Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis
Abstract
:1. Introduction
1.1. Electrical Signal in Plants
1.2. The Aloe vera Var. Chinensis Plant as a Biodosimeter
2. Materials and Methods
2.1. Measurement Method and Test Plant
2.2. Signal Acquisition Conditions
2.3. Non-Parametric Signal Analysis
2.3.1. Time Domain Analysis
2.3.2. Frequency Domain Analysis
2.3.3. Time-Frequency Domain Analysis
2.4. Parametric Signal Analysis
2.4.1. Auto-Regressive Models
2.4.2. Inverse Wavelet Transform vs. AR Model
3. Results and Discussion
3.1. Case of Non-Parametric Analysis
3.2. Case of Parametric Analysis
− 0.4592x(n − 3) − 0.0321x(n − 4)
+ 0.2850x(n − 5) − 0.0722x(n − 6)
− 0.0886x(n − 7) − 0.0366x(n − 8)
+ 0.0715x(n − 9),
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanderson, B. Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Proc. Roy. Soc. Lond. 1873, 21, 495–496. [Google Scholar] [CrossRef]
- Fromm, J.; Lautner, S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007, 30, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Wairimu, N.; Kuria, K.; Tuwei, K. Action and variation potential electrical signals in higher plants. Afr. J. Biol. Sci. 2021, 3, 1–18. Available online: https://ssrn.com/abstract=3771952 (accessed on 15 October 2024).
- Wang, C.; Huang, L.; Wang, Z.; Qiao, X. Monitoring and analysis of electrical signals in water-stressed plants. N. Z. J. Agric. Res. 2010, 50, 823–829. [Google Scholar] [CrossRef]
- Xiaofei, Y.; Zhongyi, W.; Lan, H.; Cheng, W.; Ruifeng, H.; Zhilong, X.; Xiaojun, Q. Research progres on electrical signals in higher plants. Prog. Nat. Sci. 2009, 19, 531–541. [Google Scholar] [CrossRef]
- Samhita, V.; Prathyusha, K.; Kondaveeti, H. A Review on Plant Signal Processing. In Proceedings of the 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 19 March 2021; pp. 124–128. [Google Scholar] [CrossRef]
- Volkov, G.; Ranatunga, D. Plants as environmental biosensors. Plant Signal. Behav. 2006, 1, 105–115. [Google Scholar] [CrossRef]
- Sukhov, V.; Sukhova, E.; Vodeneev, V. Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. Prog. Biophys. Mol. Biol. 2019, 146, 63–84. [Google Scholar] [CrossRef]
- Li, J.; Fan, L.; Zhao, D.; Zhou, Q.; Yao, J.; Wang, Z.; Huang, L. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol. 2021, 261, 153418. [Google Scholar] [CrossRef]
- Sukhov, V.; Nerush, V.; Orlova, L.; Vodeneev, V. Simulation of action potential propagation in plants. J. Theor. Biol. 2019, 291, 47–55. [Google Scholar] [CrossRef]
- Vodeneev, V.; Akinchits, E.; Sukhov, V. Variation potential in higher plants: Mechanisms of generation and propagation. Plant Signal. Behav. 2015, 10, 9. [Google Scholar] [CrossRef]
- Zimmermann, M.; Maischak, H.; Mithöfer, A.; Boland, W.; Felle, H. System Potentials, a Novel Electrical Long-Distance Apoplastic Signal in Plants, Induced by Wounding. Plant Physiol. 2009, 149, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ding, W. Study and evaluation of plant electrical signal processing methods. In Proceedings of the 4th International Congress on Image and Signal Processing (CISP), Shanghai, China, 15–17 October 2011; pp. 2788–2791. [Google Scholar] [CrossRef]
- Gurovich, L.A.; Hermosilla, P. Electric signaling in fruit trees in response to water applications and light–darkness conditions. J. Plant Physiol. 2009, 166, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Rojas, L. Electrophysiological assessment of water stress in fruit-bearing woody plants. J. Plant Physiol. 2014, 171, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Hedman, M.; Nicholson, P.; Moutamid, M. Studies on the plant electric wave signal by the wavelet analysis. J. Phys. Conf. Ser. 2007, 48, 1367. [Google Scholar] [CrossRef]
