Exploring the Impact of Electroencephalography-Based Neurofeedback (EEG NFB) on Motor Deficits in Parkinson’s Disease: A Targeted Literature Review
Abstract
:1. Introduction
2. Methods
- Can EEG NFB influence motor deficits in patients with PD, and if so, how?
- What key factors for the successful implementation and broader adoption of the EEG NFB method can be identified in the literature?
3. Results
4. Discussion
- Improvement in balance: Two of the selected studies aimed to improve balance issues using EEG NFB. This was tested using the Berg Balance Scale and the Biodex Test. In the randomized controlled trials by Azarpaikan et al. [8] and Shi et al. [37], statistically significant improvements in balance were observed. Descriptive results of improved balance were also reported by Thompson and Thompson in their case study.
- Improvement in mobility and stability: The same studies also used scales to assess progress in mobility and stability. Both the TUG test and the Biodex test showed statistically significant improvements in the results measured after EEG NFB in PD patients. A case study also demonstrated improvements in mobility and stability through descriptive results.
5. Study Limitations
6. Advantages and Limitations of EEG NFB
7. Practical Implications and Future Development of the Method
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Search String/Databases | Neurofeedback and PD | Biofeedback and PD | Neuro Feedback and PD | EEG Biofeedback and PD | Brainwave Training and PD | qEEG and PD | Neuro Feedback Therapy and PD | Neurofeedback Therapy and PD | Neurorehabilitaion and PD | ∑ |
---|---|---|---|---|---|---|---|---|---|---|
PubMed | 7 | 30 | 27 | 7 | 5 | 1 | 23 | 7 | 195 | 302 |
Scopus | 63 | 94 | 17 | 5 | 1 | 52 | 2 | 22 | 352 | 608 |
Web of Science | 23 | 53 | 24 | 2 | 1 | 313 | 4 | 4 | 338 | 762 |
Europe PMC | 94 | 262 | 615 | 42 | 9 | 64 | 294 | 44 | 785 | 2209 |
∑ | 187 | 439 | 683 | 56 | 16 | 430 | 323 | 77 | 1670 |
References
- Müller, M.L.; Marusic, U.; van Emde Boas, M.; Weiss, D.; Bohnen, N.I. Treatment options for postural instability and gait difficulties in Parkinson’s disease. Expert Rev. Neurother. 2019, 19, 1229–1251. [Google Scholar] [CrossRef] [PubMed]
- Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 2004, 351, 2498–2508. [Google Scholar] [CrossRef]
- Salat, D.; Tolosa, E. Levodopa in the treatment of Parkinson’s disease: Current status and new developments. J. Park. Dis. 2013, 3, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Hisahara, S.; Shimohama, S. Dopamine Receptors and Parkinson′s Disease. Int. J. Med. Chem. 2011, 2011, 403039. [Google Scholar] [PubMed]
- Olanow, C.W.; Schapira, A.H.; Rascol, O. Continuous dopamine-receptor stimulation in early Parkinson’s disease. Trends Neurosci. 2000, 23, S117–S126. [Google Scholar] [CrossRef]
- Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018, 12, 612. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, J. Conscious control of brain waves. Psychol. Today 1968, 1, 56–60. [Google Scholar]
- Azarpaikan, A.; Torbati, H.T.; Sohrabi, M. Neurofeedback and physical balance in Parkinson’s patients. Gait Posture 2014, 40, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.C. What is neurofeedback: An update. J. Neurother. 2011, 15, 305–336. [Google Scholar] [CrossRef]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin. Neurosci. 2016, 7, 143–158. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Omejc, N.; Rojc, B.; Battaglini, P.P.; Marusic, U. Review of the therapeutic neurofeedback method using electroencephalography: EEG Neurofeedback. Bosn. J. Basic Med. Sci. 2019, 19, 213. [Google Scholar] [CrossRef]
