Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Analysis of Gene Expression Patterns and Identification of DEGs
2.3. PPI Network and GO Analysis
3. Results
3.1. Hierarchical Clustering Analysis
3.2. DEG Selection Between AT-MSCs and FBs and Construction of PPI Networks
3.3. GO Analysis
3.4. Selection and Analysis of Hub Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AT-MSCs | Adipose-derived Mesenchymal Stromal/Stem Cells |
BM-MSCs | Bone Marrow-derived Mesenchymal Stromal/Stem Cells |
DEGs | Differentially Expressed Genes |
ES Cells | Embryonic Stem Cells |
FBs | Fibroblasts |
GO | Gene Ontology |
GEO | Gene Expression Omnibus |
MCC | Maximal Clique Centrality |
MCODE | Molecular Complex Detection |
References
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Z.; Na, J.; Chen, X.; Wang, Z.; Zheng, L.; Fan, Y. In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells. FASEB J. 2025, 39, e70354. [Google Scholar] [CrossRef] [PubMed]
- Tropel, P.; Platet, N.; Platel, J.C.; Noel, D.; Albrieux, M.; Benabid, A.L.; Berger, F. Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 24, 2868–2876. [Google Scholar] [CrossRef]
- Beeravolu, N.; McKee, C.; Alamri, A.; Mikhael, S.; Brown, C.; Perez-Cruet, M.; Chaudhry, G.R. Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta. J. Vis. Exp. 2017, 2017, e55224. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, L.; Xia, J.; Wen, C.; Liang, Y.; Zhang, Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater. 2023, 168, 372–387. [Google Scholar] [CrossRef]
- Fujii, S.; Fujimoto, K.; Goto, N.; Abiko, Y.; Imaoka, A.; Shao, J.; Kitayama, K.; Kanawa, M.; Sosiawan, A.; Suardita, K.; et al. Characterization of human dental pulp cells grown in chemically defined Serum-Free medium. Biomed. Rep. 2018, 8, 350–358. [Google Scholar] [CrossRef]
- Hemmingsen, M.; Vedel, S.; Skafte-Pedersen, P.; Sabourin, D.; Collas, P.; Bruus, H.; Dufva, M. The role of paracrine and autocrine signaling in the early phase of adipogenic differentiation of adipose-derived stem cells. PLoS ONE 2013, 8, e63638. [Google Scholar] [CrossRef]
- Choudhery, M.S.; Badowski, M.; Muise, A.; Pierce, J.; Harris, D.T. Subcutaneous Adipose Tissue-Derived Stem Cell Utility Is Independent of Anatomical Harvest Site. Biores. Open Access 2015, 4, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Oedayrajsingh-Varma, M.J.; van Ham, S.M.; Knippenberg, M.; Helder, M.N.; Klein-Nulend, J.; Schouten, T.E.; Ritt, M.J.P.F.; van Milligen, F.J. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006, 8, 166–177. [Google Scholar] [CrossRef]
- Kanawa, M.; Igarashi, A.; Fujimoto, K.; Saskianti, T.; Nakashima, A.; Higashi, Y.; Kurihara, H.; Kato, Y.; Kawamoto, T. The Identification of Marker Genes for Predicting the Osteogenic Differentiation Potential of Mesenchymal Stromal Cells. Curr. Issues Mol. Biol. 2021, 43, 2157–2166. [Google Scholar] [CrossRef]
- Pereira, M.C.L.; Secco, M.; Suzuki, D.E.; Janjoppi, L.; Rodini, C.O.; Torres, L.B.; Araújo, B.H.S.; Cavalheiro, E.A.; Zatz, M.; Okamoto, O.K. Contamination of Mesenchymal Stem-Cells with Fibroblasts Accelerates Neurodegeneration in an Experimental Model of Parkinson’s Disease. Stem Cell Rev. Rep. 2011, 7, 1006–1017. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Alt, E.; Yan, Y.; Gehmert, S.; Song, Y.-H.; Altman, A.; Gehmert, S.; Vykoukal, D.; Bai, X. Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol. Cell 2011, 103, 197–208. [Google Scholar] [CrossRef]
