Estimation and Validation of the “c” Factor for Overall Cerebral Functioning in the Philadelphia Neurodevelopmental Cohort
Abstract
:1. Introduction
- Its own specific factor (e.g., verbal memory test on the “Memory” factor);
- The general factor comprising variables in its super-domain (e.g., verbal memory test on the “g” factor);
- The c-factor comprising all variables.
2. Materials and Methods
2.1. Participants
2.2. Cognitive Measures: Penn Computerized Neurocognitive Battery (CNB)
2.2.1. Executive Control
2.2.2. Episodic Memory
2.2.3. Complex Cognition
2.2.4. Social Cognition
2.3. Clinical Assessment: Structured Interview (GOASSESS)
2.4. Neighborhood Characteristics
2.5. Intracranial Volume (ICV)
2.6. Longitudinal Psychosis Assessment
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonas, K.G.; Cannon, T.D.; Docherty, A.R.; Dwyer, D.; Gur, R.C.; Gur, R.E.; Kotov, R. Psychosis superspectrum I: Nosology, etiology, and lifespan development. Mol. Psychiatry 2024, 29, 1005–1019. [Google Scholar] [CrossRef]
- Calkins, M.E.; Moore, T.M.; Satterthwaite, T.D.; Wolf, D.H.; Turetsky, B.I.; Roalf, D.R.; Gur, R.E. Persistence of psychosis spectrum symptoms in the Philadelphia Neurodevelopmental Cohort: A prospective two-year follow-up. World Psychiatry 2017, 16, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Clementz, B.A.; Chattopadhyay, I.; Trotti, R.L.; Parker, D.A.; Gershon, E.S.; Hill, S.K.; Gibbons, R.D. Clinical characterization and differentiation of B-SNIP psychosis Biotypes: Algorithmic Diagnostics for Efficient Prescription of Treatments (ADEPT)-1. Schizophr. Res. 2023, 260, 143–151. [Google Scholar] [CrossRef]
- Liu, Y.; Lichtenstein, P.; Kotov, R.; Larsson, H.; D’Onofrio, B.M.; Pettersson, E. Exploring the genetic etiology across the continuum of the general psychopathology factor: A Swedish population-based family and twin study. Mol. Psychiatry 2024, 29, 2921–2928. [Google Scholar] [CrossRef] [PubMed]
- McGorry, P.D.; Mei, C.; Amminger, G.P.; Yuen, H.P.; Kerr, M.; Spark, J.; Nelson, B. A sequential adaptive intervention strategy targeting remission and functional recovery in young people at ultrahigh risk of psychosis: The Staged Treatment in Early Psychosis (STEP) sequential multiple assignment randomized trial. JAMA Psychiatry 2023, 80, 875–885. [Google Scholar] [CrossRef]
- Dalkner, N.; Moore, R.C.; Depp, C.A.; Ackerman, R.A.; Pinkham, A.E.; Harvey, P.D. Immediate post performance judgements about cognitive performance in schizophrenia and bipolar disorder: Associations with test performance and subjective overall judgments regarding abilities. Cogn. Neuropsychiatry 2023, 28, 450–466. [Google Scholar] [CrossRef]
- McCutcheon, R.A.; Keefe, R.S.; McGuire, P.K. Cognitive impairment in schizophrenia: Aetiology, pathophysiology, and treatment. Mol. Psychiatry 2023, 28, 1902–1918. [Google Scholar] [CrossRef]
- Rekhi, G.; Saw, Y.E.; Lim, K.; Keefe, R.S.; Lee, J. Impact of cognitive impairments on health-related quality of life in schizophrenia. Brain Sci. 2023, 13, 215. [Google Scholar] [CrossRef]
- Bergé, D.; Carter, C.S.; Smucny, J. Identification of distinct clinical profiles and trajectories in individuals at high risk of developing psychosis: A latent profile analysis of the north American prodrome longitudinal study consortium-3 dataset. Early Interv. Psychiatry 2024, 18, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Jiang, R.; Bustillo, J.; Kochunov, P.; Turner, J.A.; Liang, C.; Calhoun, V.D. Cross-cohort replicable resting-state functional connectivity in predicting symptoms and cognition of schizophrenia. Hum. Brain Mapp. 2024, 45, 26694. [Google Scholar] [CrossRef]
