Line-Field Confocal Optical Coherence Tomography of Plaque Psoriasis Under IL-17 Inhibitor Therapy: Artificial Intelligence-Supported Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Response
3.1.1. PASI, DLQI, and GEPARD
3.1.2. LPSI and Manually Measured Epidermal Thicknesses
3.2. Artificial Intelligence (AI)-Supported Analysis
3.2.1. AI-Supported Measurement of Epidermal Thickness and Stratum Corneum Thickness
3.2.2. Dermo-Epidermal Junction (DEJ) Undulation
3.2.3. Vessels in Psoriasis
3.3. Further Epidermo-Dermal Alterations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menter, A.; Strober, B.E.; Kaplan, D.H.; Kivelevitch, D.; Prater, E.F.; Stoff, B.; Armstrong, A.W.; Connor, C.; Cordoro, K.M.; Davis, D.M.R.; et al. Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J. Am. Acad. Dermatol. 2019, 80, 1029–1072. [Google Scholar] [CrossRef]
- Nast, A.; Altenburg, A.; Augustin, M.; Boehncke, W.-H.; Härle, P.; Klaus, J.; Koza, J.; Mrowietz, U.; Ockenfels, H.-M.; Philipp, S.; et al. Deutsche S3-Leitlinie zur Therapie der Psoriasis vulgaris, adaptiert von EuroGuiDerm—Teil 1: Therapieziele und Therapieempfehlungen. J. Dtsch. Dermatol. Ges. 2021, 19, 934–951. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, T.; Pettersson, U. Severe psoriasis--oral therapy with a new retinoid. Dermatologica 1978, 157, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Bożek, A.; Reich, A. The reliability of three psoriasis assessment tools: Psoriasis area and severity index, body surface area and physician global assessment. Adv. Clin. Exp. Med. 2017, 26, 851–856. [Google Scholar] [CrossRef]
- Dini, V.; Janowska, A.; Faita, F.; Panduri, S.; Benincasa, B.B.; Izzetti, R.; Romanelli, M.; Oranges, T. Ultra-high-frequency ultrasound monitoring of plaque psoriasis during ixekizumab treatment. Skin Res. Technol. 2021, 27, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Errichetti, E. Dermoscopy in Monitoring and Predicting Therapeutic Response in General Dermatology (Non-Tumoral Dermatoses): An Up-To-Date Overview. Dermatol. Ther. 2020, 10, 1199–1214. [Google Scholar] [CrossRef]
- Errichetti, E.; Zalaudek, I.; Kittler, H.; Apalla, Z.; Argenziano, G.; Bakos, R.; Blum, A.; Braun, R.P.; Ioannides, D.; Lacarrubba, F.; et al. Standardization of dermoscopic terminology and basic dermoscopic parameters to evaluate in general dermatology (non-neoplastic dermatoses): An expert consensus on behalf of the International Dermoscopy Society. Br. J. Dermatol. 2020, 182, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-López, F.; Manjón-Haces, J.A.; Maldonado-Seral, C.; Raya-Aguado, C.; Pérez-Oliva, N.; Marghoob, A.A. Dermoscopic features of plaque psoriasis and lichen planus: New observations. Dermatology 2003, 207, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, Q.; Li, F.; Xiao, M.; Liu, J. Clinical, dermoscopic, and ultrasonic monitoring of the response to biologic treatment in patients with moderate-to-severe plaque psoriasis. Fron. Med. 2023, 10, 1162873. [Google Scholar] [CrossRef] [PubMed]
- Golińska, J.; Sar-Pomian, M.; Rudnicka, L. Dermoscopic features of psoriasis of the skin, scalp and nails—A systematic review. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 648–660. [Google Scholar] [CrossRef]
