Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Electrolyzed Water
2.2. Bacterial Strains and Cultures
2.3. Bactericidal Assay
2.4. Statistical Analysis
3. Results
3.1. Evaluation of the Effect of the Main Operational Labels in the Biocidal Activity
3.2. Evaluation of Residual Chlorine
3.3. Effect of Electrolyzed Water on Vibrio harveyi Strains
3.4. Recently Generated vs. Stored Electrolyzed Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nan, S.; Li, Y.; Li, B.; Wang, C.; Cui, X.; Cao, W. Effect of Slightly Acidic Electrolyzed Water for Inactivating Escherichia coli O157:H7 and Staphylococcus aureus Analyzed by Transmission Electron Microscopy. J. Food Prot. 2010, 73, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Rico, A.; Phu, T.M.; Satapornvanit, K.; Min, J.; Shahabuddin, A.M.; Henriksson, P.J.G. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 2013, 412–413, 231–243. [Google Scholar] [CrossRef]
- Zeng, Q.; Sun, Y.; Lai, P.; Chen, Q.; Wang, H. Advancements in Vibrio vaccines for aquaculture. Aquacult Int. 2024, 32, 3331–3356. [Google Scholar] [CrossRef]
- Boyd, C.E.; Massaut, L. Risks associated with the use of chemicals in pond aquaculture. Aquac. Eng. 1999, 20, 113–132. [Google Scholar] [CrossRef]
- Huang, Y.R.; Hung, Y.C.; Hsu, S.Y.; Huang, Y.W.; Hwang, D.F. Application of electrolyzed water in the food industry. Food Control 2008, 19, 329–345. [Google Scholar] [CrossRef]
- Al-Haq, M.I.; Sugiyama, J.; Isobe, S. Applications of Electrolyzed Water in Agriculture & Food Industries. Food Sci. Technol. Res. 2005, 11, 135–150. [Google Scholar]
- Chen, B.K.; Wang, C.K. Electrolyzed Water and Its Pharmacological Activities: A Mini-Review. Molecules 2022, 27, 1222. [Google Scholar] [CrossRef] [PubMed]
- Goh, C.F.; Ming, L.C.; Wong, L.C. Dermatologic reactions to disinfectant use during the COVID-19 pandemic. Clin. Dermatol. 2021, 39, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Das, P.; Buschmann, M.; Gilbert, J.A. The Future of Microbiome-Based Therapeutics in Clinical Applications. Clin. Pharma Ther. 2020, 107, 123–128. [Google Scholar] [CrossRef]
- Stoica, M. Sustainable Sanitation in the Food Industry. In Sustainable Food Systems from Agriculture to Industry; Academic Press: Cambridge, MA, USA, 2018; pp. 309–339. [Google Scholar]
- Katayose, M.; Yoshida, K.; Achiwa, N.; Eguchi, M. Safety of electrolyzed seawater for use in aquaculture. Aquaculture 2007, 264, 119–129. [Google Scholar] [CrossRef]
- Rahman, S.; Khan, I.; Oh, D. Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Comp. Rev. Food Sci. Food Safe 2016, 15, 471–490. [Google Scholar] [CrossRef] [PubMed]
- Venkobachar, C.; Iyengar, L.; Prabhakara Rao, A.V.S. Mechanism of disinfection: Effect of chlorine on cell membrane functions. Water Res. 1977, 11, 727–729. [Google Scholar] [CrossRef]
