Direct Epitaxy of SnSe2/SnSe Hetero-Bilayer with a Type-III Band Gap Alignment
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Details
5. Computational Details
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Wang, H.; Wen, Y.; Zeng, H.; Xiong, Z.; Tu, Y.; Zhu, H.; Cheng, R.; Yin, L.; Jiang, J.; Zhai, B.; et al. 2D Ferroic Materials for Nonvolatile Memory Applications. Adv. Mater. 2024, 10, 2305044. [Google Scholar] [CrossRef]
- Li, S.; Huang, G.; Jia, Y.; Wang, B.; Wang, H.; Zhang, H. Photoelectronic properties and devices of 2D Xenes. J. Mater. Sci. Technol. 2022, 126, 44–59. [Google Scholar] [CrossRef]
- Dragoman, M.; Dinescu, A.; Dragoman, D. 2D Materials Nanoelectronics: New Concepts, Fabrication, Characterization From Microwaves up to Optical Spectrum. Phys. Status Solidi A-Appl. Mater. Sci. 2019, 216, 1800724. [Google Scholar] [CrossRef]
- Shen, X.; Song, J.; Sevencan, C.; Leong, D.T.; Ariga, K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci. Technol. Adv. Mater. 2022, 23, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.S.; Varghese, S.H.; Swaminathan, S.; Singh, K.K.; Mittal, V. Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef]
- Hu, G.; Kang, J.; Ng, L.W.T.; Zhu, X.; Howe, R.C.T.; Jones, C.G.; Hersam, M.C.; Hasan, T. Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 2018, 47, 3265–3300. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. [Google Scholar] [CrossRef]
- Yun, W.S.; Han, S.W.; Hong, S.C.; Kim, I.G.; Lee, J.D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305. [Google Scholar] [CrossRef]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213. [Google Scholar] [CrossRef]
- Shin, B.G.; Han, G.H.; Yun, S.J.; Oh, H.M.; Bae, J.J.; Song, Y.J.; Park, C.Y.; Lee, Y.H. Indirect Bandgap Puddles in Monolayer MoS2 by Substrate-Induced Local Strain. Adv. Mater. 2016, 28, 9378–9384. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Qi, F.; Zheng, B.J.; Hou, W.Q.; Zhang, W.L.; Li, Y.R.; Chen, Y.F. Self-assembled pearl-bracelet-like CoSe2-SnSe2/CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 1655–1662. [Google Scholar] [CrossRef]
- Ding, W.J.; Zhu, J.B.; Wang, Z.; Gao, Y.F.; Xiao, D.; Gu, Y.; Zhang, Z.Y.; Zhu, W.G. Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials. Nat. Commun. 2017, 8, 14956. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.S.; Kioupakis, E. Anisotropic Spin Transport and Strong Visible-Light Absorbance in Few-Layer SnSe and GeSe. Nano Lett. 2015, 15, 6926–6931. [Google Scholar] [CrossRef]
- Barrios-Salgado, E.; Nair, M.T.S.; Nair, P.K. Chemically Deposited SnSe Thin Films: Thermal Stability and Solar Cell Application. Ecs J. Solid State Sci. Technol. 2014, 3, 169–175. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Oleynik, I.I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 2016, 94, 125443. [Google Scholar] [CrossRef]
- Shafique, A.; Samad, A.; Shin, Y.H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: A first principles study. Phys. Chem. Chem. Phys. 2017, 19, 20677–20683. [Google Scholar] [CrossRef]
- Wu, F.C.; Lovorn, T.; MacDonald, A.H. Topological Exciton Bands in Moire Heterojunctions. Phys. Rev. Lett. 2017, 118, 147401. [Google Scholar] [CrossRef]
