Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review
Abstract
:1. Introduction
2. Whey: Nutritional Value and Health Benefits
3. Impact of Wastewater from Cheese Production on the Environment
4. Whey-Based Beverages
4.1. Nonfermented Whey-Based Beverages
4.2. Fermented Whey-Based Beverages
5. Technological Processes Used in Whey-Based Beverages Manufacturing
Technological Process | References |
---|---|
Direct and indirect heat processing | Kelleher et al. [78] |
Thermosonication | Barukčić et al. [80] Oliviera et al. [75] |
Ultrasound and thermosonication | Jeličić et al. [79] |
High-intensity ultrasound | Herrera-Ponce et al. [81] |
Supercritical carbon dioxide | luan Chen et al. [82] Yuk et al. [83] Ceni et al. [84] Amaral et al. [85] |
Microfiltration | Castro-Muñoz et al. [86] Nazir et al. [87] Vieira et al. [88] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zandona, E.; Blažić, M.; Režek Jambrak, A. Whey utilization: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.D.; Surampalli, R.Y. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv. 2015, 33, 756–774. [Google Scholar] [CrossRef]
- Tsermoula, P.; Khakimov, B.; Nielsen, J.H.; Engelsen, S.B. WHEY-The waste-stream that became more valuable than the food product. Trends Food Sci. Technol. 2021, 118, 230–241. [Google Scholar] [CrossRef]
- Eurostat. Agriculture, Forestry and Fishery Statistics—Milk and Milk Products Statistics; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Fox, P.F. Milk: An overview. In Milk Proteins; Academic Press: Cambridge, MA, USA, 2008; pp. 1–54. [Google Scholar]
- Risner, D.; Tomasino, E.; Hughes, P.; Meunier-Goddik, L. Volatile aroma composition of distillates produced from fermented sweet and acid whey. J. Dairy Sci. 2019, 102, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Svanborg, S.; Johansen, A.; Abrahamsenn, R.; Skeie, S. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Sci. 2015, 98, 5829–5840. [Google Scholar] [CrossRef] [PubMed]
- Celeghin, A.G.; Minetti, F.; Contini, L.E.; Miccolo, M.E.; Rubiolo, A.C.; Olivares, M.L. Syneresis and sensory acceptability of desserts based on whey proteins concentrates. J. Food Nutr. Res. 2016, 4, 478–482. [Google Scholar]
- Ghanimah, M.A. Functional and technological aspects of whey powder and whey protein products. Int. J. Dairy Technol. 2018, 71, 454–459. [Google Scholar] [CrossRef]
- Lappa, I.K.; Papadaki, A.; Kachrimanidou, V.; Terpou, A.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019, 8, 347. [Google Scholar] [CrossRef]
- Besediuk, V.; Yatskov, M.; Korchyk, N.; Kucherova, A.; Maletskyi, Z. Whey-From waste to a valuable resource. J. Agric. Food Res. 2024, 18, 101280. [Google Scholar] [CrossRef]
- Rama, G.R.; Kuhn, D.; Beux, S.; Maciel, M.J.; de Souza, C.F.V. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int. Dairy J. 2019, 98, 25–37. [Google Scholar] [CrossRef]
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. Sci. Total Environ. 2013, 445, 385–396. [Google Scholar] [CrossRef]
- Rocha-Mendoza, D.; Kosmerl, E.; Krentz, A.; Zhang, L.; Badiger, S.; Miyagusuku-Cruzado, G.; García-Cano, I. Invited review: Acid whey trends and health benefits. J. Dairy Sci. 2021, 104, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- Venetsaneas, N.; Antonopoulou, G.; Stamatelatou, K.; Kornaros, M.; Lyberatos, G. Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 2009, 100, 3713–3717. [Google Scholar] [CrossRef]
