Standard Reference Thermoelectric Modules Based on Metallic Combinations and Geometric Design
Abstract
1. Introduction
2. Experimental Section
2.1. Thermoelectric Materials for SRTEMs
2.2. Evaluation of Contact Resistance in Metallic Thermoelectric Materials
2.3. Module Fabrication
2.4. Thermal–Electrical Measurement of SRTEMs
2.5. Simulation of SRTEMs with Geometric Leg
3. Results
3.1. Measurement System for TEM Characterization
- Type 1: This system establishes a temperature gradient across the TEM by contacting the hot side and the cold side and independently controlling their respective temperatures [24,25]. In this case, the open-circuit voltage (Voc) and maximum output power (Pmax) generated by the temperature difference (ΔT) are measured.
- Type 2: This measurement system is based on the Type 1 configuration, with an additional heat flux meter (HFM) incorporated to directly quantify the heat flow (Qin) input to and output from the TEMs [12,22]. In this case, both the Voc and Pmax induced by the temperature gradient and the conversion efficiency (ηeff) can be measured.
3.2. Selection of Primary Calibration Parameter
3.3. Thermoelectric Properties of the Candidate Metallic Materials
3.4. Bonding Characteristics of Thermoelectric Elements
3.5. Thermoelectric Output Performance of Fabricated SRTEMs
3.6. Thermoelectric Leg Geometry on Simulated Thermoelectric Output
3.7. Effect of Substrate Material on Thermoelectric Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TEM | Thermoelectric Module |
SRTEM | Standard Reference Thermoelectric Module |
α | Thermal Diffusivity |
Cp | Specific Heat Capacity |
Dρ | Material Density |
κ | Thermal Conductivity |
CTE | Coefficient of Thermal Expansion |
TMA | Thermomechanical Analyzer |
L | Length |
DBC | Direct Bonded Copper |
Rsc | Specific Contact Resistance |
ΔR | Resistance Variation |
A | Area |
Voc | Open-Circuit Voltage |
Pmax | Maximum Output Power |
Rin | Internal Resistance |
FEM | Finite Element Method |
2H/G | Double-Hourglass |
EDM | Electrical Discharge Machining |
Th | Hot-Side Temperature |
Tc | Cold-Side Temperature |
Qin | Heat Flow Input |
ηeff | Conversion Efficiency |
ΔT | Temperature Difference |
EMF | Electromotive Force |
S | Seebeck Coefficient |
ρ | Electrical Resistivity |
zT | Figure of Merit |
References
- Gomaa, M.R.; Murtadha, T.K.; Abu-jrai, A.; Rezk, H.; Altarawneh, M.A.; Marashli, A. Experimental investigation on waste heat recovery from a cement factory to enhance thermoelectric generation. Sustainability 2022, 14, 10146. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Kishore, R.A.; Poudel, B.; Saparamadu, U.; Li, W.; Cruz, R.; Priya, S. High power density body heat energy harvesting. ACS Appl. Mater. Interfaces 2019, 11, 40107–40114. [Google Scholar] [CrossRef]
- Gürbüz, H.; Akçay, H.; Topalcı, Ü. Experimental investigation of a novel thermoelectric generator design for exhaust waste heat recovery in a gas-fueled SI engine. Appl. Therm. Eng. 2022, 216, 119122. [Google Scholar] [CrossRef]
- Byon, Y.-S.; Jeong, J.-W. Phase change material-integrated thermoelectric energy harvesting block as an independent power source for sensors in buildings. Renew. Sustain. Energy Rev. 2020, 128, 109921. [Google Scholar] [CrossRef]
- Hu, B.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectrics for medical applications: Progress, challenges, and perspectives. Chem. Eng. J. 2022, 437 Pt 2, 135268. [Google Scholar] [CrossRef]
- Bhakta, S.; Kundu, B. A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization. Energies 2024, 17, 1016. [Google Scholar] [CrossRef]