- Micali, G.; Lacarrubba, F.; Santagati, C.; Egan, C.G.; Nasca, M.R.; Musumeci, M.L. Clinical, ultrasound, and videodermatoscopy monitoring of psoriatic patients following biological treatment. Skin Res. Technol. 2016, 22, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Lallas, A.; Argenziano, G.; Zalaudek, I.; Apalla, Z.; Ardigo, M.; Chellini, P.; Cordeiro, N.; Guimaraes, M.; Kyrgidis, A.; Lazaridou, E.; et al. Dermoscopic hemorrhagic dots: An early predictor of response of psoriasis to biologic agents. Dermatol. Pract. Concept. 2016, 6, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Șomlea, M.C.; Boca, A.N.; Pop, A.D.; Ilieș, R.F.; Vesa, S.C.; Buzoianu, A.D.; Tătaru, A. High-frequency ultrasonography of psoriatic skin: A non-invasive technique in the evaluation of the entire skin of patients with psoriasis: A pilot study. Exp. Ther. Med. 2019, 18, 4981–4986. [Google Scholar] [CrossRef]
- Başaran, Y.K.; Gürel, M.S.; Erdemir, A.T.; Turan, E.; Yurt, N.; Bağci, I.S. Evaluation of the response to treatment of psoriasis vulgaris with reflectance confocal microscopy. Skin Res. Technol. 2015, 21, 18–24. [Google Scholar] [CrossRef]
- Hee, M.R.; Izatt, J.A.; Swanson, E.A.; Huang, D.; Schuman, J.S.; Lin, C.P.; Puliafito, C.A.; Fujimoto, J.G. Optical coherence tomography of the human retina. Arch. Ophthalmol. 1995, 113, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Schuh, S.; Holmes, J.; Ulrich, M.; Themstrup, L.; Jemec, G.B.E.; De Carvalho, N.; Pellacani, G.; Welzel, J. Imaging Blood Vessel Morphology in Skin: Dynamic Optical Coherence Tomography as a Novel Potential Diagnostic Tool in Dermatology. Dermatol. Ther. 2017, 7, 187–202. [Google Scholar] [CrossRef]
- Welzel, J.; Bruhns, M.; Wolff, H.H. Optical coherence tomography in contact dermatitis and psoriasis. Arch. Dermatol. Res. 2003, 295, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Morsy, H.; Kamp, S.; Thrane, L.; Behrendt, N.; Saunder, B.; Zayan, H.; Elmagid, E.A.; Jemec, G.B.E. Optical coherence tomography imaging of psoriasis vulgaris: Correlation with histology and disease severity. Arch. Dermatol. Res. 2010, 302, 105–111. [Google Scholar] [CrossRef]
- Verzì, A.E.; Broggi, G.; Micali, G.; Sorci, F.; Caltabiano, R.; Lacarrubba, F. Line-field confocal optical coherence tomography of psoriasis, eczema and lichen planus: A case series with histopathological correlation. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1884–1889. [Google Scholar] [CrossRef]
- Kempf, W.; Hantschke, M.; Kutzner, H.; Burgdorf, W. Dermatopathologie, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Truong, T.M.; Pathak, G.N.; Rao, B.K. Line-field confocal optical coherence tomography imaging findings of scalp psoriasis. JAAD Case Rep. 2023, 39, 106–108. [Google Scholar] [CrossRef]
- Orsini, C.; Trovato, E.; Cortonesi, G.; Pedrazzani, M.; Suppa, M.; Rubegni, P.; Tognetti, L.; Cinotti, E. Line-field confocal optical coherence tomography: New insights for psoriasis treatment monitoring. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Schuh, S.; Ruini, C.; Sattler, E.; Welzel, J. Confocal line-field OCT. Hautarzt 2021, 72, 1039–1047. [Google Scholar] [CrossRef]
