Review of the AI-Based Analysis of Abdominal Organs from Routine CT Scans
Abstract
:1. Introduction
2. Historical Evolution
2.1. Early Foundations (1993–2007)
2.2. Transition to Automated Methods (2010–2018)
2.3. Deep Learning Revolution (2018–2024)
2.3.1. Deep Learning System (DLS) Using Contrast-Enhanced CT
2.3.2. Deep Convolutional Neural Network (DCNN)
2.3.3. UNet++
2.3.4. Dense VNet
2.3.5. Fully Convolutional Network (FCN) and Conditional GAN
2.3.6. Unet3+
2.3.7. Multiscale DL and CART
2.3.8. Deep Learning Algorithm (DLA)
2.3.9. Residual Attention UNet
2.3.10. Encoder-Decoder
2.3.11. S-Net
2.3.12. Conditional GAN
2.3.13. RetinaNet and U-Net
2.3.14. Multiscale DL and Support Vector Machine (SVM)
2.3.15. Recursive Cascaded Network (RCN)
2.3.16. CNN
2.3.17. Swin-Unet
2.3.18. Pix2Pix
2.3.19. 3D Convolutional Block Attention Module Neural Network (CBAMNN)
2.3.20. MSLUNet
2.3.21. Deep Abdominal Net
3. Datasets
3.1. BTCV
3.2. Combined Healthy Abdominal Organ Segmentation (CHAOS)
3.3. Liver Tumor Segmentation (LiTS)
3.4. Sliver07
3.5. 3Dircadb
3.6. CT-ORG
- Dice Coefficient:
- Intersection over Union (IoU):
- Hausdorff Distance:
- Accuracy:
- Precision:
- Recall (Sensitivity):
- F1-Score:
- Sensitivity:
- Specificity:
- AUC-ROC: Represents the area under the receiver operating characteristic curve, plotting:
4. Cons and Pros of Each Network for Liver or Liver Lesion Segmentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Medical Imaging and Analysis | |
Imaging Techniques | |
CT | Computed Tomography |
MRI | Magnetic Resonance Imaging |
PET | Positron Emission Tomography |
Technological Frameworks | |
ML | Machine Learning |
AI | Artificial Intelligence |
XAI | Explainable AI |
CHAOS | Combined Healthy Abdominal Organ Segmentation |
Machine Learning, Neural Networks, and Deep Learning | |
CNN | Convolutional Neural Networks |
MSLUNet | Multiscale and Large Kernel U-Net |
RA-UNet | Residual Attention U-Net |
RCN | Recursive Cascaded Network |
GAN | Generative Adversarial Network |
SVM | Support Vector Machine |
DCNN | Deep Convolutional Neural Network |
FCN | Fully Convolutional Networks |
DLA | Deep Learning Algorithm |
DLM | Deep Learning Model |
DLS | Deep Learning System |
CBAMNN | Convolutional Block Attention Module Neural Network |
Pix2Pix | Pixel-to-Pixel Image Translation Network |
Clinical and Anatomical Considerations | |
L3 | Third Lumbar Vertebra |
LPDI | Liver Parenchymal Disruption Index |
CE | Contrast Extravasation |
SAT | Subcutaneous Adipose Tissue |
VAT | Visceral Adipose Tissue |
IMAT | Intermuscular Adipose Tissue |
SM | Skeletal Muscle |
Datasets and Evaluation Metrics | |
LiTS | Liver Tumor Segmentation Challenge |
3DIRCADb | 3D Image Reconstruction for Comparison of Algorithm Database |
DSC | Dice Similarity Coefficient |
CART | Classification and Regression Tree |
DSS | Dice Similarity Score |
MCC | Matthews Correlation Coefficient |
AUC | Area Under the Curve |
Technical and Computational Aspects | |
2D | Two-Dimensional |
3D | Three-Dimensional |
References
- Niño, S.B.; Bernardino, J.; Domingues, I. Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective. Sensors 2024, 24, 1752. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaran, L.; Chartrand, G.; Vu, K.N.; Vandenbroucke-Menu, F.; Kauffmann, C.; Tang, A. Liver segmentation: Indications, techniques, and future directions. Insights Imaging 2017, 8, 377–392. [Google Scholar] [CrossRef]
