The Impact of Draw Weight on Archers’ Posture and Injury Risk Through Motion Capture Analysis
Abstract
:1. Introduction
2. Methods
2.1. Participants and System Setup
2.2. Operational Tasks
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shinohara, H.; Hosomi, R.; Sakamoto, R.; Urushihata, T.; Yamamoto, S.; Higa, C.; Oyama, S. Effect of exercise devised to reduce arm tremor in the sighting phase of archery. PLoS ONE 2023, 18, e0285223. [Google Scholar] [CrossRef] [PubMed]
- Rampp, S.; Spindler, K.; Hartwigsen, G.; Scheller, C.; Simmermacher, S.; Scheer, M.; Strauss, C.; Prell, J. Archery under the (electroencephalography-) hood: Theta-lateralization as a marker for motor learning. Neuroscience 2022, 499, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Simsek, D.; Cerrah, A.; Ertan, H.; Soylu, A. A comparison of the ground reaction forces of archers with different levels of expertise during the arrow shooting. Sci. Sports 2019, 34, 137–145. [Google Scholar] [CrossRef]
- Kim, R.N.; Lee, J.-H.; Hong, S.H.; Jeon, J.H.; Jeong, W.K. The characteristics of shoulder muscles in archery athletes. Clin. Shoulder Elb. 2018, 21, 145. [Google Scholar] [CrossRef] [PubMed]
- Alberola-Zorrilla, P.; Castaño-Ortiz, C.; Sánchez-Zuriaga, D. Where do archers hurt? Epidemiology of injuries during archery practice. Physiother. Theory Pract. 2024, 40, 1343–1350. [Google Scholar] [CrossRef]
- Chen, S.-K.; Cheng, Y.-M.; Huang, P.-J.; Chou, P.-H.; Lin, Y.-C.; Hong, Y.-J. Investigation of management models in elite athlete injuries. Kaohsiung J. Med. Sci. 2005, 21, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.; Littke, N. Shoulder injuries in archery. Can. J. Sport Sci. 1989, 14, 85–92. [Google Scholar]
- Cools, A.M.; Witvrouw, E.E.; Declercq, G.A.; Danneels, L.A.; Cambier, D.C. Scapular muscle recruitment patterns: Trapezius muscle latency with and without impingement symptoms. Am. J. Sports Med. 2003, 31, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Bostancı, Ö.; Kabadayı, M.; Mayda, M.H.; Yılmaz, A.K.; Yılmaz, C. The differential impact of several types of sports on pulmonary functions and respiratory muscle strength in boys aged 8–12. Isokinet. Exerc. Sci. 2019, 27, 307–312. [Google Scholar] [CrossRef]
- Niestroj, C.K.; Schöffl, V.; Küpper, T. Acute and overuse injuries in elite archers. J. Sports Med. Phys. Fit. 2017, 58, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.-H.; Hah, C.-K.; Ryu, J.-S.; Kim, K.-C. Evaluation on motion features of the world’s second archer during back-tension in archery. Korean J. Sport Biomech. 2007, 17, 197–207. [Google Scholar]
- Chang, Y.; Lee, J.J.; Seo, J.H.; Song, H.J.; Kim, Y.T.; Lee, H.J.; Kim, H.J.; Lee, J.; Kim, W.; Woo, M. Neural correlates of motor imagery for elite archers. NMR Biomed. 2011, 24, 366–372. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.M.; Kim, W.J.; Park, H.J.; Kim, S.W.; Moon, D.H.; Woo, M.; Tennant, L.K. Neural correlates of pre-performance routines in expert and novice archers. Neurosci. Lett. 2008, 445, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-T.; Seo, J.-H.; Song, H.-J.; Yoo, D.-S.; Lee, H.J.; Lee, J.; Lee, G.; Kwon, E.; Kim, J.G.; Chang, Y. Neural correlates related to action observation in expert archers. Behav. Brain Res. 2011, 223, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Ganesan, S.; Sandhu, J.; Simon, J. Effect of sensory motor rhythm neurofeedback on psycho-physiological, electro-encephalographic measures and performance of archery players. Ibnosina J. Med. Biomed. Sci. 2012, 4, 32–39. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, J. Adaptation and the distributional effects of heat: Evidence from professional archery competitions. South. Econ. J. 2022, 88, 1149–1177. [Google Scholar] [CrossRef]
