Finite Element Modeling of Human–Seat Interaction and the Integration of 3D-Printed Foam in Enhancing Sitting Comfort: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Screening and Selecting Papers
2.3. Extracting Relevant Information
2.4. Literature Search and Selection Process
3. Results
3.1. Search Results
- -
- Finite Element Human Body Models
- Model variations.
- Model posture determination process.
- -
- Methods for Studying Sitting Comfort
- Simulation conditions.
- Evaluation methods.
- -
- 3D-Printed Foam in Sitting Comfort
3.2. Finite Element Human Body Models
3.2.1. Model Variations
3.2.2. Model Posture Determination Process
3.3. Methods for Studying Sitting Comfort
3.3.1. Simulation Conditions
3.3.2. Evaluation Methods
3.4. 3D-Printed Foam in Sitting Comfort
3.4.1. Overview
3.4.2. Structural Characteristics
3.4.3. Three-Dimensional Printing Technology Combined with Finite Element Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Ref. | Model Acquirement Method | Simulation Method and Analyzed Aspects | Confirm Results |
---|---|---|---|
[18] | PIPER Adult | Static simulation
| Comparison with experimental results
|
[20] | PIPER Adult | Static simulation: Drop and Rotate
| Comparison with experimental results
|
[30] | Scan | Static simulation
| Comparison with experimental results
|
[31] | MRI Scan | Static simulation
| Comparison with previous research papers
|
[32] | CT Scan (Male 50th percentile) | Static simulation
| Comparison with experimental results |
[33] | MRI Scan | Static and dynamic simulation (push wheelchair)
| Comparison with experimental results
|
[34] | Scan (geometric template and point-clouds) | Static simulation
| Comparison with experimental results
|
[35] | Scan (body surface point cloud scan) | Static simulation
| Comparison with experimental results
|
[36] | Scan (low-dose biplanar X-ray, B-mode ultrasound and optical scanner) | Static simulation
| Comparison with experimental results
|
[37] | Scan (medical scanning 3D reconstruction) | Static simulation
| Comparison with experimental results
|
[38] | Hybrid III 95th Percentile | Static simulation
| Comparison with experimental results
|
[39] | Hybrid III | Dynamic simulation
| Comparison with experimental results in vivo.
|
[40] | MADYMO 50th | Static simulation
| Comparison with previous research papers |
[41] | POSER 50th | Static simulation
| Comparison with previous research papers |
[42] | GHBMC 50th | Static simulation
| Comparison with experimental results
|
[43] | THUMS | Static simulation
| Comparison with experimental results
|
[44] | ANYBODY | Static simulation and Inverse dynamics for bones
| Comparison with experimental results
|
[45] | Dummy Toyota (50th percentile) | Static simulation
| Comparison with experimental results
|
[46] | CASIMIR | Static and Dynamic simulation
| Comparison with experimental results
|
[47] | CASIMIR, ANYBODY | Static simulation
| Comparison with experimental values in previous studies
|
[48] | CASIMIR (Male 95th percentile) | Static simulation
| Comparison with experimental results
|
[49] | CASIMIR (Male 95th percentile) | Static simulation
| Comparison with experimental values in previous studies
|
[50] | CASIMIR (Male 50th percentile) | Static simulation
| Comparison with the test and check with previous experiments
|
[51] | CASIMIR (NAM95—North American Male 95th percentile) | Static simulation
| The simulation results are indirectly compared with previous experimental studies. |
[52] | CASIMIR (F05—Female 5th percentile, Male M50—50th percentile, M95—Male 95th percentile) | Static simulation
| Comparison with experimental results
|
[54] | Zygote Human Factors | Static simulation
| Comparison with experimental results
|
[55] | Zygote Human Factors | Static simulation
| Comparison with previous research papers |
[56] | Self-built | Static simulation
| Comparison with experimental results
|
[57] | Self-built | Static simulation
| Comparison with previous research papers |
[58] | Self-built | Static simulation
| Comparison with experimental results
|
[59] | Self-built | Static simulation
| Comparison with experimental results