- Wei, D.; Jiang, Y.; Zhou, X.; Wu, D.; Feng, X. A Review of Advancements and Challenges in Liver Segmentation. J. Imaging 2024, 10, 202. [Google Scholar] [CrossRef]
- Kumar, S.S.; Vinpd Kumar, K. Literature survey on deep learning methods for liver segmentation from CT images: A comprehensive review. Multimed. Tools Appl. 2024, 83, 71833–71862. [Google Scholar] [CrossRef]
- Roberts, J.L.; Dalen, K.; Bosanko, C.M.; Jafir, S.Z. CT in abdominal and pelvic trauma. Radiographics 1993, 13, 735–752. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.I.; Aldaoud, K.M.; Qtaish, I. The role of computed tomography in blunt abdominal trauma. Sultan Qaboos Univ. Med. J. 2007, 7, 41. [Google Scholar]
- Taourel, P.; Vernhet, H.; Suau, A.; Granier, C.; Lopez, F.M.; Aufort, S. Vascular emergencies in liver trauma. Eur. J. Radiol. 2007, 64, 73–82. [Google Scholar] [CrossRef]
- Yan, G.; Wang, B. An automatic kidney segmentation from abdominal CT images. In Proceedings of the 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems, Xiamen, China, 29–31 October 2010; Volume 1, pp. 280–284. [Google Scholar]
- Farzaneh, N.; Habbo-Gavin, S.; Soroushmehr, S.R.; Patel, H.; Fessell, D.P.; Ward, K.R.; Najarian, K. Atlas based 3D liver segmentation using adaptive thresholding and superpixel approaches. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 1093–1097. [Google Scholar]
- Vivanti, R.; Szeskin, A.; Lev-Cohain, N.; Sosna, J.; Joskowicz, L. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1945–1957. [Google Scholar] [CrossRef]
- Farzaneh, N.; Soroushmehr, S.M.R.; Patel, H.; Wood, A.; Gryak, J.; Fessell, D.; Najarian, K. Automated Kidney Segmentation for Traumatic Injured Patients through Ensemble Learning and Active Contour Modeling. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 3418–3421. [Google Scholar]
- Choi, K.J.; Jang, J.K.; Lee, S.S.; Sung, Y.S.; Shim, W.H.; Kim, H.S.; Yun, J.; Choi, J.Y.; Lee, Y.; Kang, B.K.; et al. Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent-enhanced CT Images in the Liver. Radiology 2018, 289, 688–697. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Kunimatsu, A.; Abe, O.; Kiryu, S. Deep learning for staging liver fibrosis on CT: A pilot study. Eur. Radiol. 2018, 28, 4578–4585. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. DLMIA ML-CDS 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 11045. [Google Scholar]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.B.; Bandula, S.; Gurusamy, K.; Davidson, B.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans. Med. Imaging 2018, 37, 1822–1834. [Google Scholar] [CrossRef] [PubMed]
- Ben-Cohen, A.; Klang, E.; Raskin, S.P.; Soffer, S.; Ben-Haim, S.; Konen, E.; Amitai, M.M.; Greenspan, H. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng. Appl. Artif. Intell. 2019, 78, 186–194. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. arXiv 2020, arXiv:2004.08790. [Google Scholar] [CrossRef]
- Dreizin, D.; Zhou, Y.; Fu, S.; Wang, Y.; Li, G.; Champ, K.; Yuille, A.L. A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: Assessment of feasibility and comparison with subjective categorical estimation. Radiol. Artif. Intell. 2020, 2, e190220. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Yoon, J.S.; Lee, S.S.; Suk, H.I.; Son, J.H.; Sung, Y.S.; Kim, H.S. Deep learning algorithm for automated segmentation and volume measurement of the liver and spleen using portal venous phase computed tomography images. Korean J. Radiol. 2020, 21, 987–997. [Google Scholar] [CrossRef]