- Volkov, A.; Lang, R.; Volkova-Guges, M. Electrical signaling in Aloe vera induced by localized thermal stress. Bioelectrochemistry 2007, 71, 192–197. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Wang, M. RBF neural network prediction on weak electrical signals in Aloe vera var. chinensis. In Proceedings of the Seventh International Symposium on Instrumentation and Control Technology: Sensors and Instruments, Computer Simulation, and Artificial Intelligence, Beijing, China, 13 October 2008. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H. The Changes of Power Spectrum of Electrical Signal in Aloe under Several Damage Conditions. Int. J. Control. Autom. 2016, 9, 177–188. [Google Scholar] [CrossRef]
- Volkov, A.; Reedus, J.; Mitchell, C.; Tucket, C.; Forde-Tuckett, V.; Volkova, M.; Markin, V.; Chua, L. Memristors in the electrical network of Aloe vera L. Plant Signal. Behav. 2014, 9, e29056. [Google Scholar] [CrossRef]
- Mudrilov, M.; Ivankin, S.; Mudrilova, E. Automatic Determination of the Parameters of Electrical Signals and Functional Responses of Plants Using the Wavelet Transformation Method. Agriculture 2020, 10, 7. [Google Scholar] [CrossRef]
- Hedrich, R.; Salvador-Recatalà, V.; Dreyer, I. Electrical wiring and long-distance plant communication. Trends Plant Sci. 2016, 21, 376–387. [Google Scholar] [CrossRef]
- Janková, Z.; Dostál, P. Hybrid approach: Wavelet seasonal autoregressive integrated moving average model for time series prediction. AIP Conf. Proc. 2021, 2333, 090001. [Google Scholar] [CrossRef]
- Shuang, Y.; Guo Tian, L.; Lin Wei, J.; Meng, L.; Jiang, T. Plant Electrical Signal De-Noising Based on the Lifting Wavelet Transform. Appl. Mech. Mater. 2015, 727–728, 900–903. [Google Scholar] [CrossRef]
- Lanio, F.; Zemuner García, F.A.; Ikuyo Nabeta, S.; Martha de Souza, G.F.; Chabu, I.E.; Santos, J.C.; Junior, S.N.; Pereira, F.H. Wavelet-Like Transform to Optimize the Order of an Autoregressive Neural Network Model to Predict the Dissolved Gas Concentration in Power Transformer Oil from Sensor Data. Sensors 2020, 20, 2730. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, H.; Li, D.; Zhao, J. A prediction on electric signals processing of Aloe Vera Var. Chinensis. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; Volume 3, pp. 90–94. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Deng, S. A Method of Plant Classification Based on Wavelet Transforms and Support Vector Machines. In Emerging Intelligent Computing Technology and Applications, Proceedings of the 5th International Conference on Intelligent Computing, ICIC 2009 Ulsan, Republic of Korea, 16–19 September 2009; Lecture Notes in Computer Science; Huang, D.S., Jo, K.H., Lee, H.H., Kang, H.J., Bevilacqua, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5754, pp. 253–260. [Google Scholar] [CrossRef]
- Chatterjee, S.K.; Das, S.; Maharatna, K.; Masi, E.; Santopolo, L.; Mancuso, S.; Vitaletti, A. Exploring strategies for classification of external stimuli using statistical features of the plant electrical response. J. R. Soc. Interface 2015, 12, 40. [Google Scholar] [CrossRef]
- Chatterjee, S.K.; Malik, O.; Gupta, S. Chemical Sensing Employing Plant Electrical Signal Response-Classification of Stimuli Using Curve Fitting Coefficients as Features. Biosensors 2018, 8, 83. [Google Scholar] [CrossRef]
