Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Localization Data and Trilateration Method Analysis
- Node 1: Located at the latitude 22.107776 and the longitude −100.84508, with Cartesian coordinates of 309,669.41 m for X and 2,445,910.071 m for Y;
- Node 2: Positioned at the latitude 22.107777 and the longitude −100.845054, with Cartesian coordinates of 309,672.42 m for X and 2,445,910.03 m for Y;
- Node 3: Found at the latitude 22.107705 and the longitude −100.84510, with Cartesian coordinates of 309,667.31 m for X and 2,445,902.12 m for Y.
- Latitude: 22.10779443;
- Longitude: −100.8451071;
- X (m): 309,667.0153;
- Y (m): 2,445,912.03.
3.2. Localization Data and Min–Max Method Analysis
- Node 1: Located at the latitude 22.107776 and the longitude −100.84508, with Cartesian coordinates of 309,669.41 m for X and 2,445,910.071 m for Y;
- Node 2: Positioned at the latitude 22.107777 and the longitude −100.845054, with Cartesian coordinates of 309,672.42 m for X and 2,445,910.03 m for Y;
- Node 3: Found at the latitude 22.107705 and the longitude −100.84510, with Cartesian coordinates of 309,667.31 m for X and 2,445,902.12 m for Y.
- Latitude: 22.10778349;
- Longitude: −100.8450892;
- X (m): 309,668.849;
- Y (m): 2,445,910.797.
3.3. Localization Data and Maximum Likelihood Method Analysis
- Node 1: Located at the latitude 22.107776 and the longitude −100.84508, with Cartesian coordinates of 309,669.41 m for X and 2,445,910.071 m for Y;
- Node 2: Positioned at the latitude 22.107777 and the longitude −100.845054, with Cartesian coordinates of 309,672.42 m for X and 2,445,910.03 m for Y;
- Node 3: Found at the latitude 22.107705 and the longitude −100.84510, with Cartesian coordinates of 309,667.31 m for X and 2,445,902.12 m for Y;
- Node 4: Located at the latitude 22.107678 and the longitude −100.845103, with Cartesian coordinates of 309,667.282 m for X and 2,445,899.141 m for Y;
- Node 5: Positioned at the latitude 22.107777 and the longitude −100.845093, with Cartesian coordinates of 309,668.417 m for X and 2,445,910.083 m for Y;
- Node 6: Found at the latitude 22.107830 and the longitude −100.845103, with Cartesian coordinates of 309,667.488 m for X and 2,445,916.07 m for Y.
- Latitude: 22.10778663;
- Longitude:−100.8450936;
- X (m): 309,668.4;
- Y (m): 2,445,911.15.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ding, X.; Dong, S. Improving Positioning Algorithm Based on RSSI. Wirel. Pers. Commun. 2020, 110, 1947–1961. [Google Scholar] [CrossRef]
- Rathnayake, R.M.M.R.; Maduranga, M.W.P.; Tilwari, V.; Dissanayake, Y.M.B. RSSI y sistemas de localización en interiores basados en aprendizaje automático para ciudades inteligentes. Eng 2023, 4, 1468–1494. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. RSSI-Based Indoor Localization With the Internet of Things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Syazwani, C.J.N.; Wahab, N.H.A.; Sunar, N.; Ariffin, S.H.S.; Wong, K.Y.; Aun, Y. Indoor Positioning System: A Review. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2022, 13. [Google Scholar] [CrossRef]
- Aragón-Zavala, A. Indoor Wireless Communications: From Theory to Implementation; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Espressif Systems, “ESP32 Datasheet”, Espressif Systems. Available online: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (accessed on 8 October 2024).
- u-blox, “NEO-6M GPS Datasheet”, u-blox. Available online: https://www.u-blox.com/sites/default/files/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf (accessed on 8 October 2024).
- Oppo, “Reno 11 Specifications”, Oppo. Available online: https://www.oppo.com/en/smartphones/series-reno/reno11/specs/ (accessed on 8 October 2024).