- Bandara, T.A.; Munasinghe-Arachchige, S.P.; Gamlath, C.J. Fermented whey beverages: A review of process fundamentals, recent developments and nutritional potential. Int. J. Dairy Technol. 2023, 76, 737–757. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.G.F.W.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Fernández-Gutiérrez, D.; Veillette, M.; Giroir-Fendler, A.; Ramirez, A.A.; Faucheux, N.; Heitz, M. Biovalorization of saccharides derived from industrial wastes such as whey: A review. Rev. Environ. Sci. Bio/Technol. 2017, 16, 147–174. [Google Scholar] [CrossRef]
- Panesar, P.S.; Kennedy, J.F.; Gandhi, D.N.; Bunko, K. Bioutilisation of whey for lactic acid production. Food Chem. 2007, 105, 1–14. [Google Scholar] [CrossRef]
- Minj, S.; Anand, S. Whey proteins and its derivatives: Bioactivity, functionality, and current applications. Dairy 2020, 1, 233–258. [Google Scholar] [CrossRef]
- Jeličić, I.; Božanić, R.; Tratnik, L. Whey based beverages-new generation of dairy products. Mljekarstvo 2008, 58, 257–274. [Google Scholar]
- Bilyi, V.; Merzlov, S.; Narizhniy, S.; Mashkin, Y.; Merzlova, H. Amino acid composition of whey and cottage cheese under various rennet enzymes. Sci. Horiz. 2021, 24, 19–25. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Crombag, J.J.; Senden, J.M.; Waterval, W.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Bailey, H.M.; Fanelli, N.S.; Stein, H.H. Effect of heat treatment on protein quality of rapeseed protein isolate compared with non-heated rapeseed isolate, soy and whey protein isolates, and rice and pea protein concentrates. J. Sci. Food Agric. 2023, 103, 7251–7259. [Google Scholar] [CrossRef] [PubMed]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant-And animal-sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Szafrańska, J.O.; Waraczewski, R.; Bartoń, M.; Wesołowska-Trojanowska, M.; Maziejuk, W.; Nowak, P.; Sołowiej, B.G. Effects of organic fruit juices on physicochemical, microbiological, and antioxidative aspects of fermented whey beverages from organic goat and cow milk, produced at laboratory and industrial scales. J. Dairy Sci. 2024, 107, 10481–10496. [Google Scholar] [CrossRef] [PubMed]
- Pgntado, M.; Macedo, A.C.; Malcata, F.X. Review: Technology, chemistry and microbiology of whey cheese. Food Sci. Technol. Int. 2001, 7, 105–116. [Google Scholar] [CrossRef]
- Barukčić, I.; Lisak Jakopović, K.; Božanić, R. Valorisation of whey and buttermilk for production of functional beverages–an overview of current possibilities. Food Technol. Biotechnol. 2019, 57, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Jakopović, K.L.; Barukčić, I.; Božanić, R. Bioactive components derived from bovine milk. Mljekarstvo 2019, 69, 151–161. [Google Scholar] [CrossRef]
- Egger, L.; Ménard, O. Update on bioactive peptides after milk and cheese digestion. Curr. Opin. Food Sci. 2017, 14, 116–121. [Google Scholar] [CrossRef]
- Tratnik, L. Uloga sirutke u proizvodnji funkcionalne mliječne hrane. Mljekarstvo Časopis Unaprjeđenje Proizv. Prerade Mlijeka 2003, 53, 325–352. [Google Scholar]
- Chatzipaschali, A.A.; Stamatis, A.G. Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects. Energies 2012, 5, 3492–3525. [Google Scholar] [CrossRef]
- Domingos, J.M.; Puccio, S.; Martinez, G.A.; Amaral, N.; Reis, M.A.; Bandini, S.; Bertin, L. Cheese whey integrated valorisation: Production, concentration and exploitation of carboxylic acids for the production of polyhydroxyalkanoates by a fed-batch culture. Chem. Eng. J. 2018, 336, 47–53. [Google Scholar] [CrossRef]