- Jin, Q.; Meng, Z.; Sun, C.; Cui, H.; Su, R. RA-UNet: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. 2020, 8, 605132. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, S.; Popuri, K.; Ma, C.; Chow, V.; Cespedes Feliciano, E.M.; Caan, B.J.; Baracos, V.E.; Beg, M.F. Deep learning method for localization and segmentation of abdominal CT. Comput. Med. Imaging Graph. 2020, 85, 101776. [Google Scholar] [CrossRef]
- Luan, S.; Xue, X.; Ding, Y.; Wei, W.; Zhu, B. Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation. Front. Oncol. 2021, 11, 680807. [Google Scholar] [CrossRef]
- Conze, P.H.; Kavur, A.E.; Cornec-Le Gall, E.; Gezer, N.S.; Le Meur, Y.; Selver, M.A.; Rousseau, F. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks. Artif. Intell. Med. 2021, 117, 102109. [Google Scholar] [CrossRef]
- Araújo, J.D.L.; Cruz, L.B.d.; Ferreira, J.L.; Neto, O.P.d.S.; Silva, A.C.; Paiva, A.C.d.; Gattass, M. An automatic method for segmentation of liver lesions in computed tomography images using deep neural networks. Expert Syst. Appl. 2021, 180, 115064. [Google Scholar] [CrossRef]
- Dreizin, D.; Chen, T.; Liang, Y.; Zhou, Y.; Paes, F.; Wang, Y.; Morrison, J.J. Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: A decision tree analysis. Abdom. Radiol. 2021, 46, 2556–2566. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Y.; Liao, M.; Zhang, F. An Unsupervised Learning-Based Multi-Organ Registration Method for 3D Abdominal CT Images. Sensors 2021, 21, 6254. [Google Scholar] [CrossRef]
- Farzaneh, N.; Stein, E.B.; Soroushmehr, R.; Gryak, J.; Najarian, K. A deep learning framework for automated detection and quantitative assessment of liver trauma. BMC Med. Imaging 2022, 22, 39. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In Computer Vision—ECCV 2022 Workshops. ECCV 2022; Karlinsky, L., Michaeli, T., Nishino, K., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Jamali, A.; Nazemi, A.; Sami, A.; Bahrololoom, R.; Paydar, S.; Shakibafar, A. Decision Support System to triage of liver trauma. arXiv 2024, arXiv:2408.02012. [Google Scholar]
- Cheng, C.T.; Lin, H.H.; Hsu, C.P.; Chen, H.W.; Huang, J.F.; Hsieh, C.H.; Liao, C.H. Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans. J. Digit. Imaging Inform. Med. 2024, 37, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cheng, L. MSLUNet: A Medical Image Segmentation Network Incorporating Multi-Scale Semantics and Large Kernel Convolution. Appl. Sci. 2024, 14, 6765. [Google Scholar] [CrossRef]
- Shen, X.; Zhou, Y.; Shi, X.; Zhang, S.; Ding, S.; Ni, L.; Dou, X.; Chen, L. The application of deep learning in abdominal trauma diagnosis by CT imaging. World J Emerg Surg. 2024, 19, 17. [Google Scholar] [CrossRef]
- Multi-Atlas Labeling Beyond the Cranial Vault—Workshop and Challenge. Synapse Liver Lesion Segmentation Challenge. 2015. Available online: https://www.synapse.org/Synapse:syn3193805/wiki/217754 (accessed on 1 February 2025).
- Kavur, A.E.; Alper, S.; Oguz, D.; Mustafa, B.; Gezer, S.N. CHAOS—Combined (CT-MR) Healthy Abdominal Organ Segmentation Challenge Data (Version v1.03) [Dataset]; Zenodo: Geneva, Switzerland, 2019. [Google Scholar]
- Bilic, P.; Christ, P.F.; Vorontsov, E.; Chlebus, G.; Chen, H.; Dou, Q.; Fu, C.-W.; Han, X.; Heng, P.-A.; Hesser, J.; et al. The Liver Tumor Segmentation Benchmark (LiTS). arXiv 2019, arXiv:1901.04056. [Google Scholar] [CrossRef]
- Heimann, T.; Ginneken, B.V.; Styner, M.A. Segmentation of the Liver 2007 (SLIVER07). Available online: http://sliver07.isi.uu.nl/ (accessed on 12 December 2018).