- Mao, G.; Fidan, B. (Eds.) Localization Algorithms and Strategies for Wireless Sensor Networks: Monitoring and Surveillance Techniques for Target Tracking; IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Ompal, O.; Kumar, N.; Mishra, V.; Kumar, Y.A. Wireless sensor networks protocols, applications, and network-on-chip communications. IAES Int. J. Robot. Autom. (IJRA) 2024, 13, 338–350. [Google Scholar] [CrossRef]
- Qian, Z.; Jabbar, M.A.; Cheung, S.K.S.; Li, Y.X. Proceeding of 2022 International Conference on Wireless Communications, Networking and Applications (WCNA 2022); Lecture Notes in Electrical Engineering; Springer: Singapore, 2023. [Google Scholar]
- Gregorio, F.; González, G.; Schmidt, C.; Cousseau, Y.J. Signal Processing Techniques for Power Efficient Wireless Communication Systems; Practical Approaches for RF Impairments Reduction; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Li, X.; Pang, H.; Li, G.; Jiang, J.; Zhang, H.; Gu, C.; Yuan, Y.D. Wireless Positioning: Technologies, Applications, Challenges, and Future Development Trends. Comput. Model. Eng. Sci. 2024, 139, 1135–1166. [Google Scholar] [CrossRef]
- Shi, Y.; Shi, W.; Liu, X.; Xiao, X. An RSSI Classification and Tracing Algorithm to Improve Trilateration-Based Positioning. Sensors 2020, 20, 4244. [Google Scholar] [CrossRef]
- Pita, R.; Utrilla, R.; Rodriguez-Zurrunero, R.; Araujo, Y.Á. Experimental Evaluation of an RSSI-Based Localization Algorithm on IoT End-Devices. Sensors 2019, 19, 3931. [Google Scholar] [CrossRef]
- Luo, X.; O’Brien, W.; Julien, C. Comparative evaluation of Received Signal Strength Index (RSSI)-based indoor localization techniques for construction jobsites. Adv. Eng. Inform. 2011, 25, 355–363. [Google Scholar] [CrossRef]
- Booranawong, A.; Sengchuai, K.; Jindapetch, N.; Saito, Y.H. An investigation of min-max method problems for RSSI-based indoor localization: Theoretical and experimental studies. EASR 2020, 47, 313–325. [Google Scholar]
- Grzechca, D.; Pelczar, P.; Chruszczyk, L. Analysis of Object Location Accuracy for iBeacon Technology based on the RSSI Path Loss Model and Fingerprint Map. Int. J. Electron. Telecommun. 2016, 62. [Google Scholar] [CrossRef]
- Suroso, D.; Arifin, M.; Cherntanomwong, P. Distance-based Indoor Localization using Empirical Path Loss Model and RSSI in Wireless Sensor Networks. J. Robot. Control. (JRC) 2020, 1, 199–207. [Google Scholar] [CrossRef]
- Fahama, H.S.; Kavian, Y.S.; Asl, K.A.; Soorki, M.N. Indoor Localization Using RSSI-Based Supervised Machine Learning Approaches. In Proceedings of the 2025 Fifth National and the First International Conference on Applied Research in Electrical Engineering (AREE), Ahvaz, Iran, 4–5 February 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Sangthong, J.; Thongkam, J.; Promwong, Y.S. Indoor Wireless Sensor Network Localization Using RSSI Based Weighting Algorithm Method. In Proceedings of the 2020 6th International Conference on Engineering, Applied Sciences and Technology (ICEAST), Chiang Mai, Thailand, 1–4 July 2020; pp. 1–4. [Google Scholar]