- Ruini, C.; Schuh, S.; Sattler, E.; Welzel, J. Line-field confocal optical coherence tomography-Practical applications in dermatology and comparison with established imaging methods. Skin Res. Technol. 2021, 27, 340–352. [Google Scholar] [CrossRef]
- Latriglia, F.; Ogien, J.; Tavernier, C.; Fischman, S.; Suppa, M.; Perrot, J.L.; Dubois, A. Line-Field Confocal Optical Coherence Tomography (LC-OCT) for Skin Imaging in Dermatology. Life 2023, 13, 2268. [Google Scholar] [CrossRef]
- Kearns, D.G.; Uppal, S.; Chat, V.S.; Wu, J.J. Comparison of Guidelines for the Use of Interleukin-17 Inhibitors for Psoriasis in the United States, Britain, and Europe: A Critical Appraisal and Comprehensive Review. J. Clin. Aesthetic Dermatol. 2021, 14, 55–59. [Google Scholar]
- Errichetti, E.; Croatto, M.; Arnoldo, L.; Stinco, G. Plaque-Type Psoriasis Treated with Calcipotriene Plus Betamethasone Dipropionate Aerosol Foam: A Prospective Study on Clinical and Dermoscopic Predictor Factors in Response Achievement and Retention. Dermatol. Ther. 2020, 10, 757–767. [Google Scholar] [CrossRef]
- Ali, A.; Colombe, L.; Mélanie, P.; Agnes, P.L.; Meryem, N.; Samuel, R.; Guénolé, G.; Jean-Hubert, C.; Rodolphe, K.; Franck, B. Comparison of facial skin ageing in healthy Asian and Caucasian females quantified by in vivo line-field confocal optical coherence tomography 3D imaging. Skin Res. Technol. 2024, 30, e13643. [Google Scholar] [CrossRef]
- Assi, A.; Fischman, S.; Lopez, C.; Pedrazzani, M.; Grignon, G.; Missodey, R.; Korichi, R.; Cauchard, J.H.; Ralambondrainy, S.; Bonnier, F. Evaluating facial dermis aging in healthy Caucasian females with LC-OCT and deep learning. Sci. Rep. 2024, 14, 24113. [Google Scholar] [CrossRef] [PubMed]
- Bonnier, F.; Pedrazzani, M.; Fischman, S.; Viel, T.; Lavoix, A.; Pegoud, D.; Nili, M.; Jimenez, Y.; Ralambondrainy, S.; Cauchard, J.H.; et al. Line-field confocal optical coherence tomography coupled with artificial intelligence algorithms to identify quantitative biomarkers of facial skin ageing. Sci. Rep. 2023, 13, 13881. [Google Scholar] [CrossRef] [PubMed]
- Breugnot, J.; Rouaud-Tinguely, P.; Gilardeau, S.; Rondeau, D.; Bordes, S.; Aymard, E.; Closs, B. Utilizing deep learning for dermal matrix quality assessment on in vivo line-field confocal optical coherence tomography images. Skin Res. Technol. 2023, 29, e13221. [Google Scholar] [CrossRef]
- Daxenberger, F.; Deußing, M.; Eijkenboom, Q.; Gust, C.; Thamm, J.; Hartmann, D.; French, L.E.; Welzel, J.; Schuh, S.; Sattler, E.C. Innovation in Actinic Keratosis Assessment: Artificial Intelligence-Based Approach to LC-OCT PRO Score Evaluation. Cancers 2023, 15, 4457. [Google Scholar] [CrossRef] [PubMed]
- Fischman, S.; Pérez-Anker, J.; Tognetti, L.; Di Naro, A.; Suppa, M.; Cinotti, E.; Viel, T.; Monnier, J.; Rubegni, P.; Del Marmol, V.; et al. Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning. Sci. Rep. 2022, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Le Blay, H.; Raynaud, E.; Bouayadi, S.; Rieux, E.; Rolland, G.; Saussine, A.; Jachiet, M.; Bouaziz, J.D.; Lynch, B. Epidermal renewal during the treatment of atopic dermatitis lesions: A study coupling line-field confocal optical coherence tomography with artificial intelligence quantifications: LC-OCT reveals new biological markers of AD. Skin Res. Technol. 2024, 30, e13891. [Google Scholar] [CrossRef]