- Rooke, E. Target panic: Disrupted ecologies of skill in archery. Area 2023, 55, 348–355. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, S. Contactless Real-Time Heart Rate Predicts the Performance of Elite Athletes: Evidence from Tokyo 2020 Olympic Archery Competition. Psychol. Sci. 2023, 34, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Rowland, M.M.; Nielson, R.M.; Wisdom, M.J.; Johnson, B.K.; Findholt, S.; Clark, D.; Didonato, G.T.; Hafer, J.M.; Naylor, B.J. Influence of landscape characteristics on hunter space use and success. J. Wildl. Manag. 2021, 85, 1394–1409. [Google Scholar] [CrossRef]
- Taha, Z.; Musa, R.M.; Majeed, A.P.A.; Alim, M.M.; Abdullah, M.R. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Hum. Mov. Sci. 2018, 57, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Muazu Musa, R.; PP Abdul Majeed, A.; Taha, Z.; Chang, S.W.; Ab. Nasir, A.F.; Abdullah, M.R. A machine learning approach of predicting high potential archers by means of physical fitness indicators. PLoS ONE 2019, 14, e0209638. [Google Scholar] [CrossRef] [PubMed]
- Musa, R.M.; Majeed, A.A.; Taha, Z.; Abdullah, M.; Maliki, A.H.M.; Kosni, N.A. The application of Artificial Neural Network and k-Nearest Neighbour classification models in the scouting of high-performance archers from a selected fitness and motor skill performance parameters. Sci. Sports 2019, 34, 241–249. [Google Scholar] [CrossRef]
- Palsbo, S. Epidemiology of recreational archery injuries: Implications for archery ranges and injury prevention. J. Sports Med. Phys. Fit. 2012, 52, 293–299. [Google Scholar]
- Kisa, E.P.; Kaya, B.K. Does taping have an immediate effect on shooting the target? Percept. Mot. Ski. 2023, 130, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Dorshorst, T.; Weir, G.; Hamill, J.; Holt, B. Archery’s signature: An electromyographic analysis of the upper limb. Evol. Hum. Sci. 2022, 4, 25. [Google Scholar] [CrossRef]
- Na, J.Y.; Ryu, D.; Ko, J.H. Anticipatory postural adjustments during an archery performance. Eur. J. Sport Sci. 2024, 24, 458–465. [Google Scholar] [CrossRef]
- Kenney, W.L.; Wilmore, J.H.; Costill, D.L. Physiology of Sport and Exercise; Human Kinetics: Champaign, IL, USA, 2022. [Google Scholar]
- Wojtys, E.M.; Huston, L.J.; Boynton, M.D.; Spindler, K.P.; Lindenfeld, T.N. The effect of the menstrual cycle on anterior cruciate ligament injuries in women as determined by hormone levels. Am. J. Sports Med. 2002, 30, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Gribble, P.A.; Hertel, J.; Plisky, P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: A literature and systematic review. J. Athl. Train. 2012, 47, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Ertan, H.; Kentel, B.; Tümer, S.; Korkusuz, F. Activation patterns in forearm muscles during archery shooting. Hum. Mov. Sci. 2003, 22, 37–45. [Google Scholar] [CrossRef]
- Movella. MVN Awinda. Available online: https://www.movella.com/products/motion-capture/xsens-mvn-awinda (accessed on 5 January 2025).
- Siemens. Human Centered Design and Simulation. Available online: https://plm.sw.siemens.com/en-US/tecnomatix/human-centered-design-simulation/ (accessed on 22 January 2024).