- Paterna, V.; Calveras, A.; Aspas, J.; Bullones, M. A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering. Sensors 2017, 17, 2927. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.-e.; Kim, T. Industrial Wireless Sensor Networks: Protocols and Applications. Sensors 2020, 20, 5809. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Kittur, y.H.M. Survey of Indoor Positioning Techniques and Systems for Mobile Nodes. Int. J. Sci. Technol. Res. 2020, 9. [Google Scholar] [CrossRef]
- Isabona, J.; Oghu, E.; Omasheye, O. Path Loss and Models: A Survey and Future Perspective for Wireless Communication Networks. Int. J. Adv. Netw. Appl. 2023, 15, 5892–5907. [Google Scholar]
- Fukuda, Y.; Hatase, T.; Satoh, A.; Nakamura, Y.; Wada, S. Characterizing the Basic Performance of IEEE 802.11ax Using Actual Hardware Measurements. In Proceedings of the NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Namee, K.; Srikamta, N.; Kaewkajone, T.; Thierchot, T.; Polpinij, J.; Kaewsaeng-On, R. Enhancing Indoor Positioning Accuracy: A Comprehensive Study on Euclidean Distance, Trilateration, Wi-Fi RTT and FTM Protocol Integration. In Proceedings of the 2024 Conference on Nombre de la Conferencia, Tokyo, Japan, 25–27 November 2023; pp. 173–180. [Google Scholar]
- Gezici, S. A Survey on Wireless Position Estimation. Wirel. Pers. Commun. 2008, 44, 263–282. [Google Scholar] [CrossRef]
- IEEE 802.15 Standards; IEEE Standards Association. Available online: https://standards.ieee.org (accessed on 8 October 2024).
- Perera, D.A.S.; Teijeiro, G.M.; Hernández, I.Q.; Roché, L.P.; Miniet, y.P.M.P. Marco teórico para la implementación de la geolocalización en redes LPWAN. Rev. Telemática 2023, 22, 45–61. [Google Scholar]
- Polak, L.; Rozum, S.; Slanina, M.; Bravenec, T.; Fryza, T.; Pikrakis, y.A. Received Signal Strength Fingerprinting-Based Indoor Location Estimation Employing Machine Learning. Sensors 2021, 21, 4605. [Google Scholar] [CrossRef]
- Sivasakthiselvan, S.; Nagarajan, V. Localization Techniques of Wireless Sensor Networks: A Review. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 1643–1648. [Google Scholar]
- Mouhammad, M.; Allam, C.; Abdel-Raouf, M.; Shenouda, E.; Elsabrouty, M. BLE indoor localization based on improved RSSI and trilateration. IEEE Access 2019, 7, 17–21. [Google Scholar]
- Li, S.; Ni, W.; Sung, C.K.; Hedley, y.M. Recent advances on cooperative wireless localization and their application in inhomogeneous propagation environments. Comput. Netw. 2018, 142, 253–271. [Google Scholar] [CrossRef]
- Khan, F.; Nguang, y.S. Distributed localization algorithm for wireless sensor networks using range lookup and subregion stitching. IET Wirel. Sens. Syst. 2021, 11, 179–205. [Google Scholar] [CrossRef]
- Savvides, A.; Han, C.; Strivastava, M. Dynamic Fine-Grained Localization in Ad-Hoc Networks of Sensors. In Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, Atlanta, GA, USA, 23–28 September 2002. [Google Scholar]
- Hyder, Z.; He, D.; Li, D.; Yu, y.W. Improved Wi-Fi Indoor Localization Based on Signal Quality Parameters and RSSI Smoothing Algorithm. In Proceedings of the 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS), Negambo, Sri Lanka, 3–5 May 2021; pp. 140–144. [Google Scholar]