|
[60] | Virtual Human Driver | Static simulation
| Compare Modelica simulation results with finite element models (FEM) through:
|
[61] | Self-built | Static simulation
| Paired T-test showed no significant difference between CAD and Tekscan (p-value = 0.958 > 0.05), correlation 98% |
[63] | Self-built | Static simulation
| Consistent with physical measured diagram from previous studies |
[64] | Self-built | Static simulation
| Comparison with experimental results using the Pedar-X pressure measurement system High consistency |
Appendix B
Ref. | Lattice Structure | Application Product | Design Method | FEM Combination |
---|---|---|---|---|
[21] | TPMS (Gyroid) | Aircraft seat | Customized structure | – |
[22] | Auxetic | Sports shoe Midsoles | Design and comparison of various structures | Static Analysis without Human body models |
[23] | Random Porous Structures | Motorcycle seats | Design and comparison of various structures | – |
[63] | TPMS (Gyroid and Schwarz) | Shoes and insoles | Customized structure | Static Analysis with foot models |
[64] | Auxetic | Shoe midsole | Design and comparison of various structures | Static Analysis with soft tissues and bones of the foot |
[65] | Auxetic | Shoe sole | Design and comparison of various structures | – |
[67] | TPMS (Schwarz) | Wheelchair cushion | Customized structure | – |
[68] | Honeycomb | Seat cushion | Optimize for vibration isolation efficiency | – |
[69] | Lattice, wavy, hexagonal, and shifted | Tissue-engineered scaffolds | Design and comparison of various structures | Static Analysis without Human body models |
Appendix C
Ref. | HBM Used | Human–Seat Interaction | FEM Simulation Details | Pressure/Force Analysis | Comfort Assessment | Comparison with Experiments/Literature | 3D-Printed Structure | 3D Printing and FEM Integration | Effectiveness of Printed Foam | Scope, Coverage and Depth | Quality Level |
---|---|---|---|---|---|---|---|---|---|---|---|
[18] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[20] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[21] | N | P | N | P | Y | P | Y | N | Y | P | L |
[22] | N | N | P | Y | Y | Y | Y | P | Y | Y | M |
[23] | N | N | N | Y | Y | Y | Y | N | Y | P | L |
[30] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[31] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[32] | P | Y | Y | Y | Y | P | N | N | N | Y | M |
[33] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[34] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[35] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[36] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[37] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[38] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[39] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[40] | Y | Y | Y | P | Y | P | N | N | N | P | L |
[41] | Y | Y | Y | Y | Y | P | N | N | N | Y | M |
[42] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[43] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[44] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[45] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[46] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[47] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[48] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[49] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[50] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[51] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[52] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[54] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[55] | Y | Y | Y | Y | Y | P | N | N | N | Y | M |
[56] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[57] | P | Y | Y | Y | Y | P | N | N | N | Y | M |
[58] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[59] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[60] | Y | Y | Y | Y | Y | Y | N | N | N | Y | M |
[61] | P | Y | Y | Y | Y | Y | N | N | N | Y | M |
[63] | P | N | Y | Y | Y | Y | Y | Y | Y | Y | H |
[64] | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | H |
[65] | N | N | N | Y | Y | Y | Y | N | Y | Y | M |