- Mawson, A.J. Biokonverze pro využití syrovátky a snižování odpadu. Bioresour. Technol. 1994, 47, 195–203. [Google Scholar] [CrossRef]
- Özer, B.; Evrendilek, G.A. Whey beverages. In Dairy Foods; Woodhead Publishing: Sawston, UK, 2022; pp. 117–137. [Google Scholar]
- ASTM. Standard definitions of terms relating to sensory evaluation of materials and products. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 1989; Volume 2. [Google Scholar]
- Djurić, M.; Carić, M.; Milanović, S.; Tekić, M.; Panić, M. Development of whey-based beverages. Eur. Food Res. Technol. 2004, 219, 321–328. [Google Scholar] [CrossRef]
- Ahmed, T.; Sabuz, A.A.; Mohaldar, A.; Fardows, H.S.; Inbaraj, B.S.; Sharma, M.; Sridhar, K. Development of novel whey-mango based mixed beverage: Effect of storage on physicochemical, microbiological, and sensory analysis. Foods 2023, 12, 237. [Google Scholar] [CrossRef]
- Chavan, R.S.; Shraddha, R.C.; Kumar, A.; Nalawade, T. Whey based beverage: Its functionality, formulations, health benefits and applications. J. Food Process. Technol. 2015, 6, 1000495. [Google Scholar]
- Rejdlová, A.; Vašina, M.; Lorencová, E.; Hružík, L.; Salek, R.N. Assessment of Different Levels of Blackcurrant Juice and Furcellaran on the Quality of Fermented Whey-Based Beverages Using Rheological and Mechanical Vibration Damping Techniques. Foods 2024, 13, 1855. [Google Scholar] [CrossRef] [PubMed]
- Sady, M.; Jaworska, G.; Grega, T.; Bernas, E.; Domagala, J. Application of acid whey in orange drink production. Food Technol. Biotechnol. 2013, 51, 266. [Google Scholar]
- Chatterjee, G.; De Neve, J.; Dutta, A.; Das, S. Formulation and statistical evaluation of a ready-to-drink whey based orange beverage and its storage stability. Rev. Mex. Ing. Quim. 2015, 4, 253–264. [Google Scholar]
- Goudarzi, M.; Madadlou, A.; Mousavi, M.E.; Emam-Djomeh, Z. Formulation of apple juice beverages containing whey protein isolate or whey protein hydrolysate based on sensory and physicochemical analysis. Int. J. Dairy Technol. 2015, 68, 70–78. [Google Scholar] [CrossRef]
- Cruz, A.G.; Sant’Ana, A.D.S.; Macchione, M.M.; Teixeira, Â.M.; Schmidt, F.L. Milk drink using whey butter cheese (queijo manteiga) and acerola juice as a potential source of vitamin C. Food Bioprocess Technol. 2009, 2, 368–373. [Google Scholar] [CrossRef]
- Gimhani, K.H.I.; Liyanage, A.L.C.J. Development and quality evaluation of ready to drink fruit flavoured whey beverage. Int. J. Sci. Res. Publ. 2018, 9, 779–783. [Google Scholar] [CrossRef]
- Nedanovska, E.; Jakopović, K.L.; Daniloski, D.; Vaskoska, R.; Vasiljevic, T.; Barukčić, I. Effect of storage time on the microbial, physicochemical and sensory characteristics of ovine whey-based fruit beverages. Int. J. Food Sci. Technol. 2022, 57, 5388–5398. [Google Scholar] [CrossRef]
- Shekilango, S.A.; Jelen, P.; Bagdan, G.C. Production of whey-banana beverages from acid whey and overripe bananas. Milchwissenschaft 1997, 52, 209–212. [Google Scholar]
- Ismail, A.E.; Abdelgader, M.O.; Ali, A.A. Microbial and chemical evaluation of whey-based mango beverage. Adv. J. Food Sci. Technol. 2011, 3, 250–253. [Google Scholar]
- Yadav, R.B.; Yadav, B.S.; Kalia, N. Development and storage studies on whey-based banana herbal (Mentha arvensis) beverage. Am. J. Food Technol. 2010, 5, 121–129. [Google Scholar] [CrossRef]