- Soler, L.; Hosttettle, A.; Charnoz, A.; Fasquel, J.; Moreau, J. 3D Image Reconstruction for Comparison of Algorithm Database: A Patient Specific Anatomical and Medical Image Database. Available online: https://www.ircad.fr/research/data-sets/liver-segmentation-3d-ircadb-01/ (accessed on 16 April 2018).
- Rister, B.; Shivakumar, K.; Nobashi, T.; Rubin, D.L. CT-ORG: A Dataset of CT Volumes with Multiple Organ Segmentations (Version 1) [Dataset]; The Cancer Imaging Archive, University of Arkansas for Medical Sciences: Little Rock, AR, USA, 2019. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems (NeurIPS). arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Mazhar, S.; Atif, N.; Bhuyan, M.; Ahamed, S.R. S-Net: A Lightweight Real-Time Semantic Segmentation Network for Autonomous Driving. In Proceedings of the Computer Vision and Image Processing. CVIP 2023. Communications in Computer and Information Science, Jammu, India, 3–5 November 2023; Springer: Cham, Switzerland, 2024; Volume 2010, pp. 735–752. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.-A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the Fourth International Conference on 3D Vision (3DV), Montreal, QC, Canada, 11–17 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Ayalew, Y.A.; Fante, K.A.; Mohammed, M. Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method. BMC Biomed. Eng. 2021, 3, 4. [Google Scholar] [CrossRef]
Year | Authors | Method | Purpose and Used Data | Evaluation Metrics |
---|---|---|---|---|
2018 | Kyu Jin Choi et al. [12] | DLS | Staging liver fibrosis; 7461 patients with confirmed liver fibrosis | AUROC scores: 0.96, 0.97, 0.95 for diagnosing significant fibrosis, advanced fibrosis, and cirrhosis, respectively; accuracy: 74.9 |
2018 | Koichiro Yasaka et al. [13] | DCNN | Staging liver fibrosis; 496 CT scans from 286 patients | AUROC scores: 0.74, 0.76, and 0.73 for diagnosing significant fibrosis, advanced fibrosis, and cirrhosis, respectively |
2018 | Zongwei Zhou et al. [14] | UNet++ | Liver segmentation; 331 Samples 512 × 512 | IoU of 3.9 and 3.4 points compared to U-Net and wide U-Net, respectively |
2018 | Eli Gibson et al. [15] | Deep V-Networks | Pancreas, stomach, and esophagus segmentation for endoscopic procedures; 90 subjects | Dice scores: pancreas 0.78, stomach 0.90, esophagus 0.76 |
2019 | Avi Ben-Cohen et al. [16] | FCN & cGAN | Liver lesion; 60 PET/CT scans | 28% false positive reduction |
2020 | Huimin Huang et al. [17] | UNET3+ | Liver/spleen segmentation; 131 Samples, 103 for train, 28 for test | Dice scores 0.9675 and 0.9620 for liver/spleen, respectively |
2020 | David Dreizin et al. [18] | Multiscale DL | Blunt hepatic injury; 130 samples, 113 blunt, 17 penetrating | Dice score of 0.61 |
2020 | Yura Ahn et al. [19] | DLA | Segmentation of liver/spleen; 813 patients and evaluated 150/50 pairs of CT | Dice scores: liver 0.973; spleen 0.974 |
2020 | Qiangguo Jin et al. [20] | RA-UNet | 3D liver/tumor segmentation; LiTS and 3DIRCADb datasets | Dice score of 0.595 and 0.830 for tumor segmentation |
2020 | Setareh Dabiri et al. [21] | Encoder-Decoder Networks | Segmentation at L3 vertebra level; 1748 CT images | Jaccard scores: 97/% for SM and VAT and 98% and 83% for SAT and IMAT tissue segmentation |
2021 | Shunyao Luan et al. [22] | S-Net | Liver tumor segmentation; LiTS | Dice scores: global 75.5%; per case 61.3% |
2021 | Pierre-Henri Conze et al. [23] | Conditional GAN | Liver, kidneys, and spleen segmentation from abdominal CT; CHAOS | Dice score 97.95,89.67,90.56,84.70%, respectively, for liver, spleen, right kidney, and left kidney segmentation |