[67] | N | Y | N | Y | Y | Y | Y | N | Y | Y | M |
[68] | N | Y | N | Y | Y | Y | Y | N | Y | Y | M |
[69] | N | N | P | P | N | Y | Y | Y | Y | P | L |
References
- Gupta, N.; Christiansen, C.S.; Hanisch, C.; Bay, H.; Burr, H.; Holtermann, A. Is questionnaire-based sitting time inaccurate and can it be improved? A cross-sectional investigation using accelerometer-based sitting time. BMJ Open 2017, 7, e013251. [Google Scholar] [CrossRef]
- Matthews, C.E.; Chen, K.Y.; Freedson, P.S.; Buchowski, M.S.; Beech, B.M.; Pate, R.R.; Troiano, R.P. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 2008, 167, 875–881. [Google Scholar] [CrossRef]
- Dunstan, D.W.; Howard, B.; Healy, G.N.; Owen, N. Too much sitting—A health hazard. Diabetes Res. Clin. Pract. 2012, 97, 368–376. [Google Scholar] [CrossRef]
- Gardner, B.; Flint, S.; Rebar, A.L.; Dewitt, S.; Quail, S.K.; Whall, H.; Smith, L. Is sitting invisible? Exploring how people mentally represent sitting. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Pynt, J.; Mackey, M.G.; Higgs, J. Kyphosed seated postures: Extending concepts of postural health beyond the office. J. Occup. Rehabil. 2008, 18, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Markova, V.; Markov, M.; Petrova, Z.; Filkova, S. Assessing the impact of prolonged sitting and poor posture on lower back pain: A photogrammetric and machine learning approach. Computers 2024, 13, 231. [Google Scholar] [CrossRef]
- Ismail, N.H.; Ahmad Habibillah, N.H.; Romli, F.I. Assessment of aircraft passengers’ comfort with varying seat pitch. J. Aerosp. Soc. Malays. 2023, 5, 1–8. [Google Scholar]
- Yao, X.; Ping, Y.; Song, Y.W.; Vink, P. Sitting comfort in an aircraft seat with different seat inclination angles. Int. J. Ind. Ergon. 2023, 96, 103470. [Google Scholar] [CrossRef]
- Coelho, D.A.; Dahlman, S. Articulation at shoulder level—A pilot experimental study on car seat comfort. Appl. Ergon. 2012, 43, 27–37. [Google Scholar] [CrossRef]
- Romelfanger, M.; Kolich, M. Comfortable automotive seat design and big data analytics: A study in thigh support. Appl. Ergon. 2019, 75, 257–262. [Google Scholar] [CrossRef]
- Groenesteijn, L.; Vink, P.; de Looze, M.; Krause, F. Effects of differences in office chair controls, seat and backrest angle design in relation to tasks. Appl. Ergon. 2009, 40, 362–370. [Google Scholar] [CrossRef]
- Channak, S.; Speklé, E.M.; van der Beek, A.J.; Janwantanakul, P. Effect of two dynamic seat cushions on postural shift, trunk muscle activation and spinal discomfort in office workers. Appl. Ergon. 2024, 120, 104337. [Google Scholar] [CrossRef]
- Temich, S.; Grzechca, D. A fuzzy logic controller to seat comfort correction for manually propelled wheelchair—A case study. IFAC-Paper 2016, 49, 55–60. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Liu, H.-Y.; Kelleher, A.; Pearlman, J.; Ding, D.; Cooper, R.A. Power seat function usage and wheelchair discomfort for power wheelchair users. J. Spinal Cord Med. 2017, 40, 62–69. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Li, Y.; Liu, C.; Qiu, Y. Effect of the thickness of polyurethane foams at the seat pan and the backrest on fore-and-aft in-line and vertical cross-axis seat transmissibility when sitting with various contact conditions of backrest during fore-and-aft vibration. Appl. Ergon. 2021, 93, 103354. [Google Scholar] [CrossRef]
- Mahantesh, M.M.; Rao, K.V.S.R.; Chandra, A.C.P.; Vijayakumar, M.N.; Nandini, B.; Prasad, C.D.; Vasudev, H. Design and modeling using finite element analysis for the sitting posture of computer users based on ergonomic perspective. Int. J. Interact. Des. Manuf. 2023, 18, 5875–5891. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Pendlebury, J.; Miller, J. The contribution of seat components to seat hardness and the interface between human occupant and a driver seat. Int. J. Hum. Factors Model. Simul. 2012, 3, 378–397. [Google Scholar] [CrossRef]
- Liu, S.; Beillas, P.; Ding, L.; Wang, X. PIPER adult comfort: An open-source full body human body model for seating comfort assessment and its validation under static loading conditions. Front. Bioeng. Biotechnol. 2023, 11, 1170768. [Google Scholar] [CrossRef] [PubMed]