- Thamm, J.R.; Daxenberger, F.; Viel, T.; Gust, C.; Eijkenboom, Q.; French, L.E.; Welzel, J.; Sattler, E.C.; Schuh, S. Artificial intelligence-based PRO score assessment in actinic keratoses from LC-OCT imaging using Convolutional Neural Networks. J. Dtsch. Dermatol. Ges. 2023, 21, 1359–1366. [Google Scholar] [CrossRef]
- Chauvel-Picard, J.; Bérot, V.; Tognetti, L.; Orte Cano, C.; Fontaine, M.; Lenoir, C.; Pérez-Anker, J.; Puig, S.; Dubois, A.; Forestier, S.; et al. Line-field confocal optical coherence tomography as a tool for three-dimensional in vivo quantification of healthy epidermis: A pilot study. J. Biophotonics 2022, 15, e202100236. [Google Scholar] [CrossRef] [PubMed]
- Deußing, M.; Ruini, C.; Nutz, M.; Kerl-French, K.; Hartmann, D.; French, L.E.; Daxenberger, F.; Sattler, E.C. Illuminating characteristic patterns of inflammatory dermatoses: A comprehensive dual-imaging approach using Optical coherence tomography and Line-field confocal optical coherence tomography. Skin Res. Technol. 2024, 30, e13833. [Google Scholar] [CrossRef]
- Hull, S.M.; Goodfield, M.; Wood, E.J.; Cunliffe, W.J. Active and inactive edges of psoriatic plaques: Identification by tracing and investigation by laser--Doppler flowmetry and immunocytochemical techniques. J. Investig. Dermatol. 1989, 92, 782–785. [Google Scholar] [CrossRef]
- Goodfield, M.; Hull, S.M.; Holland, D.; Roberts, G.; Wood, E.; Reid, S.; Cunliffe, W. Investigations of the ’active’ edge of plaque psoriasis: Vascular proliferation precedes changes in epidermal keratin. Br. J. Dermatol. 1994, 131, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Stinco, G.; Lautieri, S.; Valent, F.; Patrone, P. Cutaneous vascular alterations in psoriatic patients treated with cyclosporine. Acta Derm. Venereol. 2007, 87, 152–154. [Google Scholar] [CrossRef]
- Alper, M.; Kavak, A.; Parlak, A.H.; Demirci, R.; Belenli, I.; Yesildal, N. Measurement of epidermal thickness in a patient with psoriasis by computer-supported image analysis. Braz. J. Med. Biol. Res. 2004, 37, 111–117. [Google Scholar] [CrossRef]
V0 Median (IQR) | V1 Median (IQR) | V2 Median (IQR) | p-Value (Friedman Test) | |
---|---|---|---|---|
PASI | 18.3 (8.4–30.0) | 8.6 (2.0–15.0) | 3.8 (1.7–7.6) | p < 0.001 |
DLQI | 13.5 (7.8–15.3) | 3.0 (1.8–6.3) | 1.0 (0.0–4.0) | p < 0.001 |
GEPARD | 6.0 (3.8–9.3) | 7.0 (4.8–9.3) | 5.0 (4.0–10.0) | p = 0.519 |
LPSI (SP) | 6.0 (6.0–9.0) | 3.0 (2.8–5.0) | 1.0 (1.0–2.3) | p < 0.001 |
ET (SP) | 290 µm (249–328 µm) | 213 µm (139–256 µm) | 121 µm (90–168 µm) | p < 0.001 |
SCT (SP) | 84 µm (56–94 µm) | 41 µm (29–63 µm) | 22 µm (13–31 µm) | p = 0.001 |
LPSI (CoA) | 0 | 0 | 0 | |
ET (CoA) | 87 µm (73–90 µm) | 76 µm (66–87 µm) | 77 µm (72–92 µm) | p = 0.563 |
SCT (CoA) | 9 µm (9–13 µm) | 13 µm (11–14 µm) | 13 µm (10–16 µm) | p = 0.052 |
Difference ET (SP) and ET (CoA) | 202 µm (161–243 µm) | 133 µm (76–173 µm) | 46 µm (23–57 µm) | p< 0.001 |
Difference SCT (SP) and SCT (CoA) | 72 µm (42–84 µm) | 29 µm (16–48 µm) | 8 µm (2–20 µm) | p < 0.001 |