2021 | José Denes Lima Araújo et al. [24] | RetinaNet and UNet | Lesion detection and segmentation; LiTS | Dice score: 82.99%, MCC: 83.62% |
2021 | David Dreizin et al. [25] | Multiscale DL & SVM | Quantification of traumatic hemoperitoneum; total patients: 130, diagnosis: traumatic hemoperitoneum | Dice Score: 0.61% |
2021 | Shaodi Yang et al. [26] | RCN | Multi-organ registration on 3D abdominal CT images; LiTS, 3DIRCADB, BTCV, Silver 07 | Dice score 97.75% for multi-organ segmentation |
2022 | Negar Farzaneh et al. [27] | CNN | Quantitative assessment of liver trauma; 77 CT scans (34 with and 43 without liver parenchymal trauma) | Dice score 96.31% and 51.21% for liver parenchyma and liver trauma, respectively. |
2023 | Hu Cao et al. [28] | Swin-Unet | Segmentation of the aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, and stomach; 3779 CT images from 30 patient includes 18 train and 12 test | Dice score 79.13% |
2023 | Ali Jamali et al. [29] | Pix2Pix GAN | Decision support for liver trauma triage; total patients: 20, total images: 2823, liver masks: 1153, tumors or cysts: 467 | Dice scores of 97% for liver, 93% for lacerations |
2024 | Chi-Tung Cheng et al. [30] | 3D CBAMNN | Detection of traumatic abdominal injuries; 1302 scans (87%) for training and validation and 194 scans (13%) for testing | Spleen injury model accuracy of 0.938 and specificity of 0.952; liver injury mode accuracy of 0.820 and specificity of 0.847; kidney injuries model accuracy of 0.959 and specificity of 0.989 |
2024 | Zhu and Cheng [31] | MSLUNet | Enhanced medical image segmentation; BUSI dataset: total images: 780, normal breast: 133 benign tumor: 437 malignant tumor: 210 used 647 (benign + malignant tumor); Kvasir-SEG dataset: 1000 images + 1000 masks | Evaluation metrics on MSLUNet are Dice, recall, precision, and specificity of 91.1, 93.2, 95.6, and 94.9, respectively |
2024 | Xinru Shen et al. [32] | 2D Semantic Segmentation | Abdominal injury detection; 855 out of 3147 patients had confirmed abdominal trauma. | Accuracy of 93.2% in renal injuries |
Feature/Layer | U-Net | U-Net++ | U-Net 3+ |
---|---|---|---|
Convolutional Layers | Encoder and decoder use 3 × 3 convolutions with ReLU activation | Similar to U-Net with added 3 × 3 convolutions in nested skip connections | Similar to U-Net; used in both encoder and decoder for feature fusion. |
Activation Function | ReLU | ReLU | ReLU |
Pooling | 2 × 2 max-pooling in the encoder for downsampling | 2 × 2 max-pooling in the encoder for downsampling | 2 × 2 max-pooling in the encoder for downsampling |
Upsampling | Transposed convolutions for spatial resolution recovery | Transposed convolutions for spatial resolution recovery | Bilinear upsampling or transposed convolutions |
Skip Connections | Direct connections between corresponding encoder and decoder levels | Nested skip connections with intermediate convolutional layers | Full-scale skip connections integrating features from all encoder and decoder levels |
Fusion Layers | No explicit fusion layer | Intermediate nodes use convolution layers for feature refinement | Fusion of multiscale features using 3 × 3 convolutions |
Deep Supervision is not supported | Not supported | Supported with intermediate outputs at multiple decoder levels | |
Output Layer | 1 × 1 convolution for segmentation map generation | 1 × 1 convolution for segmentation map generation | 1 × 1 convolution for segmentation map generation |
Computational Complexity | Moderate | Higher due to nested connections | Highest due to full-scale skip connections and deep supervision. |
Pros | Method | Cons |