- Virto, R.; Mañas, P.; Álvarez, I.; Condon, S.; Raso, J. Membrane Damage and Microbial Inactivation by Chlorine in the Absence and Presence of a Chlorine-Demanding Substrate. Appl. Environ. Microbiol. 2005, 71, 5022–5028. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Tian, Y.; Zhao, C.; Qu, T.; Ma, C.; Liu, X. Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms. J. Endod. 2016, 42, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Wang, S.; Chen, T.; Gao, W.; Zhu, S.; He, J. Inactivation Mechanism of Escherichia coli Induced by Slightly Acidic Electrolyzed Water. Sci. Rep. 2017, 7, 6279. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Daliri, E.B.M.; Oh, D.H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136. [Google Scholar] [CrossRef]
- Issa-Zacharia, A.; Kamitani, Y.; Tiisekwa, A.; Morita, K.; Iwasaki, K. In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water. J. Biosci. Bioeng. 2010, 110, 308–313. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Oliveira, M.; Alegre, I.; Viñas, I. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally processed vegetables. Int. J. Food Microbiol. 2008, 123, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Tabernero de Paz, M.J.; Bodas, R.; Bartolomé, D. Electrolyzed water as a cleaning agent in animal production: Effects on health and performance. Zootecnia 2013, 62, 13–23. [Google Scholar] [CrossRef]
- Ibányez-Payá, P.; Blasco, A.; Ros-Lis, J.V.; Fouz, B.; Amaro, C. Electrolyzed water treatment for the control of the zoonotic pathogen Vibrio vulnificus in Aquaculture: A one healthe perspective. Microorganisms 2024, 12, 1992. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Zhang, X.H.; He, X.; Austin, B. Vibrio harveyi: A serious pathogen of fish and invertebrates in mariculture. Mar. Life Sci. Technol. 2020, 2, 231–245. [Google Scholar] [CrossRef]
- Soto-Rodriguez, S.; Gomez-Gil, B.; Lozano, R. ‘Bright-red’ syndrome in Pacific white shrimp Litopenaeus vannamei is caused by Vibrio harveyi. Dis. Aquat. Org. 2010, 92, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; Roquigny, R.; Flahaut, C.; Bonnin-Jusserand, M.; Grard, T.; Le Bris, C. Abundance and spatial patterns over time of Vibrionaceae and Vibrio harveyi in water and biofilm from a seabass aquaculture facility. Aquaculture 2021, 542, 736862. [Google Scholar] [CrossRef]
- Amaro, C.; Fouz, B.; Sanjuán, E.; Romalde, J.L. Vibriosis. Climate Change and Infectious Fish Diseases; CABI: Wallingford, UK, 2020; pp. 182–210. [Google Scholar]
- Hoben, H.J.; Somasegaran, P. Comparison of the Pour, Spread, and Drop Plate Methods for Enumeration of Rhizobium spp. in Inoculants Made from Presterilized Peat. Appl. Environ. Microbiol. 1985, 44, 1246–1247. [Google Scholar] [CrossRef] [PubMed]
- Nisola, G.M.; Yang, X.; Cho, E.; Han, M.; Lee, C.; Chung, W.J. Disinfection performances of stored acidic and neutral electrolyzed waters generated from brine solution. J. Environ. Sci. Health Part A 2011, 46, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Parveen, N.; Chowdhury, S.; Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. 2022, 29, 85742–85760. [Google Scholar] [CrossRef] [PubMed]