- Zhakupova, G.N.; Tultabayeva, T.C.; Nurtayeva, A.B.; Kundyzbayeva, N.D.; Sagandyk, A.T. Research and development of the refreshing whey drinks technology. J. Almaty Technol. Univ. 2022, 4, 99–105. [Google Scholar] [CrossRef]
- Nkurunziza, F.; Theoneste, T.; Sandrine, U.; Clement, B.; Upadhyay, S.K.; Sharma, A.K. Processing and Development of Papaya (Carica papaya L.) juice with incorporation of Whey. Indian J. Appl. Pure Bio 2022, 37, 653–659. [Google Scholar]
- Singh, H.K.; Puranik, D.B.; Patwadi, P.S.; Sain, M. Process optimisation for the production of papaya leaf extract based therapeutic whey beverage. Environ. Conserv. J. 2021, 22, 153–158. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Pietrzak-Fiećko, R. Antioxidant properties of fruit and vegetable whey beverages and fruit and vegetable mousses. Molecules 2021, 26, 3126. [Google Scholar] [CrossRef] [PubMed]
- Macwan, S.R.; Dabhi, B.K.; Parmar, S.C.; Aparnathi, K.D. Whey and its utilization. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 134–155. [Google Scholar] [CrossRef]
- Pescuma, M.; Hébert, E.M.; Mozzi, F.; de Valdez, G.F. Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protein content. Food Microbiol. 2008, 25, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Pescuma, M.; de Valdez, G.F.; Mozzi, F. Whey-derived valuable products obtained by microbial fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 6183–6196. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, K.T.; Dias, D.R.; de Melo Pereira, G.V.; Oliveira, J.M.; Domingues, L.; Teixeira, J.A.; Schwan, R.F. Chemical composition and sensory analysis of cheese whey-based beverages using kefir grains as starter culture. Int. J. Food Sci. Technol. 2011, 46, 871–878. [Google Scholar] [CrossRef]
- Jitpakdee, J.; Kantachote, D.; Kanzaki, H.; Nitoda, T. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT 2022, 160, 113269. [Google Scholar] [CrossRef]
- León-López, A.; Pérez-Marroquín, X.A.; Campos-Lozada, G.; Campos-Montiel, R.G.; Aguirre-Álvarez, G. Characterization of whey-based fermented beverages supplemented with hydrolyzed collagen: Antioxidant activity and bioavailability. Foods 2020, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Legarová, V.; Kouřimská, L. Sensory quality evaluation of whey-based beverages. Mljekarstvo 2010, 60, 280. [Google Scholar]
- Aly, E.; Darwish, A.A.; Tawfek, M. Quality characteristics of sweet whey-based fruits beverages fermented with Lactobacillus plantarum. Egypt. J. Food Sci. 2019, 47, 141–254. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalın, A.S. Probiotic whey-based beverages from cow, sheep and goat milk: Antioxidant activity, culture viability, amino acid contents. Foods 2023, 12, 610. [Google Scholar] [CrossRef]
- Elkot, W.F.; Elmahdy, A.; Talaat, H.; Alghamdia, O.A.; Alhag, S.K.; Al-Shahari, E.A.; Ismail, H.A. Development and characterization of a novel flavored functional fermented whey-based sports beverage fortified with Spirulina platensis. Int. J. Biol. Macromol. 2024, 258, 128999. [Google Scholar] [CrossRef]
- AbdulAlim, T.S.; Zayan, A.F.; Campelo, P.H.; Bakry, A.M. Development of new functional fermented product: Mulberry-whey beverage. J. Nutr. Food Technol. 2018, 1, 64–69. [Google Scholar] [CrossRef]
- Castro, W.F.; Cruz, A.G.; Bisinotto, M.S.; Guerreiro, L.M.R.; Faria, J.A.F.; Bolini, H.M.A.; Deliza, R. Development of probiotic dairy beverages: Rheological properties and application of mathematical models in sensory evaluation. J. Dairy Sci. 2013, 96, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Nursiwi, A.; Nurhartadi, E.; Utami, R.; Sari, A.M.; Laksono, P.W.; Aprilia, E.N. Characteristic of fermented whey beverage with addition of tomato juice (Lycopersicum esculentum). IOP Conf. Ser. Mater. Sci. Eng. 2017, 193, 012009. [Google Scholar] [CrossRef]