- Burg, G.W.; Zhu, J.H.; Taniguchi, T.; Watanabe, K.; MacDonald, A.H.; Tutuc, E. Correlated Insulating States in Twisted Double Bilayer Graphene. Phys. Rev. Lett. 2019, 123, 197702. [Google Scholar] [CrossRef]
- Sheng, D.N.; Reddy, A.P.; Abouelkomsan, A.; Bergholtz, E.J.; Fu, L. Quantum Anomalous Hall Crystal at Fractional Filling of Moire Superlattices. Phys. Rev. Lett. 2024, 133, 066601. [Google Scholar] [CrossRef]
- Xue, Y.Z.; Zhang, Y.P.; Liu, Y.; Liu, H.T.; Song, J.C.; Sophia, J.; Liu, J.Y.; Xu, Z.Q.; Xu, Q.Y.; Wang, Z.Y.; et al. Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. Acs Nano 2016, 10, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.F.; Zheng, B.Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.H.; Qi, Z.Y.; Liu, H.J.; Feng, Y.X.; et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906. [Google Scholar] [CrossRef] [PubMed]
- Nourbakhsh, A.; Zubair, A.; Dresselhaus, M.S.; Palacios, T. Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. Nano Lett. 2016, 16, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Shi, Y.M.; Cheng, C.C.; Lu, L.S.; Lin, Y.C.; Tang, H.L.; Tsai, M.L.; Chu, C.W.; Wei, K.H.; He, J.H.; et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528. [Google Scholar] [CrossRef]
- Sutter, E.; Huang, Y.; Komsa, H.P.; Ghorbani-Asl, M.; Krasheninnikov, A.V.; Sutter, P. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. Nano Lett. 2016, 16, 4410–4416. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, M.X.; Xue, X.X.; Xia, W.; Guo, C.L.; Guo, Y.F.; Feng, Y.X.; Xue, J.M. Lateral Heterostructures Formed by Thermally Converting n-Type SnSe2 to p-Type SnSe. ACS Appl. Mater. Interfaces 2018, 10, 12831–12838. [Google Scholar] [CrossRef]
- Ji, D.X.; Cai, S.H.; Paudel, T.R.; Sun, H.Y.; Zhang, C.C.; Han, L.; Wei, Y.F.; Zang, Y.P.; Gu, M.; Zhang, Y.; et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90. [Google Scholar] [CrossRef]
- Liu, X.K.; Zhang, Y.; Liu, Q.; He, J.Z.; Chen, L.; Li, K.L.; Jia, F.; Zeng, Y.X.; Lu, Y.M.; Yu, W.J.; et al. Band alignment of ZnO/multilayer MoS2 interface determined by X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2016, 109, 1602. [Google Scholar] [CrossRef]
- Cao, X.H.; Lei, Z.H.; Zhao, S.T.; Tao, L.L.; Zheng, Z.Q.; Feng, X.; Li, J.B.; Zhao, Y. Te/SnS2 tunneling heterojunctions as high-performance photodetectors with superior self-powered properties. Nanoscale Adv. 2022, 4, 4296–4303. [Google Scholar] [CrossRef]
- Cao, X.H.; Lei, Z.H.; Huang, B.Q.; Wei, A.X.; Tao, L.L.; Yang, Y.B.; Zheng, Z.Q.; Feng, X.; Li, J.B.; Zhao, Y. Non-Layered Te/In2S3 Tunneling Heterojunctions with Ultrahigh Photoresponsivity and Fast Photoresponse. Small 2022, 18, 2200445. [Google Scholar] [CrossRef]
- Deng, D.W.; Ran, L.X.; Li, Y.B.; Ge, Q.X.; Xu, Y.; Li, X.B.; Tang, Z.K.; Yin, W.J. Polarization enhanced carrier performance in GaN/WSSe heterostructures for overall water splitting: A first-principles study. Appl. Surf. Sci. 2025, 682, 161734. [Google Scholar] [CrossRef]