- Keqiang, Y.; Shiyan, F.; Yanru, Z. Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Mol. Biomol. Spectrosc. 2021, 245, 118917. [Google Scholar] [CrossRef]
- Francynês, M.; Daneluzzi, G.; Capelin, D.; Fábia da Silva, B.; Aldeir, R.; Ferraz de Oliveira, F. Equipment and protocol for measurement of extracellular electrical signals, gas exchange and turgor pressure in plants. MethodsX 2021, 8, 101214. [Google Scholar] [CrossRef]
- Volkov, A.; Nyasani, E.; Tuckett, C.; Scott, J.; Jackson, M.; Greeman, E.; Ariane, S.; Cohen, D.; Volkova, M.; Shtessel, Y. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement. Bioelectrochemistry 2017, 113, 60–68. [Google Scholar] [CrossRef]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Nicola, S.; Beyraghdar, A.; Habibzadeh, F.; Mohammad, H.; Mokhtassi-Bidgoli, A. Effect of Light and Water Deficiency on Growth and Concentration of Various Primary and Secondary Metabolites of Aloe vera L. J. Agric. Sci. Technol. 2020, 22, 1343–1358. [Google Scholar]
Metrics | Result | Interpretation |
---|---|---|
Average value | 202.73 mv | Basal signal level, reflects a stable state. |
Maximum | 426.53 mv | Highest value recorded, possibly associated with peak stimuli or activity. |
Minimum | 150.44 mv | Lowest value recorded, indicating a significant reduction in electrical activity. |
Peak to Peak | 276.09 mv | Amplitude of electrical oscillations. |
Variance | 127.37 mv2 | Moderate spread in values, reflecting variability in electrical activity. |
Zero crossings | 504 | Frequency of oscillations around the basal value, associated with continuous biological processes. |
Wavelet Function | Levels | Total Energy | Entropy |
---|---|---|---|
db3 | 4 | 0.56255 | 1.14681 |
5 | 0.75573 | 1.42209 | |
6 | 0.78814 | 1.53511 | |
8 | 0.82243 | 1.66137 | |
sym4 | 4 | 0.56547 | 1.12940 |
5 | 0.73798 | 1.40917 | |
6 | 0.79386 | 1.56462 | |
8 | 0.82074 | 1.67903 | |
coif1 | 4 | 0.46344 | 1.10881 |
5 | 0.76798 | 1.34070 | |
6 | 0.79133 | 1.43419 | |
8 | 0.82455 | 1.55817 | |
haar | 4 | 0.68952 | 1.13347 |
5 | 0.72427 | 1.27161 | |
6 | 0.78246 | 1.44183 | |
8 | 0.82589 | 1.60776 |
Method | MSE | MAE | R2 |
---|---|---|---|
Wavelet Transform | 0.001 | 0.01 | 0.98 |
AR Model | 17.86 | 3.5 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torre, M.Z.-d.l.; Sifuentes-Gallardo, C.; González-Ramírez, E.; Cruz-Dominguez, O.; Ortega-Sigala, J.; Díaz-Flórez, G.; Vargas, J.I.D.l.R.; Durán-Muñoz, H. Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis. Appl. Sci. 2025, 15, 1708. https://doi.org/10.3390/app15041708
Torre MZ-dl, Sifuentes-Gallardo C, González-Ramírez E, Cruz-Dominguez O, Ortega-Sigala J, Díaz-Flórez G, Vargas JIDlR, Durán-Muñoz H. Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis. Applied Sciences. 2025; 15(4):1708. https://doi.org/10.3390/app15041708
Chicago/Turabian StyleTorre, Misael Zambrano-de la, Claudia Sifuentes-Gallardo, Efrén González-Ramírez, Oscar Cruz-Dominguez, José Ortega-Sigala, Germán Díaz-Flórez, José Ismael De la Rosa Vargas, and Héctor Durán-Muñoz. 2025. "Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis" Applied Sciences 15, no. 4: 1708. https://doi.org/10.3390/app15041708
APA StyleTorre, M. Z.-d. l., Sifuentes-Gallardo, C., González-Ramírez, E., Cruz-Dominguez, O., Ortega-Sigala, J., Díaz-Flórez, G., Vargas, J. I. D. l. R., & Durán-Muñoz, H. (2025). Electrical Signal Characterization of Aloe vera Var. Chinensis Using Non-Parametric and Parametric Signal Analysis. Applied Sciences, 15(4), 1708. https://doi.org/10.3390/app15041708