- Londero, A.; Hamet, M.F.; De Antoni, G.L.; Garrote, G.L.; Abraham, A.G. Kefir grains as a starter for whey fermentation at different temperatures: Chemical and microbiological characterisation. J. Dairy Res. 2012, 79, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri Assadi, M.; Abdolmaleki, F.; Mokarrame, R.R. Application of whey in fermented beverage production using kefir starter culture. Nutr. Food Sci. 2008, 38, 121–127. [Google Scholar] [CrossRef]
- Athanasiadis, I.; Paraskevopoulou, A.; Blekas, G.; Kiosseoglou, V. Development of a novel whey beverage by fermentation with kefir granules. Effect of various treatments. Biotechnol. Prog. 2004, 20, 1091–1095. [Google Scholar] [CrossRef]
- M’hir, S.; Rtibi, K.; Mejri, A.; Ziadi, M.; Aloui, H.; Hamdi, M.; Ayed, L. Development of a novel whey date beverage fermented with kefir grains using response surface methodology. J. Chem. 2019, 2019, 1218058. [Google Scholar] [CrossRef]
- Magalhães, K.T.; Pereira, M.A.; Nicolau, A.; Dragone, G.; Domingues, L.; Teixeira, J.A.; Schwan, R.F. Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresour. Technol. 2010, 101, 8843–8850. [Google Scholar] [CrossRef]
- Sabokbar, N.; Khodaiyan, F.; Moosavi-Nasab, M. Optimization of processing conditions to improve antioxidant activities of apple juice and whey based novel beverage fermented by kefir grains. J. Food Sci. Technol. 2015, 52, 3422–3432. [Google Scholar] [CrossRef] [PubMed]
- Rejdlová, A.; Salek, R.N.; Míšková, Z.; Lorencová, E.; Kůrová, V.; Adámek, R.; Sumczynski, D. Physical Characterization of a Novel Carrot Juice Whey-Enriched Beverage Fermented with Milk or Water Kefir Starter Cultures. Foods 2023, 12, 3368. [Google Scholar] [CrossRef]
- Pellegrino, L.; Masotti, F.; Cattaneo, S.; Hogenboom, J.A.; De Noni, I. Nutritional quality of milk proteins. In Advanced Dairy Chemistry, 4th ed.; Springer: Boston, MA, USA, 2013; pp. 515–538. [Google Scholar]
- Oliveira, G.A.; Guimarães, J.T.; Ramos, G.L.P.; Esmerino, E.A.; Pimentel, T.C.; Neto, R.P.; Cruz, A.G. Benefits of thermosonication in orange juice whey drink processing. Innov. Food Sci. Emerg. Technol. 2022, 75, 102876. [Google Scholar] [CrossRef]
- Silva, F.V. Ultrasound assisted thermal inactivation of spores in foods: Pathogenic and spoilage bacteria, molds and yeasts. Trends Food Sci. Technol. 2020, 105, 402–415. [Google Scholar]
- Coimbra, L.O.; Vidal, V.A.; Silva, R.; Rocha, R.S.; Guimarães, J.T.; Balthazar, C.F.; Cruz, A.G. Are ohmic heating-treated whey dairy beverages an innovation? Insights of the Q methodology. LWT 2020, 134, 110052. [Google Scholar] [CrossRef]
- Kelleher, C.M.; O’Mahony, J.A.; Kelly, A.L.; O’Callaghan, D.J.; Kilcawley, K.N.; McCarthy, N.A. The effect of direct and indirect heat treatment on the attributes of whey protein beverages. Int. Dairy J. 2018, 85, 144–152. [Google Scholar] [CrossRef]
- Jeličić, I.; Božanić, R.; Brnčić, M.; Tripalo, B. Influence and comparison of thermal, ultrasonic and thermo-sonic treatments on microbiological quality and sensory properties of rennet cheese whey. Mljekarstvo Časopis Unaprjeđenje Proizv. Prerade Mlijeka 2012, 62, 165–178. [Google Scholar]