- Rebezov, M.; Saeed, K.; Khaliq, A.; Rahman, S.J.U.; Sameed, N.; Semenova, A. Application of Electrolyzed Water in the Food Industry: A Review. Appl. Sci. 2022, 12, 6639. [Google Scholar] [CrossRef]
- Oomori, T.; Oka, T.; Inuta, T.; Arata, Y. The efficency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal. Sci. 2000, 16, 365–369. [Google Scholar] [CrossRef]
- Hsu, S.Y. Effects of flow rate, temperature and salt concentration on chemical and physical properties of electrolyzed oxidizing water. J. Food Eng. 2005, 66, 171–176. [Google Scholar] [CrossRef]
- Fazlara, A.; Ekehtelat, M. The disinfectant effects of benzalkonium chloride on some important foodborne pathogens. Am.-Eurasian J. Agric. Environ. Sci. 2012, 12, 23–29. [Google Scholar]
- Kim, B.R.; Anderson, J.E.; Mueller, S.A.; Gaines, W.A.; Kendall, A.M. Literature review—Efficacy of various disinfectants against Legionella in water systems. Water Res. 2002, 36, 4433–4444. [Google Scholar] [CrossRef] [PubMed]
- Block, Z.; Eyles, A.; Corkrey, R.; Stanley, R.; Ross, T.; Kocharunchitt, C. Effect of Storage Conditions on Shelf Stability of Undiluted Neutral Electrolyzed Water. J. Food Prot. 2020, 83, 1838–1843. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.T.; Wang, M.M.; Ahn, J.; Ma, Y.N.; Chen, S.G.; Ye, X.Q. Storage Stability of Slightly Acidic Electrolyzed Water and Circulating Electrolyzed Water and Their Property Changes after Application. J. Food Sci. 2016, 81, E610–E617. [Google Scholar] [CrossRef] [PubMed]
Sample | FAC (ppm) | ORP (mV) | %NaCl (m/v) | Conductivity (mS/cm) | pH |
---|---|---|---|---|---|
SAEW5 | 5 | 828 | 1.5 | 26.2 | 5.0 |
900 | 3.0 | 47.5 | |||
SAEW25 | 25 | 889 | 1.5 | 25.7 | |
937 | 3.0 | 48.1 | |||
SAEW125 | 125 | 943 | 1.5 | 25.9 | |
960 | 3.0 | 49.3 | |||
NEW5 | 5 | 832 | 1.5 | 26.0 | 6.5 |
902 | 3.0 | 47.4 | |||
NEW25 | 25 | 892 | 1.5 | 25.9 | |
933 | 3.0 | 47.9 | |||
NEW125 | 125 | 947 | 1.5 | 26.1 | |
962 | 3.0 | 49.5 | |||
SBEW5 | 5 | 828 | 1.5 | 26.3 | 7.5 |
902 | 3.0 | 47.3 | |||
SBEW15 | 15 | 835 | 1.5 | 26.1 | |
901 | 3.0 | 48.2 | |||
SBEW20 | 20 | 890 | 1.5 | 26.2 | |
940 | 3.0 | 49.3 | |||
SBEW25 | 25 | 890 | 1.5 | 26.0 | |
940 | 3.0 | 49.3 | |||
SBEW125 | 125 | 950 | 1.5 | 26.2 | |
964 | 3.0 | 48.9 |
Strain a | Source | Geographic Location | Year of Isolation |
---|---|---|---|
C2 | Diseased sea bass | Spain | 2020 |
1255 | Diseased sea bass | Spain | 2021 |
203 | Diseased sea bass | Spain | 2018 |
Lab1 | Diseased sea bass | Spain | 2015 |
SK348 | Diseased sea bass | Spain | 2019 |
C3 | Diseased sea bass | Spain | 2020 |
972 | Diseased sea bass | Spain | 2020 |
Sample a | %NaCl | Survival Rate (%) in Electrolyzed Water During (min) | |||
---|---|---|---|---|---|
1 | 5 | 10 | 15 | ||