- Ghosh, S.; Varghese, A.; Jawa, H.; Yin, Y.F.; Medhekar, N.; Lodha, S. Polarity-Tunable Photocurrent through Band Alignment Engineering in a High-Speed WSe2/SnSe2 Diode with Large Negative Responsivity. ACS Nano 2022, 16, 4578–4587. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Wang, D.X.; Chen, X.Y.; Zhou, Y.; Luo, H.T.; Zhao, T.; Hu, S.; Zheng, Z.Q.; Gao, W.; Liu, X. Engineering energy bands in 0D-2D hybrid photodetectors: Cu-doped InP quantum dots on a type-III SnSe2/MoTe2 heterojunction. Nanoscale Horiz. 2025, 10, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.S.; Fathipour, S.; Han, Y.M.; Song, B.; Xiao, S.D.; Li, M.D.; Ma, N.; Protasenko, V.; Muller, D.A.; Jena, D.; et al. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Lett. 2015, 15, 5791–5798. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.; Oh, S.; Kang, D.H.; Jo, S.H.; Ali, M.H.; Choi, W.Y.; Heo, K.; Jeon, J.; Lee, S.; Kim, M.; et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 2016, 7, 13413. [Google Scholar] [CrossRef]
- Peters, M.J.; McNeil, L.E. High-pressue Mossbauer study of SnSe. Phys. Rev. B 1990, 41, 5893–5897. [Google Scholar] [CrossRef]
- Pletikosic, I.; von Rohr, F.; Pervan, P.; Das, P.K.; Vobornik, I.; Cava, R.J.; Valla, T. Band Structure of the IV-VI Black Phosphorus Analog and Thermoelectric SnSe. Phys. Rev. Lett. 2018, 120, 156403. [Google Scholar] [CrossRef]
- Erdemir, A. Crystal Chemistry and Solid Lubricating Properties of the Monochalcogenides Gallium Selenide and Tin Selenide. Tribol. Trans. 1994, 37, 471–478. [Google Scholar] [CrossRef]
- Lu, G.H.; Yu, K.H.; Wen, Z.H.; Chen, J.H. Semiconducting graphene: Converting graphene from semimetal to semiconductor. Nanoscale 2013, 5, 1353–1368. [Google Scholar] [CrossRef]
- Wei, Z.X.; Wang, L.; Zhuo, M.; Ni, W.; Wang, H.X.; Ma, J.M. Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 2018, 6, 12185–12214. [Google Scholar] [CrossRef]
- Huang, Y.C.; Ling, C.Y.; Liu, H.; Wang, S.F. Tuning electronic and magnetic properties of SnSe2 armchair nanoribbons via edge hydrogenation. J. Mater. Chem. C 2014, 2, 10175–10183. [Google Scholar] [CrossRef]
- Li, W.W.; Xiong, L.; Li, N.C.; Pang, S.; Xu, G.L.; Yi, C.H.; Wang, Z.X.; Gu, G.Q.; Li, K.W.; Li, W.M.; et al. Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection. J. Mater. Chem. C 2019, 7, 10179–10186. [Google Scholar] [CrossRef]
- Shi, W.R.; Gao, M.X.; Wei, J.P.; Gao, J.F.; Fan, C.W.; Ashalley, E.; Li, H.D.; Wang, Z.M. Tin Selenide (SnSe): Growth, Properties, and Applications. Adv. Sci. 2018, 5, 1700602. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M.S. Raman spectroscopy of transition metal dichalcogenides. J. Phys.-Condens. Matter 2016, 28, 353002. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Q.; Li, H.; Yuan, Q.Q.; Song, Y.H.; Lv, Y.Y.; Shi, W.; Jia, Z.Y.; Gao, L.; Chen, Y.B.; Zhu, W.; et al. Van der Waals Heteroepitaxial Growth of Monolayer Sb in a Puckered Honeycomb Structure. Adv. Mater. 2018, 31, 1806130. [Google Scholar] [CrossRef]
- Shi, Z.-Q.; Li, H.; Xue, C.-L.; Yuan, Q.-Q.; Lv, Y.-Y.; Xu, Y.-J.; Jia, Z.-Y.; Gao, L.; Chen, Y.; Zhu, W.; et al. Tuning the Electronic Structure of an α-Antimonene Monolayer through Interface Engineering. Nano Lett. 2020, 20, 8408–8414. [Google Scholar] [CrossRef]
- Shi, Z.-Q.; Li, H.; Yuan, Q.-Q.; Xue, C.-L.; Xu, Y.-J.; Lv, Y.-Y.; Jia, Z.-Y.; Chen, Y.; Zhu, W.; Li, S.-C. Kinetics-Limited Two-Step Growth of van der Waals Puckered Honeycomb Sb Monolayer. ACS Nano 2020, 14, 16755–16760. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237. [Google Scholar] [CrossRef]