- Zoupou, E.; Moore, T.M.; Calkins, M.E.; Gur, R.E.; Gur, R.C.; Scott, J.C. Domain-specific associations between psychopathology and neurocognitive functioning. Psychol. Med. 2024, 54, 3145–3155. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Alford, B.A. Depression: Causes and Treatment, 2nd ed.; University of Pennsylvania Press: Philadelphia, PA, USA, 2009. [Google Scholar]
- Calkins, M.E.; Merikangas, K.R.; Moore, T.M.; Burstein, M.; Behr, M.A.; Satterthwaite, T.D.; Gur, R.E. The Philadelphia Neurodevelopmental Cohort: Constructing a deep phenotyping collaborative. J. Child Psychol. Psychiatry 2015, 56, 1356–1369. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, G.; Hawes, D.J.; Frick, P.J.; Copeland, W.E.; Odgers, C.L.; Franke, B.; Brito, S.A. Conduct disorder. Nat. Rev. Dis. Primers 2019, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.D. Executive control of thought and action. Acta Psychol. 1985, 60, 193–210. [Google Scholar] [CrossRef]
- Tulving, E. Episodic memory: From mind to brain. Annu. Rev. Psychol. 2002, 53, 1–25. [Google Scholar] [CrossRef]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Spearman, C. General Intelligence’ objectively determined and measured. Am. J. Psychol. 1904, 15, 201–292. [Google Scholar] [CrossRef]
- Caspi, A.; Houts, R.M.; Belsky, D.W.; Goldman-Mellor, S.J.; Harrington, H.; Israel, S.; Moffitt, T.E. The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2014, 2, 119–137. [Google Scholar] [CrossRef]
- Lahey, B.B.; Applegate, B.; Hakes, J.K.; Zald, D.H.; Hariri, A.R.; Rathouz, P.J. Is there a general factor of prevalent psychopathology during adulthood? J. Abnorm. Psychol. 2012, 121, 971. [Google Scholar] [CrossRef] [PubMed]
- Abramovitch, A.; Short, T.; Schweiger, A. The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clin. Psychol. Rev. 2021, 86, 102007. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, A.K.; Lane, S.P.; Gette, J.A.; Watts, A.L.; Sher, K.J. The “Big Everything”: Integrating and investigating dimensional models of psychopathology, personality, personality pathology, and cognitive functioning. Personal. Disord. Theory Res. Treat. 2021, 12, 103. [Google Scholar] [CrossRef]
- Fissler, P.; Mavioglu, R.N.; Wenzel, M.; Stoewer, S.; Wolff, W.; Karabatsiakis, A.; Krähenmann, R. The link between mitochondria, psychopathology, and intelligence: A bioenergetic model of cerebral function. PsyArXiv 2022. [Google Scholar] [CrossRef]
- Bauer, D.J.; Howard, A.L.; Baldasaro, R.E.; Curran, P.J.; Hussong, A.M.; Chassin, L.; Zucker, R.A. A trifactor model for integrating ratings across multiple informants. Psychol. Methods 2013, 18, 475. [Google Scholar] [CrossRef] [PubMed]
- Reise, S.P. The rediscovery of bifactor measurement models. Multivar. Behav. Res. 2012, 47, 667–696. [Google Scholar] [CrossRef]
- Burt, C. The evidence for the concept of intelligence. Br. J. Educ. Psychol. 1955, 25, 158–177. [Google Scholar] [CrossRef]
- Baldwin, H.; Loebel-Davidsohn, L.; Oliver, D.; Pablo, G.; Stahl, D.; Riper, H.; Fusar-Poli, P. Real-world implementation of precision psychiatry: A systematic review of barriers and facilitators. Brain Sci. 2022, 12, 934. [Google Scholar] [CrossRef]