- Cheung, R.T.; An, W.W.; Au, I.P.; Zhang, J.H.; Chan, Z.Y.; MacPhail, A.J. Control of impact loading during distracted running before and after gait retraining in runners. J. Sports Sci. 2018, 36, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Dinu, D.; Fayolas, M.; Jacquet, M.; Leguy, E.; Slavinski, J.; Houel, N. Accuracy of postural human-motion tracking using miniature inertial sensors. Procedia Eng. 2016, 147, 655–658. [Google Scholar] [CrossRef]
- Jadhav, G.S.; Arunachalam, M.; Salve, U.R. Ergonomics design and evaluation of the stitching workstation for the hand-crafted Kolhapuri footwear using a digital human modeling approach. J. Ind. Prod. Eng. 2019, 36, 563–575. [Google Scholar] [CrossRef]
- Ahmed, S.; Irshad, L.; Gawand, M.S.; Demirel, H.O. Integrating human factors early in the design process using digital human modelling and surrogate modelling. J. Eng. Des. 2021, 32, 165–186. [Google Scholar] [CrossRef]
- Yu, X.; Shi, Y.; Yu, H.; Liu, T.; An, J.; Zhang, L.; Su, Y.; Xu, K. Digital human modeling and its applications: Review and future prospects. J. X-Ray Sci. Technol. 2015, 23, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Vyavahare, R.T.; Kallurkar, S.P. Ergonomic evaluation of electric hedge trimmer using digital human modeling. Agric. Eng. Int. CIGR J. 2015, 17, 100–108. [Google Scholar]
- Ji, X.; Hettiarachchige, R.O.; Littman, A.L.; Lavery, N.L.; Piovesan, D. Prevent workers from injuries in the Brewing Company via using digital human modelling technology. Appl. Sci. 2023, 13, 3593. [Google Scholar] [CrossRef]
- Ji, X.; Hettiarachchige, R.O.; Littman, A.L.; Piovesan, D. Using digital human modelling to evaluate the risk of musculoskeletal injury for workers in the healthcare industry. Sensors 2023, 23, 2781. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Littman, A.; Hettiarachchige, R.O.; Piovesan, D. The effect of key anthropometric and biomechanics variables affecting the lower back forces of healthcare workers. Sensors 2023, 23, 658. [Google Scholar] [CrossRef] [PubMed]
- Waters, T.R.; Putz-Anderson, V.; Garg, A.; Fine, L.J. Revised NIOSH equation for the design and evaluation of manual lifting tasks. Ergonomics 1993, 36, 749–776. [Google Scholar] [CrossRef]
- Gallagher, S.; Marras, W.S. Tolerance of the lumbar spine to shear: A review and recommended exposure limits. Clin. Biomech. 2012, 27, 973–978. [Google Scholar] [CrossRef]
- Legend. The Most Common Archery Injuries and How You Can Avoid Them. Available online: https://legendarchery.com/blogs/archery-bowhunting-blog/the-most-common-archery-injuries-and-how-you-can-avoid-them?srsltid=AfmBOooD7RvnLOpR7WA-JPALoEmMJeFO3Jeo6x65UwGtuwQQXjfXMHbo (accessed on 5 May 2024).
- UNC. Environment, Health and Safety. Lifting and Material Handling. Available online: https://ehs.unc.edu/topics/ergonomics/lifting-and-material-handling/ (accessed on 12 July 2024).
- Prine, B.R.; Pazik, M.N.; Prine, A.; Haley, H.; Bruner, M.L.; Vincent, H.K. Characteristics and reported injuries of recreational and competitive archers. J. Sports Med. Phys. Fit. 2023, 63, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Punnett, L.; Fine, L.J.; Keyserling, W.M.; Herrin, G.D.; Chaffin, D.B. Shoulder disorders and postural stress in automobile assembly work. Scand. J. Work. Environ. Health 2000, 26, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, S.W.; Bonde, J.P.; Mathiassen, S.E.; Stengaard-Pedersen, K.; Frich, L. Work related shoulder disorders: Quantitative exposure-response relations with reference to arm posture. Occup. Environ. Med. 2004, 61, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Ellenbecker, T.S.; Cools, A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: An evidence-based review. Br. J. Sports Med. 2010, 44, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.-C.; Ko, Y.-C.; Chen, S.-S.; Yu, H.-S.; Wu, T.-N.; Chang, P.-Y. Prevalence of shoulder and upper-limb disorders among workers in the fish-processing industry. Scand. J. Work. Environ. Health 1993, 19, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Sporrong, H.; Palmerud, G.; Herberts, P. Hand grip increases shoulder muscle activity: An EMG analysis with static handcontractions in 9 subjects. Acta Orthop. Scand. 1996, 67, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Parmar, L. Comparison between genders for trunk mobility in normal adults: A cross sectional study. Int. J. Health Sci. 2022, 6, 1564–1573. [Google Scholar] [CrossRef]
- Archery Stance and Posture. Online Archery Academy. Available online: https://www.onlinearcheryacademy.com/archery-stance-and-posture (accessed on 3 November 2024).
- The Best Method Biomechanically Efficient Shooting Technique. USA Archery. Available online: https://www.mfaa-archery.org/Tech-Support/Archery_Form_Handbook.pdf (accessed on 3 November 2024).
- Bowsite. Bowsite’s ER. Available online: https://www.bowsite.com/bowsite/features/bowdoc/elbow/ (accessed on 12 July 2024).
- ArcheryTalk. Elbow Locked on Draw? Available online: https://www.archerytalk.com/threads/elbow-locked-on-draw.1582923/ (accessed on 12 July 2024).