- Zhu, J.; Chen, Q.; Zhang, J. Localization optimization algorithm of maximum likelihood estimation based on received signal strength. In Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN) 2017, Guangzhou, China, 6–8 May 2017; pp. 830–834. [Google Scholar]
- Shen, X.; Xu, B.; Shen, y.H. Indoor Localization System Based on RSSI-APIT Algorithm. Sensors 2023, 23, 9620. [Google Scholar] [CrossRef] [PubMed]
- Tilwari, V.; Pack, S.; Maduranga, M.; Lakmal, H.K.I.S. An Improved Wi-Fi RSSI-Based Indoor Localization Approach Using Deep Randomized Neural Network. IEEE Trans. Veh. Technol. 2024, 73, 18593–18604. [Google Scholar] [CrossRef]
Distance (m) | Mean RSSI (dBm) | Standard Deviation |
---|---|---|
2 | −36 | 1.6546 |
4 | −49 | 2.1884 |
5 | −50 | 2.2917 |
6 | −52 | 2.7710 |
7 | −54 | 2.9925 |
11 | −68 | 3.5216 |
Neo-6M Pin | ESP32 Pin |
---|---|
Vcc | 3.3V |
GND | GND |
Tx | Rx |
Rx | Tx |
Distance (m) | Mean RSSI (dBm) | Standard Deviation |
---|---|---|
2 | −36 | 1.6546 |
4 | −49 | 2.1884 |
5 | −50 | 2.2917 |
6 | −52 | 2.7710 |
7 | −54 | 2.9925 |
11 | −68 | 3.5216 |
Day | RSSI Mean (dBm) | Standard Deviation (dBm) |
---|---|---|
1 | −52.7778 | 9.9860 |
2 | −52.2778 | 9.6173 |
3 | −53.2778 | 10.6143 |
4 | −52.4722 | 10.2497 |
5 | −52.3889 | 10.2658 |
6 | −52.5556 | 10.2663 |
7 | −52.3611 | 10.2153 |
8 | −52.9722 | 10.4156 |
9 | −52.5000 | 10.3606 |
10 | −52.6944 | 10.6014 |
11 | −52.5000 | 9.5424 |
12 | −52.6667 | 9.9971 |
13 | −51.9167 | 10.0438 |
14 | −52.7222 | 10.0871 |
15 | −51.9444 | 10.1304 |
16 | −52.0556 | 9.9109 |
17 | −52.5556 | 10.2858 |
18 | −52.3056 | 9.7213 |
19 | −53.0000 | 10.1700 |
20 | −51.9722 | 10.0242 |
21 | −52.3889 | 10.1539 |
22 | −53.2500 | 10.2550 |
23 | −51.5278 | 9.4188 |
24 | −51.6389 | 9.9919 |
25 | −52.8333 | 10.4922 |
26 | −53.3889 | 10.7045 |
27 | −52.6944 | 10.5960 |
28 | −52.3889 | 10.7099 |
29 | −52.1667 | 10.3551 |
30 | −52.6667 | 10.1980 |
31 | −53.0833 | 10.0977 |
Hour/Distance | 2 m | 4 m | 5 m | 6 m | 7 m | 11 m |
---|---|---|---|---|---|---|
10:00 a.m. | −33 | −48 | −52 | −55 | −61 | −63 |
12:00 p.m. | −32 | −50 | −56 | −56 | −60 | −64 |
02:00 p.m. | −31 | −50 | −55 | −57 | −63 | −66 |
05:00 p.m. | −36 | −50 | −56 | −58 | −62 | −64 |
08:00 p.m. | −35 | −50 | −55 | −57 | −60 | −62 |
10:00 p.m. | −34 | −51 | −54 | −58 | −61 | −62 |
Mean | −33.50 | −49.83 | −54.67 | −56.83 | −61.17 | −63.50 |
Std. Dev. | 1.64 | 0.98 | 1.63 | 1.17 | 1.17 | 1.52 |
Real Distance [m] | RSSI [dBm] | Calculated Distance [m] |
---|---|---|
1.00 | −28 | 0.93 |
2.00 | −38 | 1.79 |
3.00 | −44 | 2.78 |
4.00 | −47 | 3.72 |
5.00 | −52 | 4.98 |
6.00 | −54 | 5.77 |
7.00 | −57 | 7.18 |
8.00 | −59 | 8.31 |
9.00 | −60 | 8.94 |
10.00 | −62 | 10.34 |
11.00 | −63 | 11.13 |
Latitude | Longitude | X | Y |
---|---|---|---|
22.107777 | −100.845103 | 309,667.415 | 2,445,910.095 |
Anchor Nodes | Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|---|
Node 1 | 22.107776 | −100.84508 | 309,669.41 | 2,445,910.071 |
Node 2 | 22.107777 | −100.845054 | 309,672.42 | 2,445,910.03 |