- Gur, R.C.; Richard, J.; Hughett, P.; Calkins, M.E.; Macy, L.; Bilker, W.B.; Gur, R.E. A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. J. Neurosci. Methods 2010, 187, 254–262. [Google Scholar] [CrossRef]
- Moore, T.M.; Reise, S.P.; Gur, R.E.; Hakonarson, H.; Gur, R.C. Psychometric properties of the Penn computerized neurocognitive battery. Neuropsychology 2015, 29, 235. [Google Scholar] [CrossRef]
- Kurtz, M.M.; Wexler, B.E.; Bell, M.D. The Penn Conditional Exclusion Test (PCET): Relationship to the Wisconsin Card Sorting Test and work function in patients with schizophrenia. Schizophr. Res. 2004, 68, 95–102. [Google Scholar] [CrossRef]
- Kurtz, M.M.; Ragland, J.D.; Bilker, W.; Gur, R.C.; Gur, R.E. Comparison of the continuous performance test with and without working memory demands in healthy controls and patients with schizophrenia. Schizophr. Res. 2001, 48, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Gur, R.C.; Ragland, J.D.; Mozley, L.H.; Mozley, P.D.; Smith, R.; Alavi, A.; Gur, R.E. Lateralized changes in regional cerebral blood flow during performance of verbal and facial recognition tasks: Correlations with performance and “effort”. Brain Cogn. 1997, 33, 388–414. [Google Scholar] [CrossRef]
- Glahn, D.C.; Gur, R.C.; Ragland, J.D.; Censits, D.M.; Gur, R.E. Reliability, performance characteristics, construct validity, and an initial clinical application of a visual object learning test (VOLT). Neuropsychology 1997, 11, 602. [Google Scholar] [CrossRef]
- Griffin, S.L.; Mindt, M.R.; Rankin, E.J.; Ritchie, A.J.; Scott, J.G. Estimating premorbid intelligence: Comparison of traditional and contemporary methods across the intelligence continuum. Arch. Clin. Neuropsychol. 2002, 17, 497–507. [Google Scholar] [CrossRef]
- Sayegh, P.; Arentoft, A.; Thaler, N.S.; Dean, A.C.; Thames, A.D. Quality of education predicts performance on the Wide Range Achievement Test-4th Edition Word Reading subtest. Arch. Clin. Neuropsychol. 2014, 29, 731–736. [Google Scholar] [CrossRef]
- Seidman, L.J.; Shapiro, D.I.; Stone, W.S.; Woodberry, K.A.; Ronzio, A.; Cornblatt, B.A.; Woods, S.W. Association of neurocognition with transition to psychosis: Baseline functioning in the second phase of the North American Prodrome Longitudinal Study. J. Am. Med. Assoc. Psychiatry 2016, 73, 1239–1248. [Google Scholar] [CrossRef]
- Carter, C.S.; Barch, D.M.; Gur, R.; Gur, R.; Pinkham, A.; Ochsner, K. CNTRICS final task selection: Social cognitive and affective neuroscience–based measures. Schizophr. Bull. 2009, 35, 153–162. [Google Scholar] [CrossRef]
- Calkins, M.E.; Moore, T.M.; Merikangas, K.R.; Burstein, M.; Satterthwaite, T.D.; Bilker, W.B.; Gur, R.E. The psychosis spectrum in a young US community sample: Findings from the Philadelphia Neurodevelopmental Cohort. World Psychiatry 2014, 13, 296–305. [Google Scholar] [CrossRef]
- Merikangas, K.R.; Avenevoli, S.; Costello, E.J.; Koretz, D.; Kessler, R.C. National comorbidity survey replication adolescent supplement (NCS-A): I. Background and measures. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 367–379. [Google Scholar] [CrossRef]
- Shaffer, D.; Gould, M.S.; Brasic, J.; Ambrosini, P.; Fisher, P.; Bird, H.; Aluwahlia, S. A children’s global assessment scale (CGAS). Arch. Gen. Psychiatry 1983, 40, 1228–1231. [Google Scholar] [CrossRef]
- Kobayashi, H.; Nemoto, T.; Koshikawa, H.; Osono, Y.; Yamazawa, R.; Murakami, M.; Mizuno, M. A self-reported instrument for prodromal symptoms of psychosis: Testing the clinical validity of the PRIME Screen—Revised (PS-R) in a Japanese population. Schizophr. Res. 2008, 106, 356–362. [Google Scholar] [CrossRef]