V0 Median (IQR) | V1 Median (IQR) | V2 Median (IQR) | p-Value (Friedman Test) | |
---|---|---|---|---|
ET (SP) | 254 µm (201–272 µm) | 200 µm (139–243 µm) | 124 µm (92–166 µm) | p = 0.006 |
SCT (SP) | 62 µm (40–71 µm) | 36 µm (27–47 µm) | 25 µm (20–39 µm) | p < 0.001 |
ET (CoA) | 70 µm (61–81 µm) | 71 µm (67–80 µm) | 73 µm (67–82 µm) | p = 0.339 |
SCT (CoA) | 14 µm (12–19 µm) | 16 µm (14–19 µm) | 18 µm (15–21 µm) | p = 0.105 |
Percentage difference of ET (SP, AI vs. subjective scoring) | −17.6% (−23.2–−13.0%) | −15.4% (−17.6–−5.0%) | −0.35% (−13.0–−9.6%) | Pearson coefficient = 0.97, Spearmen = 0.91 |
Percentage difference of SCT (SP, AI vs. subjective scoring) | −23.6% (−42.3–−6.8%) | −20.8% (−29.7–−6.9%) | 37.4% (6.5–−84.1%) | Pearson coefficient = 0.84 Spearmen = 0.81 |
Difference in ET (SP) and ET (CoA) | 181 µm (141–194 µm) | 117 µm (77–150 µm) | 56 µm (25–77 µm) | p = 0.004 |
Difference SCT (SP) and SCT (CoA) | 39 µm (24–59 µm) | 18 µm (11–30 µm) | 9 µm (3–16 µm) | p = 0.001 |
DEJ undulation (SP) | 75.9% (52.7–134.6%) | 48.8% (36.4–68.0%) | 27.0 (14.0–79.0%) | p = 0.148 |
Difference in DEJ undulation (SP and CoA) | 65.5% (20.0–126.1%) | 46.4% (21.9–57.1%) | 19.3% (3.2–49.6%) | p = 0.103 |
Alteration | V0 SP | V1 SP | V2 SP | V0 CoA | V1 CoA | V2 CoA |
---|---|---|---|---|---|---|
acanthosis | 12/12 | 9/12 | 3/12 | 0/12 | 0/12 | 0/12 |
hyperkeratosis | 12/12 | 9/12 | 3/12 | 0/12 | 0/12 | 0/12 |
parakeratosis | 12/12 | 10/12 | 7/12 | 0/12 | 0/12 | 0/12 |
bright inflammatory cell epidermis | 10/12 | 10/12 | 9/12 | 10/12 | 9/12 | 8/12 |
elongated rete ridges | 11/12 | 10/12 | 7/12 | 0/12 | 0/12 | 0/12 |
dilated vessels | 11/12 | 11/12 | 9/12 | 7/12 | 6/12 | 5/12 |
bright inflammatory cell dermis | 2/3 | 4/9 | 8/11 | 9/12 | 8/12 | 7/12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wirsching, H.B.; Mayer, O.J.; Schlingmann, S.; Thamm, J.R.; Schiele, S.; Rubeck, A.; Heinz, W.; Welzel, J.; Schuh, S. Line-Field Confocal Optical Coherence Tomography of Plaque Psoriasis Under IL-17 Inhibitor Therapy: Artificial Intelligence-Supported Analysis. Appl. Sci. 2025, 15, 535. https://doi.org/10.3390/app15020535
Wirsching HB, Mayer OJ, Schlingmann S, Thamm JR, Schiele S, Rubeck A, Heinz W, Welzel J, Schuh S. Line-Field Confocal Optical Coherence Tomography of Plaque Psoriasis Under IL-17 Inhibitor Therapy: Artificial Intelligence-Supported Analysis. Applied Sciences. 2025; 15(2):535. https://doi.org/10.3390/app15020535
Chicago/Turabian StyleWirsching, Hanna B., Oliver J. Mayer, Sophia Schlingmann, Janis R. Thamm, Stefan Schiele, Anna Rubeck, Wera Heinz, Julia Welzel, and Sandra Schuh. 2025. "Line-Field Confocal Optical Coherence Tomography of Plaque Psoriasis Under IL-17 Inhibitor Therapy: Artificial Intelligence-Supported Analysis" Applied Sciences 15, no. 2: 535. https://doi.org/10.3390/app15020535
APA StyleWirsching, H. B., Mayer, O. J., Schlingmann, S., Thamm, J. R., Schiele, S., Rubeck, A., Heinz, W., Welzel, J., & Schuh, S. (2025). Line-Field Confocal Optical Coherence Tomography of Plaque Psoriasis Under IL-17 Inhibitor Therapy: Artificial Intelligence-Supported Analysis. Applied Sciences, 15(2), 535. https://doi.org/10.3390/app15020535