Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization
Abstract
:1. Introduction
- (1)
- A new end-to-end satellite PE method is proposed; this approach jointly iterates between deep learning for the PE framework and PSO. This can improve the effectiveness of the model in terms of translating the position and orientation information of the target satellite;
- (2)
- The design of the position parameters of the PSO algorithm, which is effectively integrated with deep learning in the PE framework, reduces the error induced by complex input images, and improves the accuracy of the satellite pose inference process;
- (3)
- The proposed method is verified by testing it in different downstream computer vision tasks.
2. Related Works
2.1. Deep Learning-Based Spacecraft Pose Estimation from Photorealistic Renderings
2.2. Particle Swarm Optimization
3. Materials and Methods
3.1. Materials
3.2. Joint Iterative Pose Estimation and Particle Swarm Optimization (PE-PSO) Method
Algorithm 1: The PE-PSO method |
Input: number of batches (epochs), batch size , weight , inertia weight damping ratio , local learning coefficient , global learning coefficient , lower bound and upper bound () of the population velocity, learning rate. |
Output: The PE-PSO model. |
for < epoch: |
for < number of batches: |
|
3.3. Accuracy Assessment
4. Results
4.1. Training Results
4.2. Testing Result
4.3. Robustness Analysis
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dony, N.-A.; Dong, W. Distributed Robust Formation Flying and Attitude Synchronization of Spacecraft. J. Aerosp. Eng. 2021, 34, 04021015. [Google Scholar] [CrossRef]
- Pasqualetto Cassinis, L.; Fonod, R.; Gill, E.; Ahrns, I.; Fernandez, J. CNN-Based Pose Estimation System for Close-Proximity Operations Around Uncooperative Spacecraft. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar] [CrossRef]
- Xu, J.; Song, B.; Yang, X.; Nan, X. An Improved Deep Keypoint Detection Network for Space Targets Pose Estimation. Remote. Sens. 2020, 12, 3857. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Chen, X.; Chen, W.; Xie, Z. Position Awareness Network for Noncooperative Spacecraft Pose Estimation Based on Point Cloud. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 507–518. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, A. Observability analysis and autonomous navigation for two satellites with relative position measurements. Acta Astronaut. 2019, 163, 77–86. [Google Scholar] [CrossRef]
- De Jongh, W.C.; Jordaan, H.W.; Van Daalen, C.E. Experiment for pose estimation of uncooperative space debris using stereo vision. Acta Astronaut. 2020, 168, 164–173. [Google Scholar] [CrossRef]
- Opromolla, R.; Vela, C.; Nocerino, A.; Lombardi, C. Monocular-Based Pose Estimation Based on Fiducial Markers for Space Robotic Capture Operations in GEO. Remote. Sens. 2022, 14, 4483. [Google Scholar] [CrossRef]
- Bechini, M.; Lavagna, M.; Lunghi, P. Dataset generation and validation for spacecraft pose estimation via monocular images processing. Acta Astronaut. 2023, 204, 358–369. [Google Scholar] [CrossRef]
- Park, T.; Märtens, M.; Lecuyer, G.; Izzo, D.; D’Amico, S. SPEED+: Next Generation Dataset for Spacecraft Pose Estimation across Domain Gap. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022. [Google Scholar] [CrossRef]
- Phisannupawong, T.; Kamsing, P.; Torteeka, P.; Channumsin, S.; Sawangwit, U.; Hematulin, W.; Jarawan, T.; Somjit, T.; Yooyen, S.; Delahaye, D.; et al. Vision-Based Spacecraft Pose Estimation via a Deep Convolutional Neural Network for Noncooperative Docking Operations. Aerospace 2020, 7, 126. [Google Scholar] [CrossRef]