- Schuurman, B.B.; Lousberg, R.L.; Schreiber, J.U.; van Amelsvoort, T.A.; Vossen, C.J. A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. J. Clin. Med. 2024, 13, 2813. [Google Scholar] [CrossRef]
- Skinner, B.F. Operant behavior. Am. Psychol. 1963, 18, 503. [Google Scholar] [CrossRef]
- Jurewicz, K.; Paluch, K.; Kublik, E.; Rogala, J.; Mikicin, M.; Wróbel, A. EEG-neurofeedback training of beta band (12–22 Hz) affects alpha and beta frequencies–A controlled study of a healthy population. Neuropsychologia 2018, 108, 13–24. [Google Scholar] [CrossRef]
- Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M.L.; Rana, M.; Oblak, E.; et al. Closed-loop brain training: The science of neurofeedback. Nat. Rev. Neurosci. 2017, 18, 86–100. [Google Scholar] [CrossRef]
- Weiskopf, N.; Veit, R.; Erb, M.; Mathiak, K.; Grodd, W.; Goebel, R.; Birbaumer, N. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. Neuroimage 2003, 19, 577–586. [Google Scholar] [CrossRef]
- Bichsel, O.; Stieglitz, L.H.; Oertel, M.F.; Baumann, C.R.; Gassert, R.; Imbach, L.L. Deep brain electrical neurofeedback allows Parkinson patients to control pathological oscillations and quicken movements. Sci. Rep. 2021, 11, 7973. [Google Scholar] [CrossRef] [PubMed]
- Kohl, S.H.; Mehler, D.M.; Lührs, M.; Thibault, R.T.; Konrad, K.; Sorger, B. The potential of functional near-infrared spectroscopy-based neurofeedback—A systematic review and recommendations for best practice. Front. Neurosci. 2020, 14, 594. [Google Scholar] [CrossRef]
- Maidan, I.; Nieuwhof, F.; Bernad-Elazari, H.; Reelick, M.F.; Bloem, B.R.; Giladi, N.; Deutsch, J.E.; Hausdorff, J.M.; Claassen, J.A.; Mirelman, A. The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: An fNIRS study. Neurorehabilit. Neural Repair 2016, 30, 963–971. [Google Scholar] [CrossRef]
- Okazaki, Y.O.; Horschig, J.M.; Luther, L.; Oostenveld, R.; Murakami, I.; Jensen, O. Real-time MEG neurofeedback training of posterior alpha activity modulates subsequent visual detection performance. NeuroImage 2015, 107, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Foldes, S.T.; Weber, D.J.; Collinger, J.L. MEG-based neurofeedback for hand rehabilitation. J. Neuroeng. Rehabil. 2015, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Davelaar, E.J. Mechanisms of neurofeedback: A computation-theoretic approach. Neuroscience 2018, 378, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Berger, H. Über das elektroenkephalogramm des menschen. Arch. Für Psychiatr. Und Nervenkrankh. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Abarbanel, A.; Evans, J.R.; Budzynski, T.H.; Budzynski, H.K. (Eds.) Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications; Academic Press: Cambridge, MA, USA, 2009; p. 327. [Google Scholar]
- Wang, H.; Hou, Y.; Zhan, S.; Li, N.; Liu, J.; Song, P.; Wang, Y.; Wang, H. EEG biofeedback decreases theta and beta power while increasing alpha power in insomniacs: An open-label study. Brain Sci. 2023, 13, 1542. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.; Xue, X. Application of electroencephalographic (EEG) biofeedback therapy in the rehabilitation of patients with chronic diseases. Psychiatry Res. 2020, 293, 113371. [Google Scholar] [CrossRef] [PubMed]
- Kopańska, M.; Ochojska, D.; Mytych, W.; Lis, M.W.; Banaś-Ząbczyk, A. Development of a brain wave model based on the quantitative analysis of EEG and EEG biofeedback therapy in patients with panic attacks during the COVID-19 pandemic. Sci. Rep. 2022, 12, 14908. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Álvarez, J.; Grassi, M.; Colombo, D.; Botella, C.; Cipresso, P.; Perna, G.; Riva, G. Efficacy of bio-and neurofeedback for depression: A meta-analysis. Psychol. Med. 2022, 52, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Pan, S.; Xue, C.; Liao, W.; He, C.; Liu, L.; Liu, J. Comparison study of EEG biofeedback therapy on clinical efficacy of children with different subtypes of attention deficit hyperactivity disorder. Chin. J. Behav. Med. Brain Sci. 2021, 12, 591–597. [Google Scholar]