- Zanata, F.; Curley, L.; Martin, E.; Bowles, A.; Bunnell, B.A.; Wu, X.; Ferreira, L.M.; Gimble, J.M. Comparative Analysis of Human Adipose-Derived Stromal/Stem Cells and Dermal Fibroblasts. Stem Cells Dev. 2021, 30, 1171–1178. [Google Scholar] [CrossRef]
- Shen, S.; Kong, J.; Qiu, Y.; Yang, X.; Wang, W.; Yan, L. Identification of core genes and outcomes in hepatocellular carcinoma by bioinformatics analysis. J. Cell Biochem. 2019, 120, 10069–10081. [Google Scholar] [CrossRef]
- Yang, H.; Wu, J.; Zhang, J.; Yang, Z.; Jin, W.; Li, Y.; Jin, L.; Yin, L.; Liu, H.; Wang, Z. Integrated bioinformatics analysis of key genes involved in progress of colon cancer. Mol. Genet. Genomic Med. 2019, 7, e00588. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Shi, G.; He, Q.; Zhu, P. Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis. Sci. Rep. 2021, 11, 20799. [Google Scholar] [CrossRef]
- Ma, H.; He, Z.; Chen, J.; Zhang, X.; Song, P. Identifying of biomarkers associated with gastric cancer based on 11 topological analysis methods of CytoHubba. Sci. Rep. 2021, 11, 1331. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Wu, Q.; Hao, Z.; Chen, L. Identification of novel prognostic targets in glioblastoma using bioinformatics analysis. Biomed. Eng. Online 2022, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liang, M.; Li, X.; Qiu, X.; Cui, L. Identification of key genes and pathways associated with osteogenic differentiation of adipose stem cells. J. Cell Physiol. 2018, 233, 9777–9785. [Google Scholar] [CrossRef]
- Liang, T.; Li, P.; Liang, A.; Zhu, Y.; Qiu, X.; Qiu, J.; Peng, Y.; Huang, D.; Gao, W.; Gao, B. Identifying the key genes regulating mesenchymal stem cells chondrogenic differentiation: An in vitro study. BMC Musculoskelet. Disord. 2022, 23, 985. [Google Scholar] [CrossRef]
- Igarashi, A.; Segoshi, K.; Sakai, Y.; Pan, H.; Kanawa, M.; Higashi, Y.; Sugiyama, M.; Nakamura, K.; Kurihara, H.; Yamaguchi, S.; et al. Selection of common markers for bone marrow stromal cells from various bones using real-time RT-PCR: Effects of passage number and donor age. Tissue Eng. 2007, 13, 2405–2417. [Google Scholar] [CrossRef]
- Kubo, H.; Shimizu, M.; Taya, Y.; Kawamoto, T.; Michida, M.; Kaneko, E.; Igarashi, A.; Nishimura, M.; Segoshi, K.; Shimazu, Y.; et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes. Cells 2009, 14, 407–424. [Google Scholar] [CrossRef]
- Fujii, S.; Fujimoto, K.; Goto, N.; Kanawa, M.; Kawamoto, T.; Pan, H.; Srivatanakul, P.; Rakdang, W.; Pornprasitwech, J.; Saskianti, T.; et al. Characteristic expression of MSX1, MSX2, TBX2 and ENTPD1 in dental pulp cells. Biomed. Rep. 2015, 3, 566–572. [Google Scholar] [CrossRef]
- Ragelle, H.; Naba, A.; Larson, B.L.; Zhou, F.; Prijić, M.; Whittaker, C.A.; Del Rosario, A.; Langer, R.; Hynes, R.O.; Anderson, D.G. Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 2017, 128, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.N. Comparative Gene Expression Profile of Human Limbal Stromal Cells, Bone Marrow Mesenchymal Cells, Adipose Cells and Foreskin Fibroblasts. 2014. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38947/ (accessed on 7 September 2025).
- Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Rong, N.; Mistriotis, P.; Wang, X.; Tseropoulos, G.; Rajabian, N.; Zhang, Y.; Wang, J.; Liu, S.; Andreadis, S.T. Restoring extracellular matrix synthesis in senescent stem cells. FASEB J. 2019, 33, 10954–10965. [Google Scholar] [CrossRef]
- Han, W.; Wang, B.; Liu, J.; Chen, L. The p16/miR-217/EGR1 pathway modulates age-related tenogenic differentiation in tendon stem/progenitor cells. Acta Biochim. Biophys. Sin. 2017, 49, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Mistriotis, P.; Andreadis, S.T. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res. Rev. 2017, 37, 94–116. [Google Scholar] [CrossRef] [PubMed]
- Shahini, A.; Mistriotis, P.; Asmani, M.; Zhao, R.; Andreadis, S.T. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues. Tissue Eng. Part. A 2017, 23, 535–545. [Google Scholar] [CrossRef]
- Li, C.; Zhen, G.; Chai, Y.; Xie, L.; Crane, J.L.; Farber, E.; Farber, C.R.; Luo, X.; Gao, P.; Cao, X.; et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat. Commun. 2016, 7, 11455. [Google Scholar] [CrossRef]
- Qin, J.; Yuan, F.; Peng, Z.; Ye, K.; Yang, X.; Huang, L.; Jiang, M.; Lu, X. Periostin enhances adipose-derived stem cell adhesion, migration, and therapeutic efficiency in Apo E deficient mice with hind limb ischemia. Stem Cell Res. Ther. 2015, 6, 138. [Google Scholar] [CrossRef]
- Satish, L.; Krill-Burger, J.M.; Gallo, P.H.; Etages, S.D.; Liu, F.; Philips, B.J.; Ravuri, S.; Marra, K.G.; LaFramboise, W.A.; Kathju, S.; et al. Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage. BMC Med. Genomics 2015, 8, 41. [Google Scholar] [CrossRef]
- Novoseletskaya, E.S.; Evdokimov, P.V.; Efimenko, A.Y. Extracellular matrix-induced signaling pathways in mesenchymal stem/stromal cells. Cell Commun. Signal 2023, 21, 244. [Google Scholar] [CrossRef]
- Soteriou, D.; Iskender, B.; Byron, A.; Humphries, J.D.; Borg-Bartolo, S.; Haddock, M.C.; Baxter, M.A.; Knight, D.; Humphries, M.J.; Kimber, S.J. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. J. Biol. Chem. 2013, 288, 18716–18731. [Google Scholar] [CrossRef] [PubMed]
- Kanawa, M.; Igarashi, A.; Fujimoto, K.; Ronald, V.S.; Higashi, Y.; Kurihara, H.; Kato, Y.; Kawamoto, T. Potential Marker Genes for Predicting Adipogenic Differentiation of Mesenchymal Stromal Cells. Appl. Sci. 2019, 9, 2942. [Google Scholar] [CrossRef]
- Abreu de Melo, M.I.; da Silva Cunha, P.; Coutinho de Miranda, M.; Faraco, C.C.F.; Barbosa, J.L.; da Fonseca Ferreira, A.; Kunrath Lima, M.; Faria, J.A.Q.A.; Rodrigues, M.Â.; de Goes, A.M.; et al. Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell Biochem. Funct. 2021, 39, 442–454. [Google Scholar] [CrossRef] [PubMed]
- Jaager, K.; Islam, S.; Zajac, P.; Linnarsson, S.; Neuman, T. RNA-seq analysis reveals different dynamics of differentiation of human dermis- and adipose-derived stromal stem cells. PLoS ONE 2012, 7, e38833. [Google Scholar] [CrossRef] [PubMed]
Study | Acronym | Source Name | GEO Series | GEO Sample | Donor No. |
---|---|---|---|---|---|
Study-A | AT-MSCs | adipose tissue mesenchymal stem cells | GSE66084 | GSM1614057 | 1 |
AT-MSCs | adipose tissue mesenchymal stem cells | GSM1614056 | 2 | ||