- Proença, P.F.; Gao, Y. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6007–6013. [Google Scholar]
- Volpe, R.; Palmerini, G.B.; Sabatini, M. A passive camera based determination of a non-cooperative and unknown satellite’s pose and shape. Acta Astronaut. 2018, 151, 805–817. [Google Scholar] [CrossRef]
- Pasqualetto Cassinis, L.; Fonod, R.; Gill, E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [Google Scholar] [CrossRef]
- Zhu, W.; She, Y.; Hu, J.; Wang, B.; Mu, J.; Li, S. A hybrid relative navigation algorithm for a large–scale free tumbling non–cooperative target. Acta Astronaut. 2022, 194, 114–125. [Google Scholar] [CrossRef]
- Sun, D.; Hu, L.; Duan, H.; Pei, H. Relative Pose Estimation of Non-Cooperative Space Targets Using a TOF Camera. Remote. Sens. 2022, 14, 6100. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, H.; Ze, L.; Ning, Q.; Lu, Y. A pose estimation method of space non-cooperative target based on ORBFPFH SLAM. Optik 2023, 286, 171025. [Google Scholar] [CrossRef]
- Chen, H.; Wang, P.; Wang, F.; Tian, W.; Xiong, L.; Li, H. EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2771–2780. [Google Scholar]
- Xu, W.; Yan, L.; Hu, Z.; Liang, B. Area-oriented coordinated trajectory planning of dual-arm space robot for capturing a tumbling target. Chin. J. Aeronaut. 2019, 32, 2151–2163. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, X.; Cao, Z.; Wang, G. Deep 1D Landmark Representation Learning for Space Target Pose Estimation. Remote. Sens. 2022, 14, 4035. [Google Scholar] [CrossRef]
- Sun, Q.; Pan, X.; Ling, X.; Wang, B.; Sheng, Q.; Li, J.; Yan, Z.; Yu, K.; Wang, J. A Vision-Based Pose Estimation of a Non-Cooperative Target Based on a Self-Supervised Transformer Network. Aerospace 2023, 10, 997. [Google Scholar] [CrossRef]
- Ye, R.; Wang, L.; Ren, Y.; Wang, Y.; Chen, X.; Liu, Y. FilterformerPose: Satellite Pose Estimation Using Filterformer. Sensors 2023, 23, 8633. [Google Scholar] [CrossRef] [PubMed]
- Qiao, S.; Zhang, H.; Meng, G.; An, M.; Xie, F.; Jiang, Z. Deep-Learning-Based Satellite Relative Pose Estimation Using Monocular Optical Images and 3D Structural Information. Aerospace 2022, 9, 768. [Google Scholar] [CrossRef]
- Shen, Y.; Ji, R.; Wang, Y.; Wu, Y.; Cao, L. Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 697–707. [Google Scholar]
- Insom, P.; Liu, R.; Duan, R.; Hou, Y.; Boonsrimuang, P. Joint iterative channel estimation and decoding under pulsed radio frequency interference condition. In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeong Chang, Republic of Korea, 16–19 February 2014; pp. 983–988. [Google Scholar]
- Insom, P.; Insom, P.; Boonsrimuang, P. Joint iterative channel estimation and decoding under impulsive interference condition. In Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeong Chang, Republic of Korea, 31 January–3 February 2016. [Google Scholar]
- Insom, P.; Cao, C.; Boonsrimuang, P.; Liu, D.; Saokarn, A.; Yomwan, P.; Xu, Y. A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1943–1947. [Google Scholar] [CrossRef]
- Insom, P.; Cao, C.; Boonsrimuang, P.; Bao, S.; Chen, W.; Ni, X. A support vector machine-based particle filter for improved land cover classification applied to MODIS data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 775–778. [Google Scholar]