- Islam, S.U.; Glover, A.; MacFarlane, R.J.; Mehta, N.; Waseem, M. The anatomy and biomechanics of the elbow. Open Orthop. J. 2020, 14, 95–100. [Google Scholar] [CrossRef]
- Felix, H. Elbow Anatomy & Biomechanics. Available online: https://www.orthobullets.com/shoulder-and-elbow/3078/elbow-anatomy-and-biomechanics (accessed on 5 January 2025).
- Chapleau, J.; Canet, F.; Petit, Y.; Laflamme, G.-Y.; Rouleau, D.M. Validity of goniometric elbow measurements: Comparative study with a radiographic method. Clin. Orthop. Relat. Res. 2011, 469, 3134–3140. [Google Scholar] [CrossRef]
- Ji, X.; Hernandez, J.; Schweitzer, E.; Wang, W.; Piovesan, D. The assessment of injury risk in the healthcare sector via integrating motion tracking techniques with digital human modelling ergonomic tools. Int. J. Hum. Factors Model. Simul. 2023, 8, 1–20. [Google Scholar] [CrossRef]
- Simsek, D.; Cerrah, A.O.; Ertan, H.; Soylu, R.A. Muscular coordination of movements associated with arrow release in archery. South Afr. J. Res. Sport Phys. Educ. Recreat. 2018, 40, 141–155. [Google Scholar]
- Taha, Z.; Haque, M.; Musa, R.M.; Abdullah, M.R.; Maliki, A.B.H.M.; Mat-Rashid, S.M.; Kosni, N.A.; Adnan, A. Analysis of biological and mechanical related performance parameters of Malaysian senior youth archers. Adv. Hum. Biol. 2017, 7, 137–141. [Google Scholar]
- WA. Equipment Compound. World Archery. Available online: https://www.worldarchery.sport/sport/equipment/compound# (accessed on 25 October 2024).
- Deodato, M.; Saponaro, S.; Šimunič, B.; Martini, M.; Murena, L.; Buoite Stella, A. Trunk muscles’ characteristics in adolescent gymnasts with low back pain: A pilot study on the effects of a physiotherapy intervention including a postural reeducation program. J. Man. Manip. Ther. 2023, 32, 310–324. [Google Scholar] [CrossRef]
Subjects | Number | Body Mass (kg) | Body Height (cm) |
---|---|---|---|
Females | 6 | 66.2 ± 17.2 | 162.5 ± 7.5 |
Males | 7 | 75.4 ± 20.4 | 174.7 ± 9.6 |
Comp (N) | R_Shoulder (°) | L_Shoulder (°) | R_Elbow (°) | L_Elbow (°) | Trunk (°) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F/E | Add/Abd | Rot | F/E | Add/Abd | Rot | F/E | F/E | F/E | Rot | |||
20C | AVE_F | 511.0 ± 97.9 | 33.8 ± 11.3 | 117.1 ± 11.1 | -40.6 ± 18.7 | 18.0 ± 8.7 | 74.8 ± 4.1 | −35.3 ± 19.7 | 156.9 ± 6.2 | 1.0 ± 5.8 | −9.0 ± 10.5 | 4.4 ± 9.1 |
AVE_M | 581.0 ± 177.8 | 46.7 ± 11.6 | 105.6 ± 22.9 | −46.6 ± 18.3 | 9.2 ± 15.5 | 79.9 ± 8.3 | −43.5 ± 15.9 | 156.7 ± 9.5 | −0.1 ± 7.3 | −2.4 ± 2.3 | 0.0 ± 4.4 | |
20F | AVE_F | 469.3 ± 110.8 | 35.1 ± 10.1 | 114.9 ± 12.4 | −40.7 ± 21.6 | 15.7 ± 8.4 | 76.7 ± 6.6 | −38.4 ± 17.4 | 157.2 ± 5.7 | 2.1 ± 11.9 | −7.6 ± 9.2 | −1.9 ± 9.9 |
AVE_M | 588.0 ± 191.7 | 45.5 ± 11.3 | 107.6 ± 25.0 | −47.8 ± 20.7 | 9.9 ± 15.7 | 81.5 ± 8.0 | −44.6 ± 11.1 | 156.9 ± 7.7 | −2.3 ± 8.6 | −4.9 ± 4.8 | 0.3 ± 5.4 | |