Node 3 | 22.107705 | −100.84510 | 309,667.31 | 2,445,902.12 |
Anchor Nodes | RSSI (dBm) | Estimated Distance (m) |
---|---|---|
Node 1 | −39 | 1.93 |
Node 2 | −54 | 5.77 |
Node 3 | −61 | 9.91 |
Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|
22.10779443 | −100.8451071 | 309,667.0153 | 2,445,912.03 |
Algorithm | Error in X (m) | Error in Y (m) | Position Error (m) |
---|---|---|---|
Trilateration | 0.3997 | 1.9350 | 1.9758 |
Anchor Nodes | Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|---|
Node 1 | 22.107776 | −100.84508 | 309,669.41 | 2,445,910.071 |
Node 2 | 22.107777 | −100.845054 | 309,672.42 | 2,445,910.03 |
Node 3 | 22.107705 | −100.84510 | 309,667.31 | 2,445,902.12 |
Anchor Nodes | RSSI (dBm) | Estimated Distance (m) |
---|---|---|
Node 1 | −39 | 1.93 |
Node 2 | −54 | 5.77 |
Node 3 | −61 | 9.91 |
Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|
22.10778349 | −100.8450892 | 309,668.849 | 2,445,910.797 |
Algorithm | Error in X (m) | Error in Y (m) | Position Error (m) |
---|---|---|---|
Min–Max | 1.4340 | 0.7019 | 1.5966 |
Anchor Nodes | Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|---|
Node 1 | 22.107776 | −100.84508 | 309,669.41 | 2,445,910.071 |
Node 2 | 22.107777 | −100.845054 | 309,672.42 | 2,445,910.03 |
Node 3 | 22.107705 | −100.84510 | 309,667.31 | 2,445,902.12 |
Node 4 | 22.107678 | −100.845103 | 309,667.282 | 2,445,899.141 |
Node 5 | 22.107777 | −100.845093 | 309,668.417 | 2,445,910.083 |
Node 6 | 22.107830 | −100.845103 | 309,667.488 | 2,445,916.07 |
Anchor Nodes | RSSI (dBm) | Estimated Distance (m) |
---|---|---|
Node 1 | −39 | 1.93 |
Node 2 | −54 | 5.77 |
Node 3 | −61 | 9.91 |
Node 4 | −64 | 11.97 |
Node 5 | −31 | 1.08 |
Node 6 | −55 | 6.2 |
Latitude | Longitude | X (m) | Y (m) |
---|---|---|---|
22.10778663 | −100.8450936 | 309,668.4 | 2,445,911.15 |
Algorithm | Error in X (m) | Error in Y (m) | Position Error (m) |
---|---|---|---|
Maximum Likelihood | 0.9850 | 1.0549 | 1.4433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaona Juárez, R.; García-Barrientos, A.; Acosta-Elias, J.; Stevens-Navarro, E.; Galván, C.G.; Palavicini, A.; Monroy Cruz, E. Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax. Appl. Sci. 2025, 15, 2620. https://doi.org/10.3390/app15052620
Gaona Juárez R, García-Barrientos A, Acosta-Elias J, Stevens-Navarro E, Galván CG, Palavicini A, Monroy Cruz E. Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax. Applied Sciences. 2025; 15(5):2620. https://doi.org/10.3390/app15052620
Chicago/Turabian StyleGaona Juárez, Roberto, Abel García-Barrientos, Jesus Acosta-Elias, Enrique Stevens-Navarro, César G. Galván, Alessio Palavicini, and Ernesto Monroy Cruz. 2025. "Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax" Applied Sciences 15, no. 5: 2620. https://doi.org/10.3390/app15052620
APA StyleGaona Juárez, R., García-Barrientos, A., Acosta-Elias, J., Stevens-Navarro, E., Galván, C. G., Palavicini, A., & Monroy Cruz, E. (2025). Design and Implementation of an Indoor Localization System Based on RSSI in IEEE 802.11ax. Applied Sciences, 15(5), 2620. https://doi.org/10.3390/app15052620