- Miller, T.J.; Cicchetti, D.; Markovich, P.J.; McGlashan, T.H.; Woods, S.W. The SIPS screen: A brief self-report screen to detect the schizophrenia prodrome. Schizophr. Res. 2004, 70, 78. [Google Scholar]
- Miller, T.J.; McGlashan, T.H.; Rosen, J.L.; Cadenhead, K.; Ventura, J.; McFarlane, W.; Woods, S.W. Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability. Schizophr. Bull. 2003, 29, 703–715. [Google Scholar] [CrossRef]
- Moore, T.M.; Martin, I.K.; Gur, O.M.; Jackson, C.T.; Scott, J.C.; Calkins, M.E.; Gur, R.C. Characterizing social environment’s association with neurocognition using census and crime data linked to the Philadelphia Neurodevelopmental Cohort. Psychol. Med. 2016, 46, 599–610. [Google Scholar] [CrossRef]
- Satterthwaite, T.D.; Elliott, M.A.; Ruparel, K.; Loughead, J.; Prabhakaran, K.; Calkins, M.E.; Gur, R.E. Neuroimaging of the Philadelphia neurodevelopmental cohort. Neuroimage 2014, 86, 544–553. [Google Scholar] [CrossRef]
- Andreasen, N.C.; Flaum, M.; Swayze, V.; O’Leary, D.S.; Alliger, R.; Cohen, G.; Yuh, W.T. Intelligence and brain structure in normal individuals. Am. J. Psychiatry 1993, 150, 130. [Google Scholar]
- Deary, I.J.; Ferguson, K.J.; Bastin, M.E.; Barrow, G.W.; Reid, L.M.; Seckl, J.R.; MacLullich, A.M. Skull size and intelligence, and King Robert Bruce’s IQ. Intelligence 2007, 35, 519–525. [Google Scholar] [CrossRef]
- McDaniel, M.A. Big-brained people are smarter: A meta-analysis of the relationship between in vivo brain volume and intelligence. Intelligence 2005, 33, 337–346. [Google Scholar] [CrossRef]
- McGlashan, T.H.; Miller, T.J.; Woods, S.W.; Rosen, J.L.; Hoffman, R.E.; Davidson, L. Structured Interview for Prodromal Syndromes; PRIME Research Clinic, Yale School of Medicine: New Haven, CT, USA, 2001. [Google Scholar]
- First, M.B.; Spitzer, R.L.; Gibbon, M.; Williams, J.B. Structured Clinical Interview for DSM-IV-TR Axis I Disorders; SCID-I/P: New York, NY, USA, 2002. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 1998. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Debatin, T. A revised mental energy hypothesis of the g factor in light of recent neuroscience. Rev. Gen. Psychol. 2019, 23, 201–210. [Google Scholar] [CrossRef]
- Geary, D.C. Efficiency of mitochondrial functioning as the fundamental biological mechanism of general intelligence (g). Psychol. Rev. 2018, 125, 1028. [Google Scholar] [CrossRef]
- Karabatsiakis, A.; Schönfeldt-Lecuona, C. Depression, mitochondrial bioenergetics, and electroconvulsive therapy: A new approach towards personalized medicine in psychiatric treatment-a short review and current perspective. Transl. Psychiatry 2020, 10, 226. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S.; Epel, E.S.; Sandi, C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018, 49, 72–85. [Google Scholar] [CrossRef]
- Raichle, M.E.; Gusnard, D.A. Appraising the brain’s energy budget. Proc. Natl. Acad. Sci. USA 2002, 99, 10237–10239. [Google Scholar] [CrossRef]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef]
- Bassett, A.S.; Chow, E.W.C.; AbdelMalik, P.; Gheorghiu, M.; Husted, J.; Weksberg, R. The schizophrenia phenotype in 22q11 deletion syndrome. Am. J. Psychiatry 2003, 160, 1580–1586. [Google Scholar] [CrossRef]