- Prończuk, M.; Trybek, G.; Terbalyan, A.; Markowski, J.; Pilch, J.; Krzysztofik, M.; Mostowik, A.; Maszczyk, A. The Effects of EEG Biofeedback Training on Visual Reaction Time in Judo Athletes. J. Hum. Kinet. 2023, 89, 247. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.M.D.C.; Pimenta, C.A.D.M.; Nobre, M.R.C. The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enferm. 2007, 15, 508–511. [Google Scholar] [CrossRef]
- Uman, L.S. Systematic reviews and meta-analyses. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 57. [Google Scholar] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Thompson, M.; Thompson, L. Biofeedback for movement disorders (dystonia with Parkinson’s disease): Theory and preliminary results. J. Neurother. 2002, 6, 51–70. [Google Scholar] [CrossRef]
- Erickson-Davis, C.R.; Anderson, J.S.; Wielinski, C.L.; Richter, S.A.; Parashos, S.A. Evaluation of neurofeedback training in the treatment of Parkinson’s disease: A pilot study. J. Neurother. 2012, 16, 4–11. [Google Scholar] [CrossRef]
- Cook, A.J.; Pfeifer, K.J.; Tass, P.A. A single case feasibility study of sensorimotor rhythm neurofeedback in Parkinson’s disease. Front. Neurosci. 2021, 15, 623317. [Google Scholar] [CrossRef]
- Shi, Z.; Ding, L.; Han, X.; Jiang, B.; Zhang, J.; Suo, D.; Wu, J.; Pei, G.; Fang, B.; Yan, T. Multimodal biofeedback for Parkinson’s disease motor and nonmotor symptoms. Brain Sci. Adv. 2023, 9, 136–154. [Google Scholar] [CrossRef]
- Hodnik, T.; Roytman, S.; Bohnen, N.I.; Marusic, U. Beta–Gamma Phase-Amplitude Coupling as a Non-Invasive Biomarker for Parkinson’s Disease: Insights from Electroencephalography Studies. Life 2024, 14, 391. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression and mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef]
- Loriette, C.; Ziane, C.; Hamed, S.B. Neurofeedback for cognitive enhancement and intervention and brain plasticity. Rev. Neurol. 2021, 177, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- Linden, D.E. Neurofeedback and networks of depression. Dialogues Clin. Neurosci. 2014, 16, 103–112. [Google Scholar] [CrossRef]
Brain Waves | Frequency [Hz] | Training Protocols |
---|---|---|
Delta | 1–4 | Reduce pain, relieves headache, traumatic brain injuries, improve sleep. |
Theta | 4–8 | For treatment of depression, anxiety and attention disorders. |
Alpha/theta | 7–8.5 | To reduce stress, depression, addiction and anxiety. |
Alpha | 8–13 | Relief pain, reduce stress and anxiety, improve memory and motor performance. |
Low alpha | 8–10 | Relief stress and anxiety |
High alpha | 10–13 | Deep relaxation, reduction of stress, sleep improvement, relief of symptoms of depression, increase attention and concentration. |
SMR (sensorimotor rhythm) | 13–15 | Reduce anxiety, anger and fear. |
Beta | 15–20 | To improve attention and concentration. Improve reading skills. In the treatment of anxiety, obsessive compulsive disorder, alcoholism and insomnia. Reduce fatigue and stress. |
High beta | 20–32 | To treat anxiety and stress. |
Gamma | 32–100 | To stimulate cognition, reducing the migraine attacks. |
Studies/Criteria | Design, Population | EEG NFB Method and Control Group | Target Frequency | Measured Results | Results | Limitation |
---|---|---|---|---|---|---|
Thompson and Thompson (2002) [34] | Case study HY = ND N = 1 Avg. age = 47 100% F 10–20 system FCz—PCz | 4+ month 42x 1 h; 1–2x/week ND | ↑ SMR (13–15 Hz) + breathing exercises | Descriptive results | Reduction of uncontrollable movements, improvement of walking unaided, control of freezing of gait | Case study, descriptive results, double blind research |