- Siefert, A.; Pankoke, S.; Wölfel, H.-P. Virtual optimisation of car passenger seats: Simulation of static and dynamic effects on drivers’ seating comfort. Int. J. Ind. Ergon. 2008, 38, 410–424. [Google Scholar] [CrossRef]
- Liu, S.; Beillas, P.; Ding, L.; Wang, X. Effects of loading processes on contact forces when simulating static seating with a finite element human body model. Comput. Methods Biomech. Biomed. Eng. 2024, 1–8. [Google Scholar] [CrossRef]
- Hogeveen, T.; Ballemans, M.; Strijker, A.; Ammerlaan, B.; Vink, P. Towards an environment friendly comfortable aircraft seat. In Proceedings of the Fourth International Comfort Congress, Amberg, Germany, 6–7 September 2023. [Google Scholar]
- Sun, Y.; Zhou, Q.; Niu, W.; Zhang, S.; Yick, K.-L.; Gu, B.; Xu, W. 3D printed sports shoe midsoles: Enhancing comfort and performance through finite element analysis of negative Poisson’s ratio structures. Mater. Des. 2024, 245, 113292. [Google Scholar] [CrossRef]
- Montalti, A.; Ferretti, P.; Spano, F.; Liverani, A. 3D-printed motorcycle seats: Replicating polymer foam performance for rapid prototyping and rider comfort. Adv. Ind. Manuf. Eng. 2025, 10, 100158. [Google Scholar] [CrossRef]
- Sabri, N.; KamalianaKhamis, N.; Faizal MatTahir, M.; Besar, J.; Abd Wahab, D. Impact of Anthropometric Parameters on Pressure Variables for Determining Comfort and Safety of Automotive Seat: A Systematic Review. Iran J. Public Health 2022, 51, 240–252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Citation: Alawneh, O.; Zhong, X.; Faieghi, R.; Xi, F. Finite Element Methods for Modeling the Pressure Distribution in Human Body–Seat Interactions: A Systematic Review. Appl. Sci. 2022, 12, 6160. [Google Scholar] [CrossRef]
- Silberstein, J.; Sun, Z. Advances and Applications of Three-Dimensional-Printed Patient-Specific Chest Phantoms in Radiology: A Systematic Review. Appl. Sci. 2024, 14, 5467. [Google Scholar] [CrossRef]
- Mikołajewska, E.; Mikołajewski, D.; Mikołajczyk, T.; Paczkowski, T. A Breakthrough in Producing Personalized Solutions for Rehabilitation and Physiotherapy Thanks to the Introduction of AI to Additive Manufacturing. Appl. Sci. 2025, 15, 2219. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, J.; Qi, S. Modeling Method and Effect of Seat Cover on the Simulation of Interface Pressure; SAE Technical Paper: Warrendale, PA, USA, 2023; 2023-01-0910. [Google Scholar] [CrossRef]
- Al-Dirini, R.M.A.; Reed, M.P.; Hu, J.; Thewlis, D. Development and validation of a high anatomical fidelity FE model for the buttock and thigh of a seated individual. Ann. Biomed. Eng. 2016, 44, 2805–2816. [Google Scholar] [CrossRef]
- Li, X.; Ding, L.; Ma, X.; Li, B.; and Liu, H. Development of a Human-Seat Cushion Finite Element Model for Sitting Comfort Analysis. HCI Int. 2017, 714, 261–266. [Google Scholar] [CrossRef]
- Li, S.; Yin, M.; Gao, L.; Qi, S.; Wang, J. Finite Element Prediction of Sub-dermal Tissue Stresses of the Buttocks during Wheelchair Propulsion. J. Mech. Med. Biol. 2016, 16, 1650058. [Google Scholar] [CrossRef]
- Ren, J.; Du, X.; Liu, T.; Liu, H.; Hua, M.; Liu, Q. An Integrated Method for Evaluation of Seat Comfort Based on Virtual Simulation of the Interface Pressures of Driver with Different Body Sizes; SAE Technical Paper: Warrendale, PA, USA, 2017; 2017-01-0406. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, J.; Qi, S.; Yuan, B.; Huang, H. Research on the Simulation of Human-Seat Interface Pressure with Consideration of the Effect of Seat Cover. Commer. Veh. 2023, 16, 247–255. [Google Scholar] [CrossRef]
- Macron, A.; Pillet, H.; Doridam, J.; Verney, A.; Rohan, P. Development and evaluation of a new methodology for the fast generation of patient-specific Finite Element models of the buttock for sitting-acquired deep tissue injury prevention. J. Biomech. 2018, 79, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Ren, J. A design method for contact contour based on the distribution of target contact pressure. Int. J. Mech. Mater. Des. 2023, 20, 251–267. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Z.; Xu, Z.; He, Y. Modeling of human model for static pressure distribution prediction. Int. J. Ind. Ergon. 2015, 50, 186–195. [Google Scholar] [CrossRef]