25C | AVE_F | 554.9 ± 115.1 | 40.1 ± 14.9 | 114.0 ± 12.7 | −40.9 ± 20.1 | 17.5 ± 11.8 | 75.8 ± 3.6 | −37.6 ± 23.7 | 158.0 ± 5.7 | 2.1 ± 7.0 | −9.8 ± 8.3 | 0.7 ± 8.9 |
AVE_M | 618.1 ± 266.5 | 47.2 ± 12.2 | 104.9 ± 21.4 | −45.5 ± 20.1 | 9.3 ± 11.0 | 84.4 ± 7.8 | −44.8 ± 16.2 | 157.4 ± 7.6 | −1.2 ± 5.5 | −3.4 ± 3.4 | −1.7 ± 8.1 | |
25F | AVE_F | 501.1 ± 72.1 | 39.4 ± 15.8 | 113.4 ± 9.8 | −39.4 ± 19.4 | 11.2 ± 13.6 | 74.3 ± 5.0 | −28.8 ± 29.2 | 156.5 ± 6.3 | 3.8 ± 4.5 | −7.7 ± 6.6 | −0.5 ± 10.8 |
AVE_M | 606.1 ± 311.1 | 45.0 ± 13.1 | 100.9 ± 30.9 | −42.5 ± 23.3 | 10.2 ± 11.2 | 83.4 ± 8.5 | −42.3 ± 17.1 | 157.1 ± 7.9 | −0.9 ± 6.2 | −2.4 ± 3.5 | −5.0 ± 8.1 | |
32C | AVE_F | 488.4 ± 43.0 | 32.0 ± 7.1 | 107.1 ± 1.6 | −24.4 ± 14.0 | 28.9 ± 12.1 | 76.4 ± 13.1 | −58.4 ± 32.1 | 159.5 ± 4.4 | −9.2 ± 6.2 | −17.7 ± 4.5 | 7.5 ± 8.6 |
AVE_M | 772.8 ± 261.3 | 46.4 ± 11.2 | 110.6 ± 20.8 | −49.3 ± 22.8 | 15.2 ± 12.9 | 81.9 ± 6.9 | −47.0 ± 15.3 | 157.5 ± 7.4 | −4.3 ± 7.6 | −7.5 ± 4.6 | −6.1 ± 7.8 | |
32F | AVE_F | 513.3 ± 47.6 | 28.0 ± 7.1 | 109.2 ± 4.4 | −25.2 ± 14.8 | 29.0 ± 15.6 | 79.6 ± 13.6 | −60.2 ± 30.0 | 157.9 ± 5.2 | −9.5 ± 9.0 | −17.9 ± 3.8 | 14.3 ± 11.9 |
AVE_M | 718.4 ± 294.7 | 43.4 ± 8.2 | 108.1 ± 19.8 | −47.3 ± 17.4 | 12.6 ± 13.2 | 81.6 ± 7.6 | −47.7 ± 15.1 | 156.9 ± 9.6 | −3.5 ± 5.6 | −6.4 ± 3.9 | −1.0 ± 2.4 |
Compressive | R_SH_EF | L_Elbow | |||||||
---|---|---|---|---|---|---|---|---|---|
20 lbs | 25 lbs | 32 lbs | 20 lbs | 25 lbs | 32 lbs | 20 lbs | 25 lbs | 32 lbs | |
Trunk_E/F | 0.35 | 0.39 | 0.53 | 0.42 | 0.37 | 0.48 | 0.18 | 0.24 | 0.37 |
R_SH_EF | L_SH_EF | L_Elbow | |||||||
---|---|---|---|---|---|---|---|---|---|
20 lbs | 25 lbs | 32 lbs | 20 lbs | 25 lbs | 32 lbs | 20 lbs | 25 lbs | 32 lbs | |
Trunk_Rot | 0.29 | 0.52 | 0.76 | 0.22 | 0.34 | 0.50 | 0.17 | 0.33 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Al Tamimi, Z.; Gao, X.; Piovesan, D. The Impact of Draw Weight on Archers’ Posture and Injury Risk Through Motion Capture Analysis. Appl. Sci. 2025, 15, 879. https://doi.org/10.3390/app15020879
Ji X, Al Tamimi Z, Gao X, Piovesan D. The Impact of Draw Weight on Archers’ Posture and Injury Risk Through Motion Capture Analysis. Applied Sciences. 2025; 15(2):879. https://doi.org/10.3390/app15020879
Chicago/Turabian StyleJi, Xiaoxu, Zainab Al Tamimi, Xin Gao, and Davide Piovesan. 2025. "The Impact of Draw Weight on Archers’ Posture and Injury Risk Through Motion Capture Analysis" Applied Sciences 15, no. 2: 879. https://doi.org/10.3390/app15020879
APA StyleJi, X., Al Tamimi, Z., Gao, X., & Piovesan, D. (2025). The Impact of Draw Weight on Archers’ Posture and Injury Risk Through Motion Capture Analysis. Applied Sciences, 15(2), 879. https://doi.org/10.3390/app15020879