- Okirigiti, M.A.; Kim, C.M.; Choi, H.; Alluri, N.R.; Park, K.-I. Recent advances in thermoelectric materials and devices: Improving power generation performance. J. Powder Mater. 2025, 32, 1–15. [Google Scholar] [CrossRef]
- Sauerschnig, P.; Jood, P.; Ohta, M. Challenges and progress in contact development for PbTe-based thermoelectrics. Chem-NanoMat 2023, 9, e202200560. [Google Scholar] [CrossRef]
- Rogl, G.; Rogl, P.F. Filled Sb-based skutterudites from 1996–2022. Crystals 2022, 12, 1843. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- d’Angelo, M.; Galassi, C.; Lecis, N. Thermoelectric Materials and Applications: A Review. Energies 2023, 16, 6409. [Google Scholar] [CrossRef]
- Baskaran, P.; Rajasekar, M. Recent trends and future perspectives of thermoelectric materials and their applications. RSC Adv. 2024, 14, 21706–21744. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Tan, X.; Yu, B.; Liu, G.-Q.; Wang, H.; Luo, G.; Xu, J.; Wu, Q.; Liang, B.; Jiang, J. Synergistically optimized thermoelectric performance in Bi0.48Sb1.52Te3 by hot deformation and Cu doping. ACS Appl. Energy Mater. 2019, 2, 6714–6719. [Google Scholar] [CrossRef]
- Chen, B.; Li, J.; Wu, M.; Hu, L.; Liu, F.; Ao, W.; Li, Y.; Xie, H.; Zhang, C. Simultaneous enhancement of the thermoelectric and mechanical performance in one-step sintered n-type Bi2Te3-based alloys via a facile MgB2 doping strategy. ACS Appl. Mater. Interfaces 2019, 11, 45746–45754. [Google Scholar] [CrossRef]
- 10Guo, X.; Zhang, C.; Liu, Z.; He, P.; Szczęsny, R.; Jin, F.; Liu, W.; Gregory, D.H. Multiple roles of unconventional heteroatom dopants in chalcogenide thermoelectrics: The influence of Nb on transport and defects in Bi2Te3. ACS Appl. Mater. Interfaces 2021, 13, 13400–13409. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, W.; Wang, R.; Li, S.; Xiao, Y. Improvement of thermoelectric performance of Bi2Te2.7Se0.3 via grain boundary engineering with melting KOH. Funct. Mater. Lett. 2019, 12, 1950082. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Han, G.; Yang, L.; Cheng, L.; Zou, J. Nanostructured thermoelectric materials: Current research and future challenge. Prog. Nat. Sci. Mater. Int. 2012, 22, 535–549. [Google Scholar] [CrossRef]
- Ziolkowski, P.; Blaschkewitz, P.; Ryu, B.; Park, S.; Müller, E. International round robin test of thermoelectric generator modules. Materials 2022, 15, 1627. [Google Scholar] [CrossRef]
- Li, G.; An, Q.; Duan, B.; Borgsmiller, L.; Al Malki, M.; Agne, M.; Aydemir, U.; Zhai, P.; Zhang, Q.; Morozov, S.I. Fracture toughness of thermoelectric materials. Mater. Sci. Eng. R Rep. 2021, 144, 100607. [Google Scholar] [CrossRef]
- Hatzikraniotis, E.; Zorbas, K.T.; Samaras, I.; Kyratsi, T. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J. Electron. Mater. 2009, 39, 2112–2116. [Google Scholar] [CrossRef]
- Zheng, Y.; Tan, X.Y.; Wan, X.; Cheng, X.; Liu, Z.; Yan, Q. Thermal stability and mechanical response of Bi2Te3-based materials for thermoelectric applications. ACS Appl. Energy Mater. 2020, 3, 2078–2089. [Google Scholar] [CrossRef]
- Chetty, R.; Nagase, K.; Aihara, M.; Jood, P.; Takazawa, H.; Ohta, M.; Yamamoto, A. Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing. Appl. Energy 2020, 260, 114443. [Google Scholar] [CrossRef]
- Kim, Y.; Yoon, G.; Park, S. Direct contact resistance evaluation of thermoelectric legs. Exp. Mech. 2016, 56, 861–869. [Google Scholar] [CrossRef]
- Carmo, J.; Antunes, J.; Silva, M.; Ribeiro, J.F.; Goncalves, L.M.; Correia, J.H. Characterization of thermoelectric generators by measuring the load-dependence behavior. Measurement 2011, 44, 2194–2200. [Google Scholar] [CrossRef]
- Guarnieri Calò Carducci, C.; Spadavecchia, M.; Attivissimo, F. High accuracy testbed for thermoelectric module characterization. Energy Convers. Manag. 2020, 223, 113325. [Google Scholar] [CrossRef]