- Amiri, S.; Naserkhaki, S.; Parnianpour, M. Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants. Comput. Biol. Med. 2019, 107, 292–301. [Google Scholar] [CrossRef]
- Kim, H.; Lee, T.; Lee, Y.; Kim, J.; Jung, S.; Yang, D.; Hong, J. A design for seat cushion and back-supporter using finite element analysis for preventing decubitus ulcer. J. Biomech. Sci. Eng. 2017, 12, 16-00586. [Google Scholar] [CrossRef][Green Version]
- Guo, L.; Dong, R.; Zhang, M. Effect of lumbar support on seating comfort predicted by a whole human body-seat model. Int. J. Ind. Ergon. 2016, 53, 319–327. [Google Scholar] [CrossRef]
- Yadav, S.K.; Huang, C.; Mo, F.; Li, J.; Chen, J.; Xiao, Z. Analysis of seat cushion comfort by employing a finite element buttock model as a supplement to pressure measurement. Int. J. Ind. Ergon. 2021, 86, 103211. [Google Scholar] [CrossRef]
- Huang, S.; Sun, D.; Zhang, L.; Zhou, J.; and Wang, Z. Comfort Assessment and Optimization Based on FE Simulation for High-Speed Train Seats: Comparison with Different Design Parameters. Sustainability 2022, 14, 15185. [Google Scholar] [CrossRef]
- Wang, X.; Savonnet, L.; Theodorakos, L.; Beurier, G.; and Duprey, S. Biomechanical human models for seating discomfort assessment. DHM Posturography 2019, 2019, 643–656. [Google Scholar] [CrossRef]
- Cheng, L.; Wen, H.; Ni, X.; Zhuang, C.; Zhang, W.; and Huang, H. Optimization Study on the Comfort of Human-Seat Coupling System in the Cab of Construction Machinery. Machines 2023, 11, 30. [Google Scholar] [CrossRef]
- Lazarov, N.; Siefert, A.; Fressmann, D. The CASIMIR Model for Simulation in Seating Comfort Applications. In Proceedings of the 10th European LS-DYNA Conference 2015, Würzburg, Germany, 15–17 June 2015. [Google Scholar]
- Siefert, A. Occupant Comfort—A Mixture of Joint Angles, Seat Pressure and Tissue Loads; SAE Technical Paper: Warrendale, PA, USA, 2016; 2016-01-1438. [Google Scholar] [CrossRef]
- Alam, D.N.; Chennubhotla, V. Use of CAE Tool to Evaluate the Body Pressure Distribution Plot on Automotive Seating; SAE Technical Paper; SAE: Warrendale, PA, USA, 2019. [Google Scholar] [CrossRef]
- Alam, D. Develop Best Practices for Correlating Body Pressure Distribution Test to Simulation. SAE Int. J. Adv. Curr. Pract. Mobil. 2022, 4, 2081–2088. [Google Scholar] [CrossRef]
- Alam, D. Correlating Body Pressure Distribution Test to Simulation. SAE Int. J. Adv. Curr. Pract. Mobil. 2024, 6, 225–231. [Google Scholar] [CrossRef]
- Kamaraju, P.; Ro, H. Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance; SAE Technical Paper: Warrendale, PA, USA, 2024; 2024-26-0303. [Google Scholar] [CrossRef]
- Hans, T.; Pan-Zagorski, W.; Shah, T.; Buchner, T. Virtual Analysis of Dynamic Seat Comfort. In Proceedings of the Fourth International Comfort Congress, Amberg, Germany, 6–7 September 2023. [Google Scholar]
- Liu, S.; Beillas, P.; Ding, L.; Wang, X. Morphing an Existing Open Source Human Body Model into a Personalized Model for Seating Discomfort Investigation; SAE Technical Paper; SAE: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Bui, H.T.; Lestriez, P.; Pradon, D.; Debray, K.; Abdi, E.; Taiar, R. Biomechanical Modelling of Medical Seat Cushion and Human Buttock-thigh Tissue to Prevent Pressure Ulcers. Russ. J. Biomechanics. 2018. [Google Scholar] [CrossRef]
- Bui, H.T.; Lestriez, P.; Nguyen, P.T.N.; Nguyen, L.V.; Tao, Q.B.; Debray, K.; Nguyen, T.H.V.; Taiar, R. The Evaluation of the Interaction Between Human Buttocks Thighs and Wheelchair Seat Cushion to Prevent Pressure Ulcers Using Finite Element Analysis. Hum. Syst. Eng. Des. 2018, 876, 904–910. [Google Scholar] [CrossRef]
- Bui, H.T.; Nguyen, L.V.; Tran, H.A.N. Identifying Factors That Influence Pressure Ulcers by Numerical Simulation and Experimentation Methods. Int. J. Online Biomed. Eng. 2020, 16, 104–119. [Google Scholar] [CrossRef]