- Wan, F.; Liu, C.; Ke, W.; Ji, X.; Jiao, J.; Ye, Q. C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Li, X.; Yi, S.; Zhang, R.; Fu, X.; Jiang, H.; Wang, C.; Liu, Z.; Gao, J.; Yu, J.; Yu, M.; et al. Dynamic sample weighting for weakly supervised object detection. Image Vis. Comput. 2022, 122, 104444. [Google Scholar] [CrossRef]
- Tang, P.; Wang, X.; Bai, X.; Liu, W. Multiple Instance Detection Network with Online Instance Classifier Refinement. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 3059–3067. [Google Scholar]
- Li, Y.; Yan, Y.; Xiu, X.; Miao, Z. An Uncertainty Weighted Non-Cooperative Target Pose Estimation Algorithm, Based on Intersecting Vectors. Aerospace 2022, 9, 681. [Google Scholar] [CrossRef]
- Liu, T.; Qin, Z.; Hong, Y.; Jiang, Z.P. Distributed Optimization of Nonlinear Multiagent Systems: A Small-Gain Approach. IEEE Trans. Autom. Control 2022, 67, 676–691. [Google Scholar] [CrossRef]
- Jin, Z.; Li, H.; Qin, Z.; Wang, Z. Gradient-Free Cooperative Source-Seeking of Quadrotor Under Disturbances and Communication Constraints. IEEE Trans. Ind. Electron. 2025, 72, 1969–1979. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Jürgen, B.; Wolfgang, H.; Michael, A. Particle swarm optimization on low dimensional pose manifolds for monocular human pose estimation. In Optics and Photonics for Counterterrorism, Crime Fighting and Defence IX and Optical Materials and Biomaterials in Security and Defence Systems Technology X; SPIE: Bellingham, WA, USA, 2013. [Google Scholar] [CrossRef]
- Rosa, S.; Toscana, G.; Bona, B. Q-PSO: Fast Quaternion-Based Pose Estimation from RGB-D Images. J. Intell. Robot. Syst. 2018, 92, 465–487. [Google Scholar] [CrossRef]
- Li, S. Global Face Pose Detection Based on an Improved PSO-SVM Method. In Proceedings of the 2020 International Conference on Aviation Safety and Information Technology, Weihai, China, 14–16 October 2020; pp. 549–553. [Google Scholar]
- Ye, Q.; Yuan, S.; Kim, T.-K. Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand Pose Estimation. arXiv 2016, arXiv:1604.03334. [Google Scholar]
- Lei, J.; Wang, J.; Shi, J.; Xu, G.; Cheng, Y. Configuration optimization method of cooperative target for pose estimation with monocular vision. Opt. Eng. 2024, 63, 023102. [Google Scholar] [CrossRef]
- Lingqiao, L.; Lei, W.; Xinwang, L. In defense of soft-assignment coding. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2486–2493. [Google Scholar]
- Felzenszwalb, P.; McAllester, D.; Ramanan, D. A discriminatively trained, multiscale, deformable part model. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
- Sahab, M.G.; Toropov, V.; Gandomi, A.H. A Review on Traditional and Modern Structural Optimization. In Metaheuristic Applications in Structures and Infrastructures; Elsevier: Amsterdam, The Netherlands, 2013; pp. 25–47. [Google Scholar]
- Modern Methods of Optimization. In Engineering Optimization; John and Wiley and Sons: Hoboken, NJ, USA, 2009; Chapter 13; pp. 693–736. [CrossRef]
Test Case No. | Training Condition |
---|---|
1 | The conventional method |
2 | The PE-PSO method with and |
3 | The PE-PSO method with and |
4 | The PE-PSO method with and |
5 | The PE-PSO method with and |
Test Case No | Improvement | Improvement | Improvement | Computation Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 6.6347 | - | 0.0976 | - | 6.5372 | - | 59,131.9780 |
2 | 6.6226 | 0.2% | 0.0994 | −1.9% | 6.5232 | 0.2% | 60,345.0513 |
3 | 6.3971 | 3.6% | 0.0951 | 2.5% | 6.3020 | 3.6% | 59,141.1049 |