SAEW5 | 1.5 | 109 ± 5 | 107 ± 3 | 102 ± 5 | 99 ± 4 |
3.0 | 110 ± 20 | 110 ± 20 | 110 ± 10 | 110 ± 40 | |
SAEW25 | 1.5 | 150 ± 50 | 67 ± 5 | <0.01 b | <0.01 b |
3.0 | 100 ± 20 | 81 ± 6 | 0.40 ± 0.10 | <0.01 b | |
SAEW125 | 1.5 | <0.01 b | <0.01 b | <0.01 b | <0.01 b |
3.0 | <0.01 b | <0.01 b | <0.01 b | <0.01 b | |
NEW5 | 1.5 | 130 ± 30 | 140 ± 50 | 140 ± 20 | 141 ± 7 |
3.0 | 110 ± 10 | 101 ± 7 | 100 ± 20 | 90 ± 20 | |
NEW25 | 1.5 | 80 ± 20 | 64 ± 5 | 50 ± 30 | 30 ± 20 |
3.0 | 100 ± 20 | 90 ± 20 | 40 ± 30 | 27± 4 | |
NEW125 | 1.5 | <0.01 b | <0.01 b | <0.01 b | <0.01 b |
3.0 | <0.01 b | <0.01 b | <0.01 b | <0.01 b | |
SBEW5 | 1.5 | 120 ± 30 | 110 ± 30 | 106 ± 8 | 130 ± 10 |
3.0 | 90 ± 10 | 100 ± 30 | 93 ± 12 | 90 ± 20 | |
SBEW15 | 1.5 | 93 ± 5 | 70 ± 11 | 70 ± 20 | 60 ± 20 |
3.0 | 97 ± 3 | 74.1 ± 1.2 | 73 ± 7 | 70 ± 20 | |
SBEW20 | 1.5 | 90 ± 10 | 80 ± 30 | 30 ± 20 | 10 ± 10 |
3.0 | 96 ± 2 | 90 ± 20 | 9 ± 6 | 8 ± 2 | |
SBEW25 | 1.5 | 90 ± 20 | 60 ± 10 | 43 ± 16 | 24 ± 17 |
3.0 | 90 ± 30 | 54 ± 9 | 4 ± 7 | 0.11 ± 0.14 | |
SBEW125 | 1.5 | <0.01 b | <0.01 b | <0.01 b | <0.01 b |
3.0 | <0.01 b | <0.01 b | <0.01 b | <0.01 b | |
Control | - | 98 ± 13 | 115 ± 10 | 111 ± 35 | 98 ± 8 |
Label | Value | F | Degrees of Freedom of Hypothesis | Sig. |
---|---|---|---|---|
pH | 0.085 | 8.523 | 4.000 | <0.001 |
FAC | 0.710 | 53.113 | 8.000 | <0.001 |
Time | 0.552 | 36.801 | 8.000 | <0.001 |
Salinity | 0.023 | 4.470 | 2.000 | 0.012 |
FAC*salinity | 0.130 | 7.628 | 8.000 | <0.001 |
pH*FAC | 0.105 | 6.061 | 8.000 | <0.001 |
FAC*time | 0.544 | 12.624 | 26.000 | <0.001 |
pH*salinity | 0.085 | 9.787 | 4.000 | <0.001 |
Time*salinity | 0.017 | 0.954 | 8.000 | 0.471 |
pH*time | 0.102 | 2.937 | 16.000 | <0.001 |
Standardized Coefficients | t | Significance | |
---|---|---|---|
Beta | |||
pH–salinity | 0.170 | 3.512 | <0.001 |
FAC | 0.766 | 3.544 | <0.001 |
Time | 0.627 | 2.927 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blasco, A.; Ibányez-Payá, P.; Fouz, B.; Amaro, C.; Amorós, P.; Ros-Lis, J.V. Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates. Appl. Sci. 2025, 15, 2334. https://doi.org/10.3390/app15052334
Blasco A, Ibányez-Payá P, Fouz B, Amaro C, Amorós P, Ros-Lis JV. Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates. Applied Sciences. 2025; 15(5):2334. https://doi.org/10.3390/app15052334
Chicago/Turabian StyleBlasco, Adolfo, Pablo Ibányez-Payá, Belén Fouz, Carmen Amaro, Pedro Amorós, and José V. Ros-Lis. 2025. "Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates" Applied Sciences 15, no. 5: 2334. https://doi.org/10.3390/app15052334
APA StyleBlasco, A., Ibányez-Payá, P., Fouz, B., Amaro, C., Amorós, P., & Ros-Lis, J. V. (2025). Use of Electrolyzed Water as Disinfection Technology in Aquaculture Systems: Effects on Vibrio harveyi, a Significant Marine Pathogen for Marine Fish and Invertebrates. Applied Sciences, 15(5), 2334. https://doi.org/10.3390/app15052334