- Barako, M.T.; Park, W.; Marconnet, A.M.; Asheghi, M.; Goodson, K.E. Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module. J. Electron. Mater. 2013, 42, 372–381. [Google Scholar] [CrossRef]
- Yang, M.-Z.; Wu, C.-C.; Dai, C.-L.; Tsai, W.-J. Energy harvesting thermoelectric generators manufactured using the complementary metal oxide semiconductor process. Sensors 2013, 13, 2359–2367. [Google Scholar] [CrossRef]
- Morais, F.; Dias, P.C.; Duarte, L.; Siqueira Dias, J.A. Optimization of the TEGs configuration (series/parallel) in energy harvesting systems with low-voltage thermoelectric generators connected to ultra-low voltage DC–DC converters. Energies 2020, 13, 2297. [Google Scholar] [CrossRef]
- Montecucco, A.; Siviter, J.; Knox, A.R. The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel. Appl. Energy 2014, 123, 47–54. [Google Scholar] [CrossRef]
- Park, W.; Barako, M.; Marconnet, A.; Asheghi, M.; Goodson, K. Effect of thermal cycling on commercial thermoelectric modules. In Proceedings of the InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM 2012), San Diego, CA, USA, 30 May–1 June 2012; pp. 107–112. [Google Scholar] [CrossRef]
- Yahya, K.; Salem, M.; Iqteit, N.; Ahmad Khan, S. A Thermoelectric Energy Harvesting System; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef]
- Rodriguez, R.; Preindl, M.; Emadi, A.; Cotton, J. Maximum power point tracking for thermoelectric generators with high frequency injection. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Tektronix. Accurate Low-Resistance Measurements Start by Identifying Sources of Error. Available online: https://www.tek.com/en/documents/whitepaper/accurate-low-resistance-measurements-start-identifying-sources-error (accessed on 2 September 2025).
- Zhang, C.; Ren, W.; Liao, X. On the Relationship between Contact Resistance and Load Force for Electrode Materials with Rough Surfaces. Materials 2022, 15, 5667. [Google Scholar] [CrossRef]
- Hoffmann, E.; Nilsson, H.; Samuelson, L.; Linke, H. Mesoscopic thermovoltage measurement design. AIP Conf. Proc. 2011, 1399, 397–398. [Google Scholar] [CrossRef]
- Gao, J.; Chen, M. Beat the deviations in estimating maximum power of thermoelectric modules. IEEE Trans. Instrum. Meas. 2013, 62, 2725–2729. [Google Scholar] [CrossRef]
- Lu, T.; Wang, B.; Li, G.; Yang, J.; Zhang, X.; Chen, N.; Liu, T.-H.; Yang, R.; Niu, P.; Kan, Z.; et al. Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications. Mater. Today Phys. 2023, 32, 101035. [Google Scholar] [CrossRef]
- Williams, N.P.; Power, J.; Trimble, D.; O’Shaughnessy, S.M. An experimental evaluation of thermoelectric generator performance under cyclic heating regimes. Heat Mass Transf. 2024, 60, 1991–2003. [Google Scholar] [CrossRef]
- Harish, S.; Sivaprahasam, D.; Jayachandran, B.; Gopalan, R.; Sundararajan, G. Performance of bismuth telluride modules under thermal cycling in an automotive exhaust thermoelectric generator. Energy Convers. Manag. 2021, 232, 113900. [Google Scholar] [CrossRef]
- Delaizir, G.; Bernard-Granger, G.; Monnier, J.; Grodzki, R.; Kim-Hak, O.; Szkutnik, P.-D.; Soulier, M.; Saunier, S.; Goeuriot, D.; Rouleau, O.; et al. A comparative study of Spark Plasma Sintering (SPS), Hot Isostatic Pressing (HIP) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater. Res. Bull. 2012, 47, 1954–1960. [Google Scholar] [CrossRef]
- Milne, J.E.; Giler, R. Nickel-Chromium Alloys for Electric Resistance Heating; Technical Series No. 10041; Nickel Institute: Toronto, ON, Canada, 1990; Available online: https://nickelinstitute.org/en/ (accessed on 1 September 2025).