- Komsa, H.-P.; Krasheninnikov, A.V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Phys. Rev. B 2013, 88, 085318. [Google Scholar] [CrossRef]
- Li, M.-Y.; Chen, C.-H.; Shi, Y.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335. [Google Scholar] [CrossRef]
- Chiu, M.-H.; Zhang, C.; Shiu, H.-W.; Chuu, C.-P.; Chen, C.-H.; Chang, C.-Y.S.; Chen, C.-H.; Chou, M.-Y.; Shih, C.-K.; Li, L.-J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, S.; Brem, S.; Linderälv, C.; Kuisma, M.; Korn, T.; Erhart, P.; Selig, M.; Malic, E. Interlayer exciton dynamics in van der Waals heterostructures. Commun. Phys. 2019, 2, 23. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Hu, P.; Sun, J.; Li, Q.; Lei, Z.B.; Liu, Z.H.; He, X.X. Construction of a SnSe/SnSe2 heterojunction for superior photoelectrochemical photodetectors. J. Mater. Chem. C 2025, 13, 11962–11969. [Google Scholar] [CrossRef]
- Li, Y.; Duan, J.M.; Berencén, Y.; Hübner, R.; Tsai, H.S.; Kuo, C.N.; Lue, C.S.; Helm, M.; Zhou, S.Q.; Prucnal, S. Formation of a vertical SnSe/SnSe2 p-n heterojunction by NH3 plasma-induced phase transformation. Nanoscale Adv. 2023, 5, 443–449. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.Y.; Li, B. Epitaxial-Growth SnSe2/SnSe Lateral Heterojunction Boosts Piezocatalytic Degradation of Antibiotics. Cryst. Growth Des. 2025, 25, 5022–5032. [Google Scholar] [CrossRef]
- Sai-Halasz, G.A.; Esaki, L.; Harrison, W.A. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition. Phys. Rev. B 1978, 18, 2812–2818. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar] [CrossRef]
- Fei, R.; Kang, W.; Yang, L. Ferroelectricity and Phase Transitions in Monolayer Group-IV Monochalcogenides. Phys. Rev. Lett. 2016, 117, 097601. [Google Scholar] [CrossRef] [PubMed]
- Wu, M. Two-Dimensional van der Waals Ferroelectrics: Scientific and Technological Opportunities. ACS Nano 2021, 15, 9229–9237. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Krukau, A.V.; Vydrov, O.A.; Izmaylov, A.F.; Scuseria, G.E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Methfessel, M.; Paxton, A.T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 1989, 40, 3616–3621. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, L.-G.; Guo, R.-N.; Li, H.; Xue, C.-L.; Yuan, Q.-Q.; Yao, S.-H.; Lv, Y.-Y.; Chen, Y.; Zhu, W.; Li, S.-C. Direct Epitaxy of SnSe2/SnSe Hetero-Bilayer with a Type-III Band Gap Alignment. Appl. Sci. 2025, 15, 11110. https://doi.org/10.3390/app152011110
Dou L-G, Guo R-N, Li H, Xue C-L, Yuan Q-Q, Yao S-H, Lv Y-Y, Chen Y, Zhu W, Li S-C. Direct Epitaxy of SnSe2/SnSe Hetero-Bilayer with a Type-III Band Gap Alignment. Applied Sciences. 2025; 15(20):11110. https://doi.org/10.3390/app152011110
Chicago/Turabian StyleDou, Li-Guo, Ruo-Nan Guo, Huiping Li, Cheng-Long Xue, Qian-Qian Yuan, Shu-Hua Yao, Yang-Yang Lv, Yanbin Chen, Wenguang Zhu, and Shao-Chun Li. 2025. "Direct Epitaxy of SnSe2/SnSe Hetero-Bilayer with a Type-III Band Gap Alignment" Applied Sciences 15, no. 20: 11110. https://doi.org/10.3390/app152011110
APA StyleDou, L.-G., Guo, R.-N., Li, H., Xue, C.-L., Yuan, Q.-Q., Yao, S.-H., Lv, Y.-Y., Chen, Y., Zhu, W., & Li, S.-C. (2025). Direct Epitaxy of SnSe2/SnSe Hetero-Bilayer with a Type-III Band Gap Alignment. Applied Sciences, 15(20), 11110. https://doi.org/10.3390/app152011110