- Li, J.; Ryan, S.K.; Deboer, E.; Cook, K.; Fitzgerald, S.; Lachman, H.M.; Anderson, S.A. Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia. Transl. Psychiatry 2019, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tran, O.T.; Crowley, T.B.; Moore, T.M.; Zackai, E.H.; Emanuel, B.S.; Anderson, S.A. Association of mitochondrial biogenesis with variable penetrance of schizophrenia. JAMA Psychiatry 2021, 78, 911–921. [Google Scholar] [CrossRef]
- Arden, R.; Gottfredson, L.S.; Miller, G. Does a fitness factor contribute to the association between intelligence and health outcomes? Evidence from medical abnormality counts among 3654 US Veterans. Intelligence 2009, 37, 581–591. [Google Scholar] [CrossRef]
- Miller, G. Mental traits as fitness indicators: Expanding evolutionary psychology’s adaptationism. Ann. N. Y. Acad. Sci. 2000, 907, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Prokosch, M.D.; Yeo, R.A.; Miller, G.F. Intelligence tests with higher g-loadings show higher correlations with body symmetry: Evidence for a general fitness factor mediated by developmental stability. Intelligence 2005, 33, 203–213. [Google Scholar] [CrossRef]
- Frederick, D.A.; Haselton, M.G. Why is muscularity sexy? Tests of the fitness indicator hypothesis. Personal. Soc. Psychol. Bull. 2007, 33, 1167–1183. [Google Scholar] [CrossRef]
- Collins, S.A.; Missing, C. Vocal and visual attractiveness are related in women. Anim. Behav. 2003, 65, 997–1004. [Google Scholar] [CrossRef]
- Locke, J.L. Emancipation of the voice: Vocal complexity as a fitness indicator. Psychon. Bull. Rev. 2017, 24, 232–237. [Google Scholar] [CrossRef]
- Gallup, A.C.; Fink, B. Handgrip strength as a Darwinian fitness indicator in men. Front. Psychol. 2018, 9, 439. [Google Scholar] [CrossRef]
- Buss, D.M. The Evolution of Desire: Strategies of Human Mating; Basic Books: New York, NY, USA, 1994; Volume 12. [Google Scholar]
- Johnston, V.S.; Hagel, R.; Franklin, M.; Fink, B.; Grammer, K. Male facial attractiveness: Evidence for hormone-mediated adaptive design. Evol. Hum. Behav. 2001, 22, 251–267. [Google Scholar] [CrossRef]
- Palmer, A.R.; Strobeck, C. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Thornhill, R.; Gangestad, S.W. Human fluctuating asymmetry and sexual behavior. Psychol. Sci. 1994, 5, 297–302. [Google Scholar] [CrossRef]
- Howrigan, D.P.; MacDonald, K.B. Humor as a mental fitness indicator. Evol. Psychol. 2008, 6, 147470490800600411. [Google Scholar] [CrossRef]
- Miller, G. Sexual selection for indicators of intelligence. In The Nature of Intelligence: Novartis Foundation Symposium 233; John Wiley & Sons, Ltd.: Chichester, UK, 2000; pp. 260–275. [Google Scholar]
- Miller, G.F. Aesthetic fitness: How sexual selection shaped artistic virtuosity as a fitness indicator and aesthetic preferences as mate choice criteria. Bull. Psychol. Arts 2001, 2, 20–25. [Google Scholar]
- Rosenberg, J.; Tunney, R.J. Human vocabulary use as display. Evol. Psychol. 2008, 6, 147470490800600318. [Google Scholar] [CrossRef]
- Miller, G.F. Sexual selection for moral virtues. Q. Rev. Biol. 2007, 82, 97–125. [Google Scholar] [CrossRef]
- Shaner, A.; Miller, G.; Mintz, J. Schizophrenia as one extreme of a sexually selected fitness indicator. Schizophr. Res. 2004, 70, 101–109. [Google Scholar] [CrossRef]