- Astakhov, V.; Outeiro, J.C.M. Importance of temperature in metal cutting and its proper measurement/modeling. In Metal Cutting Fundamentals; Astakhov, V., Ed.; Springer: Cham, Switzerland, 2019; pp. 1–47. [Google Scholar] [CrossRef]
- Erden, F.; Akgul, B.; Danaci, I.; Oner, M.R. Thermoelectric and thermomechanical properties of invar 36: Comparison with common thermoelectric materials. J. Alloys Compd. 2023, 932, 167690. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Lauerer, A.; Post, E. Thermo-physical properties of FeNi36 and possibilities for determination of the Curie point. Int. J. Thermophys. 2023, 44, 12. [Google Scholar] [CrossRef]
- Faisal, F.O.; Singsoog, K.; Melania, S.M.; Seetawan, T. Thermoelectric properties of BiTe. J. Phys. Conf. Ser. 2020, 1428, 012007. [Google Scholar] [CrossRef]
- Jones, W.; March, N.H. Theoretical Solid State Physics; Courier Dover Publications: New York, NY, USA, 1985; ISBN 978-0-486-65016-6. [Google Scholar]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef]
- Kim, Y.; Song, J.; Yoon, G.; Yoo, C.-Y.; Park, S.H. Practical evaluation of electrical contact resistance of thermoelectric legs at high operation temperature. J. Mater. Sci. Mater. Electron. 2019, 30, 14112–14119. [Google Scholar] [CrossRef]
- Song, S.; Liang, Z.; Xu, C.; Wang, Y.; Shi, X.; Ren, W.; Ren, Z. Reliable metal alloy contact for Mg3+δBi1.5Sb0.5 thermoelectric devices. Soft Sci. 2022, 2, 13. [Google Scholar] [CrossRef]
- Park, J.M.; Hyeon, D.Y.; Ma, H.-S.; Kim, S.; Kim, S.-T.; Nguyen, Y.N.; Son, I.; Yi, S.; Kim, K.T.; Park, K.-I. Enhanced output power of thermoelectric modules with reduced contact resistance by adopting the optimized Ni diffusion barrier layer. J. Alloys Compd. 2021, 884, 161119. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, Y.; Jang, H.; Hwang, C.; Choi, J.; Lee, I.; Oh, M.-W. Fe–Ni–Cr diffusion barrier for high-temperature operation of Bi2Te3. J. Alloys Compd. 2023, 932, 167537. [Google Scholar] [CrossRef]
- Song, J.; Kim, Y.; Cho, B.J.; Yoo, C.-Y.; Yoon, H.; Park, S.H. Thermal diffusion barrier metallization based on Co–Mo powder-mixed composites for n-type skutterudite ((Mm,Sm)γCo4Sb12) thermoelectric devices. J. Alloys Compd. 2020, 818, 152917. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, T.; Wang, Q.; Zhu, Y.; Alshareef, H.N.; Kim, M.J.; Gnade, B.E. Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si. J. Alloys Compd. 2017, 699, 1134–1139. [Google Scholar] [CrossRef]
- Şişik, B.; LeBlanc, S. The influence of leg shape on thermoelectric performance under constant temperature and heat flux boundary conditions. Energy Mater. 2020, 7, 595955. [Google Scholar] [CrossRef]
- Al-Merbati, A.S.; Yilbas, B.S.; Sahin, A.Z. Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance. Appl. Therm. Eng. 2013, 50, 683–692. [Google Scholar] [CrossRef]
- Rjafallah, A.; Cotfas, D.T.; Cotfas, A. Legs geometry influence on the performance of the thermoelectric module. Sustainability 2022, 14, 15823. [Google Scholar] [CrossRef]
