Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review
Abstract
:1. Introduction
1.1. Definition and Significance of Gunshot Residues (GSRs)
1.2. Historical Evolution and Technological Advances in SEM for GSR Analysis
1.3. Analytical Workflow and Methodological Considerations in SEM-Based GSR Detection
1.4. SEM Detectors and Imaging Techniques in GSR Analysis
2. Materials and Methods
3. Results
3.1. Imaging Detectors and Techniques
3.2. Applications of SEM
3.3. Applications of SEM in the Forensic Field
3.4. Identification and Composition of Bullet Residue Particles with SEM
3.5. Gunshot Residue Analysis: Detection, Persistence, and Emerging Forensic Solutions
3.6. Judicial Implications and the Role of Expert Testimony
3.7. Future Prospects of SEM in the Forensic Field
3.8. Comparative Analysis of SEM with Other Microscopic Techniques
3.9. SEM Applications Beyond Forensic Science
4. Discussion
4.1. Gunshot Residue Composition and Formation
4.2. SEM Application on Gunshot Residue Identification
4.3. Collection Phase
4.4. Analytical Procedures and Protocols
4.5. Interpretation and Reporting of Results
4.6. Technical Limitations of SEM and False Positives/Negatives in GSR Analysis
4.7. Portable SEM Devices: Revolutionizing On-Site Forensic Analysis
4.8. Complementary Analytical Techniques in GSR Identification
4.9. Challenges and Limitations in SEM-Based GSR Analysis: False Positives and Environmental Contaminants
4.10. Standardization and Future Prospects of SEM in Forensic Science
4.11. Emerging Technologies and Future Perspectives in SEM for Forensic Science
4.12. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kröner, A.; Hirsch, T. Current Trends in the Optical Characterization of Two-Dimensional Carbon Nanomaterials. Front. Chem. 2020, 7, 927. [Google Scholar] [CrossRef] [PubMed]
- Reimer, L.; Kohl, H. Transmission Electron Microscopy: Physics of Image Formation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Williams, D.B.; Carter, C.B. Transmission Electron Microscopy: A Textbook for Materials Science; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Brinza, C.A.; Salceanu, M.; Melian, A.; Taraboanta, I.; Cimpoesu, R.; Giuroiu, C.L.; Sandu, I.; Andrian, S. Evaluation by Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy of the Effects of Root Canal Instrumentation on the Radicular Dentine. Microsc. Res. Tech. 2025. [Google Scholar] [CrossRef] [PubMed]
- Croce, A.; Bertolotti, M.; Crivellari, S.; Amisano, M.; Nada, E.; Grosso, F.; Cagna, L.; Rinaudo, C.; Gatti, G.; Maconi, A. Scanning Electron Microscopy Coupled with Energy Dispersive Spectroscopy Applied to the Analysis of Fibers and Particles in Tissues from Colon Adenocarcinomas. Work. Pap. Public Health 2023, 11, 9586. [Google Scholar] [CrossRef]
- Din, M.S.U.; Naveed, M.; Aziz, T.; Makhdoom, S.I.; Waseem, M.; Khan, A.A.; Al-Harbi, M.; Alasmari, A.F. Comprehensive Characterization and Bioactivity Assessment of Titanium Dioxide Nanoparticles Synthesized Using Chrysanthemum indicum Leaf Extract. Chem. Biodivers. 2025. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, H.; Sui, Y. Computer Vision-Based Automatic Evaluation Method of Y2O3 Steel Coating Performance with SEM Image. Sci. Rep. 2025, 15, 1722. [Google Scholar] [CrossRef]
- Chiappe, C.; Pomelli, C.S.; Sartini, S. Combined Use of Scanning Electron Microscopy-Energy-Dispersive X-ray Spectroscopy and Fourier Transform Infrared Imaging Coupled with Principal Component Analysis in the Study of Ancient Egyptian Papyri. ACS Omega 2019, 4, 22041–22047. [Google Scholar] [CrossRef]
- Kang, J.K.; Yoon, S.J.; Park, H.; Lee, S.J.; Baek, J.; Jeon, I.Y.; Gwak, S.J. Characterization of Antimicrobial Properties of Copper-Doped Graphitic Nanoplatelets. Int. J. Mol. Sci. 2024, 25, 12414. [Google Scholar] [CrossRef]