- Pehnec, I.; Marinić-Kragić, I.; Vučina, D. Robust evolutionary shape optimization for ergonomic excellence based on contact pressure distribution. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 945–958. [Google Scholar] [CrossRef]
- Tran, X.-T.; Nguyen, V.-H.; Nguyen, D.-T. Finite Element Analysis of the Contact Pressure for Human–Seat Interaction with an Inserted Pneumatic Spring. Appl. Sci. 2025, 15, 2687. [Google Scholar] [CrossRef]
- Chen, L.; Song, J.; Niu, X.; Sun, C.; Qiu, Y. Experiment and Simulation Study on Vibration Transmission Characteristics of Seat-Occupant Coupling System; SAE Technical Paper; SAE: Warrendale, PA, USA, 2022. [Google Scholar] [CrossRef]
- Han, M.Y.; Choi, H.Y.; Hirao, A. Modeling of vehicle seat in lumped network model for ride comfort simulation. J. Mech. Sci. Technol. 2021, 35, 231–236. [Google Scholar] [CrossRef]
- Bermamet, H.; Syed, S.; Amer, S. Investigating the Effect of Seat Features and Cushion Material on Seat Comfort using Finite Element Analysis. In Proceedings of the 5th European International Conference on Industrial Engineering and Operations Management, Rome, Italy, 26–28 July 2022. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Int. Conf. Sustain. Mater. Process. Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Xu, J.; Tu, Z.; Zhang, S.; Tan, K.; Wang, G. Customized Design for Ergonomic Products via Additive Manufacturing Considering Joint Biomechanics. Chin. J. Mech. Eng. Addit. Manuf. Front. 2023, 2, 100085. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.; Lin, Y.; Wang, Y.; Yi, X.; Fang, W. Pressure-Reducing Design of 3D-Printed Diabetic Shoe Midsole Utilizing Auxetic Lattice Structure. Appl. Sci. 2024, 14, 5291. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.; Yang, Y.; Liu, Y.; Guo, Y.; Wang, H. Efficacy of auxetic lattice structured shoe sole in advancing footwear comfort—From the perspective of plantar pressure and contact area. Front. Public Health 2024, 12, 1412518. [Google Scholar] [CrossRef]
- David, W.H.; Dilpreet, S.; Riki, L.; Ryan, D.; David, P.F.; Peter, S.; Edmund, P.; Naomi, C.P.; Sean, K.P.; Maria, A.W. Mechanical behaviour of flexible 3D printed gyroid structures as a tuneable replacement for soft padding foam. Addit. Manuf. 2022, 50, 102555. [Google Scholar] [CrossRef]
- Sergio, R.; Pedro, F.M.; Cátia, S.S.; Álvaro, M.S.; Lucía, R. Design and characterization of 3D-printed TPU-based lattice structures. Application to methodology for the design of personalized therapeutic products. Rapid Prototyp. J. 2024, 30, 72–86. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, Y.; Wang, X. Optimization and biodynamic modelling of a 3D-printed honeycomb cushion and double-diamond seating suspension system for vibration isolation. J. Vib. Control 2023, 30, 4465–4485. [Google Scholar] [CrossRef]
- Anahita, A.S.; Nabiollah, A.; Seyyed, A.H.; Sang, J.L. Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis. Addit. Manuf. 2020, 33, 101181. [Google Scholar] [CrossRef]
- Dell’Accio, F.; Guessab, A.; Nudo, F. New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite element. Comput. Math. Appl. 2024, 170, 204–212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.T.; Hirao, A. Finite Element Modeling of Human–Seat Interaction and the Integration of 3D-Printed Foam in Enhancing Sitting Comfort: A Systematic Review. Appl. Sci. 2025, 15, 10193. https://doi.org/10.3390/app151810193
Nguyen MT, Hirao A. Finite Element Modeling of Human–Seat Interaction and the Integration of 3D-Printed Foam in Enhancing Sitting Comfort: A Systematic Review. Applied Sciences. 2025; 15(18):10193. https://doi.org/10.3390/app151810193
Chicago/Turabian StyleNguyen, Minh Tien, and Akinari Hirao. 2025. "Finite Element Modeling of Human–Seat Interaction and the Integration of 3D-Printed Foam in Enhancing Sitting Comfort: A Systematic Review" Applied Sciences 15, no. 18: 10193. https://doi.org/10.3390/app151810193
APA StyleNguyen, M. T., & Hirao, A. (2025). Finite Element Modeling of Human–Seat Interaction and the Integration of 3D-Printed Foam in Enhancing Sitting Comfort: A Systematic Review. Applied Sciences, 15(18), 10193. https://doi.org/10.3390/app151810193