- Fabian-Mijangos, A.; Alvarez-Quintana, J. Thermoelectric devices: Influence of the legs geometry and parasitic contact resistances on ZT. In Bringing Thermoelectricity into Reality; InTech: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Li, M.; Sadighi Dizaji, H.; Asaadi, S.; Jarad, F.; Anqi, A.E.; Wae-hayee, M. Thermo-economic, exergetic and mechanical analysis of thermoelectric generator with hollow leg structure: Impact of leg cross-section shape and hollow-to-filled area ratio. Case Stud. Therm. Eng. 2021, 27, 101314. [Google Scholar] [CrossRef]
- Fabián-Mijangos, A.; Min, G.; Alvarez-Quintana, J. Enhanced performance thermoelectric module having asymmetrical legs. Energy Convers. Manag. 2017, 148, 1372–1381. [Google Scholar] [CrossRef]
- Fagehi, H. The effects of ceramic substrate materials on thermoelectric generator performance. J. Electron. Mater. 2025, 54. in press. [Google Scholar] [CrossRef]
- Schwarzer-Fischer, E.; Scheithauer, U.; Michaelis, A. CerAMfacturing of aluminum nitride with high thermal conductivity via lithography-based ceramic vat photopolymerization (CerAM VPP). Ceramics 2023, 6, 416–431. [Google Scholar] [CrossRef]
- Shigeno, K.; Kuraoka, Y.; Asakawa, T.; Fujimori, H. Sintering mechanism of low-temperature co-fired alumina featuring superior thermal conductivity. J. Am. Ceram. Soc. 2021, 104, 2017–2029. [Google Scholar] [CrossRef]
- Sanin-Villa, D.; Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F.; Perea-Moreno, A.-J. Parameter estimation of a thermoelectric generator by using Salps Search Algorithm. Energies 2023, 16, 4304. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Botero-Gómez, V.; Bolaños, R.I.; Moreno-Gamboa, F.; Sanin-Villa, D. An effective parameter estimation on thermoelectric devices for power generation based on multiverse optimization algorithm. Results Eng. 2025, 25, 104408. [Google Scholar] [CrossRef]
Material Combinations | ||||
---|---|---|---|---|
Leg Shape | Chromel– Invar | Fe– Constantan | Chromel– Constantan | |
Rectangular | Measured | 31.0 ± 0.9 mV | 45.0 ± 1.4 mV | 55.0 ± 1.7 mV |
Simulated | 34.1 mV | 52.6 mV | 63.1 mV | |
Double-hourglass | Simulated | 35.9 mV | 58.4 mV | 75.9 mV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, E.; Jang, H.; Park, S.; Park, S.H.; Kang, S.-b. Standard Reference Thermoelectric Modules Based on Metallic Combinations and Geometric Design. Appl. Sci. 2025, 15, 10273. https://doi.org/10.3390/app151810273
Koo E, Jang H, Park S, Park SH, Kang S-b. Standard Reference Thermoelectric Modules Based on Metallic Combinations and Geometric Design. Applied Sciences. 2025; 15(18):10273. https://doi.org/10.3390/app151810273
Chicago/Turabian StyleKoo, EunA, Hanhwi Jang, SuDong Park, Sang Hyun Park, and Sae-byul Kang. 2025. "Standard Reference Thermoelectric Modules Based on Metallic Combinations and Geometric Design" Applied Sciences 15, no. 18: 10273. https://doi.org/10.3390/app151810273
APA StyleKoo, E., Jang, H., Park, S., Park, S. H., & Kang, S.-b. (2025). Standard Reference Thermoelectric Modules Based on Metallic Combinations and Geometric Design. Applied Sciences, 15(18), 10273. https://doi.org/10.3390/app151810273