AT-MSCs | adipose tissue mesenchymal stem cells | GSM1614058 | 3 | ||
BM-MSCs | iliac mesenchymal stem cells | GSE9451 | GSM239713 | 4 | |
BM-MSCs | iliac mesenchymal stem cells | GSM239715 | 5 | ||
BM-MSCs | iliac mesenchymal stem cells | GSM239722 | 6 | ||
FBs | skin fibroblasts | GSM239766 | 7 | ||
FBs | skin fibroblasts | GSM239769 | 8 | ||
FBs | gingival fibroblasts | GSM239801 | 9 | ||
Study-B | AT-MSCs | Adipose-derived mesenchymal stem cells | GSE94667 | GSM2480568 | 10 |
AT-MSCs | Adipose-derived mesenchymal stem cells | GSM2480567 | 11 | ||
AT-MSCs | Adipose-derived mesenchymal stem cells | GSM2480569 | 12 | ||
BM-MSCs | Bone marrow-derived mesenchymal stem cells | GSM2480556 | 13 | ||
BM-MSCs | Bone marrow-derived mesenchymal stem cells | GSM2480555 | 14 | ||
BM-MSCs | Bone marrow-derived mesenchymal stem cells | GSM2480557 | 15 | ||
FBs | neonatal dermal fibroblasts | GSM2480544 | 16 | ||
FBs | neonatal dermal fibroblasts | GSM2480545 | 17 | ||
FBs | neonatal dermal fibroblasts | GSM2480546 | 18 | ||
Study-C | AT-MSCs | adipose stromal cells | GSE38947 | GSM952620 | 19 |
AT-MSCs | adipose stromal cells | GSM952621 | 20 | ||
AT-MSCs | adipose stromal cells | GSM952622 | 21 | ||
BM-MSCs | bone marrow mesenchymal stem cells | GSM952617 | 22 | ||
BM-MSCs | bone marrow mesenchymal stem cells | GSM952619 | 23 | ||
BM-MSCs | bone marrow mesenchymal stem cells | GSM952618 | 24 | ||
FBs | foreskin fibroblasts | GSM952623 | 25 | ||
FBs | foreskin fibroblasts | GSM952624 | 26 | ||
FBs | foreskin fibroblasts | GSM952625 | 27 |
Gene Symbol | MCC Score | Module A | Fold Difference ± SD (AT-MSCs/FBs) | |
---|---|---|---|---|
1 | COL3A1 | 13,544 | Yes | 2.66 ± 1.34 |
2 | FBN1 | 13,536 | Yes | 3.54 ± 1.93 |
3 | COL4A1 | 13,232 | Yes | 5.57 ± 4.90 |
4 | COL5A2 | 13,152 | Yes | 2.11 ± 0.23 |
5 | POSTN | 11,982 | Yes | 12.12 ± 15.05 |
6 | CTGF (CCN2) | 10,506 | Yes | 10.46 ± 6.42 |
7 | SPARC | 10,202 | Yes | 2.03 ± 0.42 |
8 | HSPG2 | 6486 | Yes | 1.91 ± 0.26 |
9 | FSTL1 | 5192 | Yes | 1.94 ± 0.09 |
10 | LAMA2 | 2881 | Yes | 4.89 ± 3.11 |
11 | LAMC1 | 1561 | Yes | 2.68 ± 0.39 |
12 | COL16A1 | 1446 | Yes | 2.16 ± 0.41 |
13 | SERPINE1 | 252 | No | 4.58 ± 1.53 |
14 | TAGLN | 243 | No | 3.13 ± 1.76 |
15 | SLC1A5 | 82 | No | 2.18 ± 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanawa, M.; Fujimoto, K.; Saskianti, T.; Nakashima, A.; Kawamoto, T. Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts. Appl. Sci. 2025, 15, 9881. https://doi.org/10.3390/app15189881
Kanawa M, Fujimoto K, Saskianti T, Nakashima A, Kawamoto T. Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts. Applied Sciences. 2025; 15(18):9881. https://doi.org/10.3390/app15189881
Chicago/Turabian StyleKanawa, Masami, Katsumi Fujimoto, Tania Saskianti, Ayumu Nakashima, and Takeshi Kawamoto. 2025. "Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts" Applied Sciences 15, no. 18: 9881. https://doi.org/10.3390/app15189881
APA StyleKanawa, M., Fujimoto, K., Saskianti, T., Nakashima, A., & Kawamoto, T. (2025). Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts. Applied Sciences, 15(18), 9881. https://doi.org/10.3390/app15189881