- Greenwood, T.A.; Chow, L.J.; Gur, R.C.; Kelsoe, J.R. Bipolar spectrum traits and the space between madness and genius: The muse is in the dose. J. Psychiatr. Res. 2022, 153, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Shaner, A.; Miller, G.; Mintz, J. Autism as the low-fitness extreme of a parentally selected fitness indicator. Hum. Nat. 2008, 19, 389–413. [Google Scholar] [CrossRef]
- Pierce, A.; Miller, G.; Arden, R.; Gottfredson, L.S. Why is intelligence correlated with semen quality? Biochemical pathways common to sperm and neuron function and their vulnerability to pleiotropic mutations. Commun. Integr. Biol. 2009, 2, 385–387. [Google Scholar] [CrossRef]
- Shackelford, T.K.; Larsen, R.J. Facial asymmetry as an indicator of psychological, emotional, and physiological distress. J. Personal. Soc. Psychol. 1997, 72, 456–466. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species by Means of Natural Selection; John Murray: London, UK, 1859. [Google Scholar]
- Darwin, C. The Descent of Man and Selection in Relation to Sex; John Murray: London, UK, 1871; Volume 2. [Google Scholar]
- Polak, M. Developmental Instability: Causes and Consequences; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Waddington, C.H. Canalization of development and the inheritance of acquired characters. Nature 1942, 150, 563–565. [Google Scholar] [CrossRef]
- Esher, F.J.S.; Raven, J.C.; Earl, C.J.C. Discussion on testing intellectual capacity in adults. Proc. R. Soc. Med. 1942, 35, 779–785. [Google Scholar]
- Johnson, W.; Bouchard, T.J.; Krueger, R.F.; McGue, M.; Gottesman, I.I. Just one g: Consistent results from three test batteries. Intelligence 2004, 32, 95–107. [Google Scholar] [CrossRef]
- Jones, J.D.; Boyd, R.C.; Sandro, A.D.; Calkins, M.E.; Los Reyes, A.D.; Barzilay, R.; Young, J.F.; Benton, T.D.; Gur, R.C.; Moore, T.M.; et al. The General Psychopathology ‘p’ Factor in Adolescence: Multi-Informant Assessment and Computerized Adaptive Testing. Res. Child Adolesc. Psychopathol. 2024, 52, 1753–1764. [Google Scholar] [CrossRef]
- De Los Reyes, A.; Kazdin, A.E. Informant discrepancies in the assessment of childhood psychopathology: A critical review, theoretical framework, and recommendations for further study. Psychol. Bull. 2005, 131, 483. [Google Scholar] [CrossRef]
- Beck, A.T. Cognition, affect, and psychopathology. Arch. Gen. Psychiatry 1971, 24, 495–500. [Google Scholar] [CrossRef]
- Mansell, W. Control theory and psychopathology: An integrative approach. Psychol. Psychother. Theory Res. Pract. 2005, 78, 141–178. [Google Scholar] [CrossRef]
- Watts, A.L.; Lane, S.P.; Bonifay, W.; Steinley, D.; Meyer, F.A. Building theories on top of, and not independent of, statistical models: The case of the p-factor. Psychol. Inq. 2020, 31, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.L.; Makol, B.A.; Palumbo, I.M.; Los Reyes, A.; Olino, T.M.; Latzman, R.D.; Sher, K.J. How robust is the p factor? Using multitrait-multimethod modeling to inform the meaning of general factors of youth psychopathology. Clin. Psychol. Sci. 2022, 10, 640–661. [Google Scholar] [CrossRef]
- Watts, A.L.; Greene, A.L.; Bonifay, W.; Fried, E.I. A critical evaluation of the p-factor literature. Nat. Rev. Psychol. 2024, 3, 108–122. [Google Scholar] [CrossRef]
- Borsboom, D.; Cramer, A.O. Network analysis: An integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 2013, 9, 91–121. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Mean or Proportion | N with Valid Data |
---|---|---|
Mean Age, years (SD) | 14.2 (3.7) | 9488 |
Proportion Female | 0.52 | 9494 |
Proportion European-American | 0.56 | 9494 |