- Barukčić, I.; Jakopović, K.L.; Herceg, Z.; Karlović, S.; Božanić, R. Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. Innov. Food Sci. Emerg. Technol. 2015, 27, 94–101. [Google Scholar] [CrossRef]
- Herrera-Ponce, A.L.; Salmeron-Ochoa, I.; Rodriguez-Figueroa, J.C.; Santellano-Estrada, E.; Garcia-Galicia, I.A.; Alarcon-Rojo, A.D. High-intensity ultrasound as pre-treatment in the development of fermented whey and oat beverages: Effect on the fermentation, antioxidant activity and consumer acceptance. J. Food Sci. Technol. 2022, 59, 796–804. [Google Scholar] [CrossRef] [PubMed]
- luan Chen, J.; Zhang, J.; Song, L.; Jiang, Y.; Wu, J.; Hu, X.S. Changes in microorganism, enzyme, aroma of hami melon (Cucumis melo L.) juice treated with dense phase carbon dioxide and stored at 4 C. Innov. Food Sci. Emerg. Technol. 2010, 11, 623–629. [Google Scholar] [CrossRef]
- Yuk, H.G.; Sampedro, F.; Fan, X.; Geveke, D.J. Nonthermal processing of orange juice using a pilot-plant scale supercritical carbon dioxide system with a gas–liquid metal contactor. J. Food Process. Preserv. 2014, 38, 630–638. [Google Scholar] [CrossRef]
- Ceni, G.; Silva, M.F.; Valério, C., Jr.; Cansian, R.L.; Oliveira, J.V.; Dalla Rosa, C.; Mazutti, M.A. Continuous inactivation of alkaline phosphatase and Escherichia coli in milk using compressed carbon dioxide as inactivating agent. J. CO2 Util. 2016, 13, 24–28. [Google Scholar] [CrossRef]
- Amaral, G.V.; Silva, E.K.; Cavalcanti, R.N.; Martins, C.P.; Andrade, L.G.Z.; Moraes, J.; Cruz, A.G. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chem. 2018, 239, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Fíla, V. Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci. Technol. 2018, 82, 8–20. [Google Scholar] [CrossRef]
- Nazir, A.; Khan, K.; Maan, A.; Zia, R.; Giorno, L.; Schroën, K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci. Technol. 2019, 86, 426–438. [Google Scholar] [CrossRef]
- Vieira, A.H.; Balthazar, C.F.; Guimaraes, J.T.; Rocha, R.S.; Pagani, M.M.; Esmerino, E.A.; Cruz, A.G. Advantages of microfiltration processing of goat whey orange juice beverage. Food Res. Int. 2020, 132, 109060. [Google Scholar] [CrossRef] [PubMed]
Composition (g·L−1) | Sweet Whey | Acid Whey |
---|---|---|
Total solids | 5.72–8.50 | 5.20–5.90 |
Ash | 0.50–0.65 | 0.60–0.80 |
Lactose | 3.06–5.02 | 3.00–4.60 |
Total protein | 0.60–1.20 | 0.20–0.50 |
Fat | 0.05–0.40 | 0.01–0.32 |
Lactic acid | 0.14–0.28 | 0.50–0.60 |
Ca | 0.03–0.06 | 0.09–0.14 |
K | 0.08–0.16 | 0.10–0.14 |
Mg | 0.01–0.02 | 0.01–0.02 |
Na | 0.02–0.32 | 0.02–0.05 |
Citrate | 0.06–0.07 | 0.07–0.09 |
Phosphate | 0.06–0.07 | 0.06–0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rejdlová, A.; Lorencová, E.; Míšková, Z.; Salek, R.N. Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review. Appl. Sci. 2025, 15, 1846. https://doi.org/10.3390/app15041846
Rejdlová A, Lorencová E, Míšková Z, Salek RN. Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review. Applied Sciences. 2025; 15(4):1846. https://doi.org/10.3390/app15041846
Chicago/Turabian StyleRejdlová, Anita, Eva Lorencová, Zuzana Míšková, and Richardos Nikolaos Salek. 2025. "Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review" Applied Sciences 15, no. 4: 1846. https://doi.org/10.3390/app15041846
APA StyleRejdlová, A., Lorencová, E., Míšková, Z., & Salek, R. N. (2025). Techno-Functional Properties and Recent Advances in the Manufacturing of Whey Beverages: A Review. Applied Sciences, 15(4), 1846. https://doi.org/10.3390/app15041846