss and classification of periodontal diseases: A systematic review. J. Am. Dent. Assoc. 2023, 154, 795–804. [Google Scholar] [CrossRef]
- Sultan, A.S.; Elgharib, M.A.; Tavares, T.; Jessri, M.; Basile, J.R. The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J. Oral Pathol. Med. 2020, 49, 849–856. [Google Scholar] [CrossRef]
- Al-Rawi, N.; Sultan, A.; Rajai, B.; Shuaeeb, H.; Alnajjar, M.; Alketbi, M.; Mohammad, Y.; Shetty, S.R.; Mashrah, M.A. The Effectiveness of Artificial Intelligence in Detection of Oral Cancer. Int. Dent. J. 2022, 72, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020, 36, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Aminoshariae, A.; Kulild, J.; Nagendrababu, V. Artificial Intelligence in Endodontics: Current Applications and Future Directions. J. Endod. 2021, 47, 1352–1357. [Google Scholar] [CrossRef]
- Khanagar, S.B.; Alfadley, A.; Alfouzan, K.; Awawdeh, M.; Alaqla, A.; Jamleh, A. Developments and Performance of Artificial Intelligence Models Designed for Application in Endodontics: A Systematic Review. Diagnostics 2023, 13, 414. [Google Scholar] [CrossRef]
- Turosz, N.; Checinska, K.; Checinski, M.; Rutanski, I.; Sielski, M.; Sikora, M. Oral Health Status and Treatment Needs Based on Artificial Intelligence (AI) Dental Panoramic Radiograph (DPR) Analysis: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 3686. [Google Scholar] [CrossRef]
- Leite, A.F.; Gerven, A.V.; Willems, H.; Beznik, T.; Lahoud, P.; Gaeta-Araujo, H.; Vranckx, M.; Jacobs, R. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin. Oral Investig. 2021, 25, 2257–2267. [Google Scholar] [CrossRef]
- Chan, M.; Dadul, T.; Langlais, R.; Russell, D.; Ahmad, M. Accuracy of extraoral bite-wing radiography in detecting proximal caries and crestal bone loss. J. Am. Dent. Assoc. 2018, 149, 51–58. [Google Scholar] [CrossRef]
- Cosson, J. Interpreting an orthopantomogram. Aust. J. Gen. Pract. 2020, 49, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Vinayahalingam, S.; Goey, R.S.; Kempers, S.; Schoep, J.; Cherici, T.; Moin, D.A.; Hanisch, M. Automated chart filing on panoramic radiographs using deep learning. J. Dent. 2021, 115, 103864. [Google Scholar] [CrossRef] [PubMed]
- Ezhov, M.; Gusarev, M.; Golitsyna, M.; Yates, J.M.; Kushnerev, E.; Tamimi, D.; Aksoy, S.; Shumilov, E.; Sanders, A.; Orhan, K. Clinically applicable artificial intelligence system for dental diagnosis with CBCT. Sci. Rep. 2021, 11, 15006. [Google Scholar] [CrossRef] [PubMed]
- Zadrozny, L.; Regulski, P.; Brus-Sawczuk, K.; Czajkowska, M.; Parkanyi, L.; Ganz, S.; Mijiritsky, E. Artificial Intelligence Application in Assessment of Panoramic Radiographs. Diagnostics 2022, 12, 224. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Issa, J.; Jaber, M.; Rifai, I.; Mozdziak, P.; Kempisty, B.; Dyszkiewicz-Konwinska, M. Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review. Medicina 2023, 59, 768. [Google Scholar] [CrossRef]
- Orhan, K.; Aktuna Belgin, C.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Onder, M.; Ezhov, M.; Shamshiev, M.; et al. Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs. Imaging Sci. Dent. 2023, 53, 199–208. [Google Scholar] [CrossRef]
- Szabo, V.; Szabo, B.T.; Orhan, K.; Veres, D.S.; Manulis, D.; Ezhov, M.; Sanders, A. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. J. Dent. 2024, 147, 105105. [Google Scholar] [CrossRef] [PubMed]
- Kazimierczak, W.; Wajer, R.; Wajer, A.; Kiian, V.; Kloska, A.; Kazimierczak, N.; Janiszewska-Olszowska, J.; Serafin, Z. Periapical Lesions in Panoramic Radiography and CBCT Imaging-Assessment of AI’s Diagnostic Accuracy. J. Clin. Med. 2024, 13, 2709. [Google Scholar] [CrossRef]
- Keenan, J.R.; Keenan, A.V. Accuracy of dental radiographs for caries detection. Evid. Based Dent. 2016, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, D.H.; Jeong, S.N.; Choi, S.H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
Overall | Female | Male | p-Value | |
---|---|---|---|---|
N | 104 | 54 | 50 | |
Age (mean (SD)) | 33.18 (16.53) | 32.41 (16.41) | 34.02 (16.77) | 0.621 |
Condition | Mean Age (Years) | Female N (%) | Male N (%) | Teeth N (%) | X-Rays (N) | Diagnocat Positive (%) | Human Consensus Positive (%) |
---|---|---|---|---|---|---|---|
Caries | 18.5 | 57 (47.9) | 58 (48.74) | 119 (7) | 46 | 99.2 | 95 |
Restorations | 28.9 | 212 (47.11) | 238 (52.89) | 450 (26.5) | 76 | 100 | 98.5 |
Missing | 40.8 | 193 (61.1) | 123 (38.9) | 316 (18.6) | 87 | 95.9 | 97.5 |
Periodontal bone loss | 46.6 | 236 (49.9) | 237 (50.1) | 473 (27.9) | 61 | 100 | 94.9 |
Condition | AUC | Sensitivity | Specificity | Cohen’s κ | Agreement Level |
---|---|---|---|---|---|
Caries signs | 0.73 | 0.95 | 0.47 | −0.15 | Poor |
Dental restoration | 0.76 | 0.77 | 0.66 | 0.39 | Fair |
Missing teeth | 0.73 | 0.81 | 0.68 | 0.37 | Fair |
Periodontal bone loss | 0.85 | 0.96 | 0.71 | −0.62 | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mema, H.; Gaxhja, E.; Alicka, Y.; Gugu, M.; Topi, S.; Giannoni, M.; Pietropaoli, D.; Altamura, S. Application of AI-Driven Software Diagnocat in Managing Diagnostic Imaging in Dentistry: A Retrospective Study. Appl. Sci. 2025, 15, 9790. https://doi.org/10.3390/app15179790
Mema H, Gaxhja E, Alicka Y, Gugu M, Topi S, Giannoni M, Pietropaoli D, Altamura S. Application of AI-Driven Software Diagnocat in Managing Diagnostic Imaging in Dentistry: A Retrospective Study. Applied Sciences. 2025; 15(17):9790. https://doi.org/10.3390/app15179790
Chicago/Turabian StyleMema, Haris, Elona Gaxhja, Ylli Alicka, Mitilda Gugu, Skender Topi, Mario Giannoni, Davide Pietropaoli, and Serena Altamura. 2025. "Application of AI-Driven Software Diagnocat in Managing Diagnostic Imaging in Dentistry: A Retrospective Study" Applied Sciences 15, no. 17: 9790. https://doi.org/10.3390/app15179790
APA StyleMema, H., Gaxhja, E., Alicka, Y., Gugu, M., Topi, S., Giannoni, M., Pietropaoli, D., & Altamura, S. (2025). Application of AI-Driven Software Diagnocat in Managing Diagnostic Imaging in Dentistry: A Retrospective Study. Applied Sciences, 15(17), 9790. https://doi.org/10.3390/app15179790