Proportion African-American | 0.33 | 9494 |
Mean Parent * Edu, years (SD) | 14.3 (2.3) | 9392 |
Mean C-GAS (SD) | 79.2 (12.0) | 9331 |
Mean PRIME Total (SD) | 5.6 (10.0) | 9411 |
Depression | 0.12 | 9411 |
Generalized Anxiety | 0.03 | 9411 |
Halluc./Delus. † | 0.04 | 9411 |
Mania | 0.01 | 9411 |
Separation Anxiety | 0.05 | 9411 |
Specific Phobia | 0.33 | 9411 |
Social Phobia/Anxiety | 0.21 | 9411 |
Panic Disorder | 0.01 | 9411 |
Agoraphobia | 0.05 | 9411 |
PTSD | 0.11 | 9411 |
Obsessive Compulsive | 0.03 | 9411 |
Attention Deficit Hyperactivity | 0.18 | 9411 |
Oppositional Defiant | 0.30 | 9411 |
Conduct | 0.06 | 9411 |
Super-Domain | Specific Factor | Test | Specific Factor | Bifactor General (“p” for Clinical; “g” for Cognitive) | “c” Factor |
---|---|---|---|---|---|
Clinical | Anxious-Misery | Depression | 0.353 | 0.707 | 0.029 |
Generalized | 0.623 | 0.482 | 0.010 | ||
OC | 0.296 | 0.620 | 0.004 | ||
Separation Anx. | 0.340 | 0.366 | 0.039 | ||
Panic | 0.350 | 0.558 | −0.031 | ||
PTSD | 0.175 | 0.533 | −0.176 | ||
Psychosis | PS-R | 0.344 | 0.406 | −0.169 | |
Halluc./Delus. | 0.270 | 0.625 | −0.156 | ||
Mania | −0.157 | 0.596 | −0.133 | ||
Phobias | Specific Phob. | 0.411 | 0.386 | −0.044 | |
Social Phob. | 0.305 | 0.517 | −0.167 | ||
Agoraphobia | 0.334 | 0.618 | −0.245 | ||
Externalizing | ADH | 0.401 | 0.263 | −0.211 | |
OD | 0.814 | 0.520 | −0.246 | ||
Conduct | 0.510 | 0.454 | −0.308 | ||
Cognitive | Executive | Attention | 0.415 | 0.331 | 0.258 |
Working Mem. | 0.411 | 0.236 | 0.393 | ||
Memory | Verbal Mem. | 0.272 | 0.505 | 0.231 | |
Face Mem. | 0.329 | 0.574 | 0.201 | ||
Spatial Mem. | 0.358 | 0.441 | 0.188 | ||
Complex | Mental Flex. | 0.246 | 0.230 | 0.454 | |
Language | −0.086 | 0.236 | 0.736 | ||
Nonverbal | 0.295 | 0.254 | 0.521 | ||
Spatial (Line) | 0.222 | 0.279 | 0.461 | ||
WRAT | −0.211 | 0.063 | 0.698 | ||
Social | Emotion ID | 0.140 | 0.581 | 0.290 | |
Emotion diff. | 0.583 | 0.420 | 0.483 | ||
Age Diff. | 0.398 | 0.454 | 0.261 | ||
Motor | Motor (TAP) | 0.355 | 0.281 | 0.219 | |
Mouse Praxis | 0.349 | 0.501 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, T.M.; Calkins, M.E.; Wolf, D.H.; Satterthwaite, T.D.; Barzilay, R.; Scott, J.C.; Ruparel, K.; Gur, R.E.; Gur, R.C. Estimation and Validation of the “c” Factor for Overall Cerebral Functioning in the Philadelphia Neurodevelopmental Cohort. Appl. Sci. 2025, 15, 1697. https://doi.org/10.3390/app15041697
Moore TM, Calkins ME, Wolf DH, Satterthwaite TD, Barzilay R, Scott JC, Ruparel K, Gur RE, Gur RC. Estimation and Validation of the “c” Factor for Overall Cerebral Functioning in the Philadelphia Neurodevelopmental Cohort. Applied Sciences. 2025; 15(4):1697. https://doi.org/10.3390/app15041697
Chicago/Turabian StyleMoore, Tyler M., Monica E. Calkins, Daniel H. Wolf, Theodore D. Satterthwaite, Ran Barzilay, J. Cobb Scott, Kosha Ruparel, Raquel E. Gur, and Ruben C. Gur. 2025. "Estimation and Validation of the “c” Factor for Overall Cerebral Functioning in the Philadelphia Neurodevelopmental Cohort" Applied Sciences 15, no. 4: 1697. https://doi.org/10.3390/app15041697
APA StyleMoore, T. M., Calkins, M. E., Wolf, D. H., Satterthwaite, T. D., Barzilay, R., Scott, J. C., Ruparel, K., Gur, R. E., & Gur, R. C. (2025). Estimation and Validation of the “c” Factor for Overall Cerebral Functioning in the Philadelphia Neurodevelopmental Cohort. Applied Sciences, 15(4), 1697. https://doi.org/10.3390/app15041697