Erickson-Davis et al. (2012) [35] | RTC HY = ND N = 9 (4/5) Avg. age. = 55.83 55.56% F 10–20 system C3–C4 | 12–14 weeks; 24x 30 min NFB SHAM group | ↑ 8–15 Hz; ↓ 4–8 Hz; ↓ 23–34 Hz | AIMS, PD home diary, qEEG, HY, UPDRS | AIMS, UPDRS, HY—nonsignificant results; Significant results in qEEG measurements in spectral EEG topography | Age differences, small sample size, small dyskinesia difference between experimental and control groups. |
Azarpaikan et al. (2014) [8] | RTC HY = 1.5–2 N = 16 (8/8) Avg. age. = 74.7 50% F 10–20 system O1–O2 | 2.5 weeks 3x/week 30 min SHAM and control group | ↑ beta1 (12–15 Hz); ↓ theta (4–7 Hz) | Biodex test (level 8), BBS | Biodex, BBS—statistically significant results | No long-term follow-up of the participants; PB with more severe disease stage according to the HY scale. |
Cook et al. (2021) [36] | Pilot study HY = 2 N = 2 (1/1) Avg. age = middle 50 NP% F 256-channel system C3–C4 | 2 consecutive days 2x NFB 1 h ND | SMR (12–17 Hz) | UPDRS-III | UPDRS-III mixed results, second day improvement in rigidity and walking. | No long-term follow-up of the participants; a small number of participants, a small number of NFB. |
Shi et al. (2023) [37] | RTC HY = 2–3 N = 21 (7/7/7) Avg. age = 61.72 76.19% F ND C3–C4 | 2 weeks 5x NFB; 13 min SHAM group | SMR (13–15 Hz) + breathing exercises | UPDRS II, UPDRS III, BBS, TUG, HRSD | EEG training ↑ BBS; ↓ TUG; beta regulation (enhancement); Multimodal group: ↑ depression, theta regulation | Gender differences, no long-term follow-up of participants. |
Study | Thompson and Thompson (2002) [34] | Erickson-Davis et al. (2012) [35] | Azarpaikan et al. (2014) [8] | Cook et al. (2021) [36] | Shi et al. (2023) [37] | ||
---|---|---|---|---|---|---|---|
Intervention | Type of NFB | Form of neurofeedback | EEG NFB | EEG NFB | EEG NFB | EEG NFB | EEG NFB |
Form of feedback | Video and audio | Audio | Game stopped | Color chart and points | Color column and reward points | ||
Electrode placement | 10–20 system, FCz-CPz | 10–20 system, C3–C4 | 10–20 system, O1–O2 | 256-channel EEG, C3–C4 | C3–C4 | ||
Target frequency | SMR (13–15 Hz) + breathing exercise | ↑ 8–15 Hz, ↓ 4–8 Hz in 23–34 Hz | ↑ beta 1 (12–15 Hz), ↓ theta (4–7 Hz) | SMR (12–17 Hz) | SMR (13–15 Hz) + breathing exercise | ||
Number of NFB trainings | Duration | 6 months | 12–15 weeks | 2.5 weeks | 2 days | 2 weeks | |
Number of NFB | 30 | 24 | 8 | 2 | 5 | ||
With medicine | YES | ND | YES | YES | YES | ||
Without medicine | NO | ND | NO | YES | NO | ||
Duration of NFB | 1 h | 30 min | 30 min | 1 h | 13 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaznik, L.; Marusic, U. Exploring the Impact of Electroencephalography-Based Neurofeedback (EEG NFB) on Motor Deficits in Parkinson’s Disease: A Targeted Literature Review. Appl. Sci. 2025, 15, 2496. https://doi.org/10.3390/app15052496
Blaznik L, Marusic U. Exploring the Impact of Electroencephalography-Based Neurofeedback (EEG NFB) on Motor Deficits in Parkinson’s Disease: A Targeted Literature Review. Applied Sciences. 2025; 15(5):2496. https://doi.org/10.3390/app15052496
Chicago/Turabian StyleBlaznik, Laura, and Uros Marusic. 2025. "Exploring the Impact of Electroencephalography-Based Neurofeedback (EEG NFB) on Motor Deficits in Parkinson’s Disease: A Targeted Literature Review" Applied Sciences 15, no. 5: 2496. https://doi.org/10.3390/app15052496
APA StyleBlaznik, L., & Marusic, U. (2025). Exploring the Impact of Electroencephalography-Based Neurofeedback (EEG NFB) on Motor Deficits in Parkinson’s Disease: A Targeted Literature Review. Applied Sciences, 15(5), 2496. https://doi.org/10.3390/app15052496