4 | 6.4770 | 2.4% | 0.0966 | 1.0% | 6.3803 | 2.4% | 60,297.9563 |
5 | 6.6306 | 0.1% | 0.0957 | 1.9% | 6.5349 | 0.0% | 59,284.5769 |
Test Case No | Improvement | Improvement | Improvement | Computation Time (s) | |||
---|---|---|---|---|---|---|---|
1 | 5.5181 | - | 0.0494 | - | 5.4687 | - | 23,546.6051 |
2 | 5.5152 | 0.1% | 0.0493 | 0.2% | 5.4659 | 0.1% | 23,292.7730 |
3 | 5.5140 | 0.1% | 0.0477 | 3.3% | 5.4662 | 0.0% | 23,654.2353 |
4 | 5.5119 | 0.1% | 0.0493 | 0.2% | 5.4626 | 0.1% | 23,548.0132 |
5 | 5.5144 | 0.1% | 0.0487 | 1.3% | 5.4657 | 0.1% | 23,614.5915 |
Epoch 1 | Epoch 50 | Epoch 100 | ||||
---|---|---|---|---|---|---|
Mean | Mean | Mean | ||||
0.9910 | 7.2056 | 0.6607 | 1.2528 | −1.0213 | 1.4733 | |
0.9119 | 6.7317 | 1.5065 | 1.4761 | 1.0754 | 1.2136 | |
−1.3849 | 6.2698 | −4.3527 | 1.4546 | −4.7126 | 1.1934 | |
1.6168 | 7.3208 | 4.0583 | 1.2990 | 4.0312 | 1.2177 |
Test Case no. | Mean Position Estimation Error | Mean Orientation Estimation Error |
---|---|---|
1 | 1.3053 | 29.7798 |
2 | 1.2267 | 25.5245 |
3 | 1.1346 | 21.1206 |
4 | 1.2475 | 21.4514 |
5 | 1.2375 | 27.2040 |
Test Case no. | Mean Position Estimation Error | Mean Orientation Estimation Error |
---|---|---|
1 | 0.6950 | 4.7611 |
2 | 0.6036 | 4.8252 |
3 | 0.6410 | 4.7488 |
4 | 0.8222 | 5.1743 |
5 | 0.8534 | 4.7671 |
K | |||
---|---|---|---|
Conventional | PE-PSO | Improvement (%) | |
1 | 0.2035 | 0.2011 | 1.2% |
2 | 0.1839 | 0.1827 | 0.7% |
3 | 0.1982 | 0.1971 | 0.6% |
4 | 0.1869 | 0.1826 | 2.3% |
5 | 0.2016 | 0.1981 | 1.7% |
6 | 0.1874 | 0.1889 | −0.8% |
7 | 0.1864 | 0.1818 | 2.5% |
8 | 0.1855 | 0.1804 | 2.8% |
9 | 0.1826 | 0.1784 | 2.3% |
10 | 0.1873 | 0.1842 | 1.7% |
Mean | 0.1903 | 0.1875 | 1.5% |
K | |||
---|---|---|---|
Conventional | PE-PSO | Improvement (%) | |
1 | 9.5549 | 9.5286 | 0.3% |
2 | 9.4215 | 9.4259 | 0.0% |
3 | 9.4670 | 9.4544 | 0.1% |
4 | 9.4421 | 9.4345 | 0.1% |
5 | 9.5356 | 9.5201 | 0.2% |
6 | 9.4632 | 9.4113 | 0.6% |
7 | 9.4887 | 9.4882 | 0.0% |
8 | 9.4406 | 9.4363 | 0.1% |
9 | 9.4922 | 9.4835 | 0.1% |
10 | 9.4552 | 9.4557 | 0.0% |
Mean | 9.4761 | 9.4639 | 0.1% |
K | |||
---|---|---|---|
Conventional | PE-PSO | Improvement (%) | |
1 | 9.7583 | 9.7298 | 0.3% |
2 | 9.6054 | 9.6086 | 0.0% |
3 | 9.6652 | 9.6515 | 0.1% |
4 | 9.6290 | 9.6171 | 0.1% |
5 | 9.7371 | 9.7181 | 0.2% |
6 | 9.6506 | 9.6002 | 0.5% |
7 | 9.6751 | 9.6700 | 0.1% |
8 | 9.6261 | 9.6167 | 0.1% |
9 | 9.6749 | 9.6620 | 0.1% |
10 | 9.6425 | 9.6399 | 0.0% |
Mean | 9.6664 | 9.6517 | 0.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamsing, P.; Cao, C.; Zhao, Y.; Boonpook, W.; Tantiparimongkol, L.; Boonsrimuang, P. Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization. Appl. Sci. 2025, 15, 2166. https://doi.org/10.3390/app15042166
Kamsing P, Cao C, Zhao Y, Boonpook W, Tantiparimongkol L, Boonsrimuang P. Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization. Applied Sciences. 2025; 15(4):2166. https://doi.org/10.3390/app15042166
Chicago/Turabian StyleKamsing, Patcharin, Chunxiang Cao, You Zhao, Wuttichai Boonpook, Lalida Tantiparimongkol, and Pisit Boonsrimuang. 2025. "Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization" Applied Sciences 15, no. 4: 2166. https://doi.org/10.3390/app15042166
APA StyleKamsing, P., Cao, C., Zhao, Y., Boonpook, W., Tantiparimongkol, L., & Boonsrimuang, P. (2025). Joint Iterative Satellite Pose Estimation and Particle Swarm Optimization. Applied Sciences, 15(4), 2166. https://doi.org/10.3390/app15042166