---|---|---|
DCNNs | High accuracy and robustness for liver segmentation. Effective for larger lesions. | Struggles with small or subtle lesions. Requires large datasets and significant computational resources. |
Fully Convolutional Networks (FCNs) | Simple and computationally efficient for liver segmentation. | Poor performance on small or intricate lesions. Requires post-processing for fine details. |
Encoder-decoder architectures | Simple, flexible, and efficient. | Struggles with small or irregular lesions and noisy datasets. Needs enhancements for lesions. |
S-Net | Lightweight and efficient. Ideal for resource-constrained or real-time applications. | Reduced accuracy for complex shapes and small lesions. Sensitive to noise. |
Dense V-Net | Strong for 3D volumetric analysis. Preserves fine details. Handles complex lesions effectively. | High computational demands. Sensitive to noise. Requires large annotated datasets. |
U-Net | Simple, efficient, and effective for liver segmentation. | Limited performance for small or complex lesions without enhancements. |
U-Net++ | Superior accuracy with nested and dense skip connections. Effective for small and complex lesions. | Increased complexity and computational requirements. |
U-Net 3+ | High accuracy and robustness for liver and liver lesion segmentation. Suitable for clinical applications. | High computational demands. Risk of overfitting on small datasets. |
RA-UNet | Excellent for small or irregular lesions. Combines residual and attention mechanisms to improve accuracy. | High computational requirements. Requires high-quality datasets. |
Conditional GANs (cGANs) | Robust to noise and class imbalance. Captures complex shapes and fine details. | Complex training. High resource demands. Requires paired data. |
Pix2Pix | Handles intricate details and complex structures effectively. | Dependency on paired data. Training instability. Resource-intensive. |
Swin-Unet | Excellent for small and irregular lesions. Preserves liver boundaries with global context understanding. | High memory and computational requirements. Long training times. |
MSL-UNet | Balanced efficiency and accuracy good for small/irregular lesions. Suitable for real-time applications. | Not as accurate as complex architectures. Limited performance on noisy datasets. |
Method | Approach | Strengths |
---|---|---|
RetinaNet + U-Net | Detection + segmentation | Two-stage approach for high accuracy |
cGANs (Conditional GANs) | Joint segmentation and detection | Robust to noise and domain shifts |
Multiscale DL + SVM | Multi-task learning | Quantifies injury severity |
RA-UNet | Attention-based segmentation and detection | High accuracy, fewer false positives |
Swin-Unet | Transformer-based model | Captures global and local details |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavakolian, N.; Nazemi, A.; Suen, C.Y. Review of the AI-Based Analysis of Abdominal Organs from Routine CT Scans. Appl. Sci. 2025, 15, 2516. https://doi.org/10.3390/app15052516
Tavakolian N, Nazemi A, Suen CY. Review of the AI-Based Analysis of Abdominal Organs from Routine CT Scans. Applied Sciences. 2025; 15(5):2516. https://doi.org/10.3390/app15052516
Chicago/Turabian StyleTavakolian, Niloofar, Azadeh Nazemi, and Ching Yee Suen. 2025. "Review of the AI-Based Analysis of Abdominal Organs from Routine CT Scans" Applied Sciences 15, no. 5: 2516. https://doi.org/10.3390/app15052516
APA StyleTavakolian, N., Nazemi, A., & Suen, C. Y. (2025). Review of the AI-Based Analysis of Abdominal Organs from Routine CT Scans. Applied Sciences, 15(5), 2516. https://doi.org/10.3390/app15052516