- Bijelić, L.; Ruiz-Zepeda, F.; Hodnik, N. The Role of High-Resolution Transmission Electron Microscopy and Aberration-Corrected Scanning Transmission Electron Microscopy in Unraveling the Structure-Property Relationships of Pt-Based Fuel Cells Electrocatalysts. Inorg. Chem. Front. 2023, 11, 323–341. [Google Scholar] [CrossRef]
- Winterroth, F.; Wang, J.; Wink, O.; Carelsen, B.; Dahl, J.; Thakor, A.S. A Theoretical Approach in Applying High-Frequency Acoustic and Elasticity Microscopy to Assess Cells and Tissues. Annu. Rev. Biomed. 2025, 27. [Google Scholar] [CrossRef]
- Muangkaew, W.; Thanomsridetchai, N.; Tangwattanachuleeporn, M.; Ampawong, S.; Sukphopetch, P. Unveiling Lodderomyces elongisporus as an Emerging Yeast Pathogen: A Holistic Approach to Microbiological Diagnostic Strategies. Mycopathologia 2024, 189, 94. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, W.; Castro, N.J.; Leng, J.; Zhang, L.G. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Eng. Part C Methods 2016, 22, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Beil, M.; Braxmeier, H.; Fleischer, F.; Schmidt, V.; Walther, P. Quantitative Analysis of Keratin Filament Networks in Scanning Electron Microscopy Images of Cancer Cells. J. Microsc. 2005, 220, 84–95. [Google Scholar] [CrossRef]
- Tambuzzi, S.; Gentile, G.; Primavera, R.; Muccino, E.; Zoja, R. Pilot Application of SEM/EDX Analysis on Suspected Cigarette Burns in a Forensic Autopsy Case of Child Abuse. Am. J. Forensic Med. Pathol. 2024, 45, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Senješ, H.; Kuzmić, S.; Jerković, I. Police Vehicle Contamination by Inorganic Gunshot Residue (iGSR) in Zagreb County Police Administration (Croatia): Analysis of Characteristic and Indicative Particles Across Different Vehicle Parts and Contributory Risk Factors. J. Forensic Sci. 2024, 69, 2230–2239. [Google Scholar] [CrossRef] [PubMed]
- Hietpas, J.; Buscaglia, J.; Richard, A.H.; Shaw, S.; Castillo, H.S.; Donfack, J. Microscopical Characterization of Known Postmortem Root Bands Using Light and Scanning Electron Microscopy. Forensic Sci. Int. 2016, 267, 7–15. [Google Scholar] [CrossRef]
- Tambuzzi, S.; Gentile, G.; Boracchi, M.; Andreola, S.; Zoja, R. Colorimetric Barium Detection of Gunshot Residues on Cadaveric Human Skin: A Pilot Application for Forensic Purposes. Acad. Forensic Pathol. 2024, 14, 62–73. [Google Scholar] [CrossRef]
- Arouca, A.M.; Lucena, M.A.M.; Rossiter, R.J.; Talhavini, M.; Weber, I.T. Use of Luminescent Gunshot Residues Markers in Forensic Context-Part II. Forensic Sci. Int. 2017, 281, 161–170. [Google Scholar] [CrossRef]
- Romolo, F.S.; Margot, P. Identification of Gunshot Residue: A Critical Review. Forensic Sci. Int. 2001, 119, 195–211. [Google Scholar] [CrossRef]
- Wolten, G.; Nesbitt, R.; Calloway, A.; Loper, G.; Jones, P. Particle Analysis for the Detection of Gunshot Residue. I: Scanning Electron Microscopy/Energy Dispersive X-Ray Characterization of Hand Deposits from Firing. J. Forensic Sci. 1979, 24, 409–422. [Google Scholar] [CrossRef]
- Niewoehner, L.; Wenz, H.W.; Andrasko, J.; Beijer, R.; Gunaratnam, L. ENFSI Proficiency Test Program on Identification of GSR by SEM/EDX. J. Forensic Sci. 2003, 48, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Traversari, M.; Valentini, L.; Versari, I.; Ventura, L.; Giampalma, E.; Righi, E.; Petrella, E.; Gobbi, P.; Pasquinelli, G.; et al. The Role of 3D Virtual Anatomy and Scanning Environmental Electron Microscopy in Understanding Morphology and Pathology of Ancient Bodies. Tomography 2025, 11, 5. [Google Scholar] [CrossRef]
- Eshun, J.; Lamar, N.C.; Aksoy, S.G.; Akers, S.; Garcia, B.; Cunningham, H.; Chin, G., Jr.; Bilbrey, J.A. Identifying Sample Provenance from SEM/EDS Automated Particle Analysis via Few-Shot Learning Coupled with Similarity Graph Clustering. Microsc. Microanal. 2024, 30, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Ahuja, P. A Study on the Correlation of the Physico-Chemical Properties of Gunshot Residue (GSR) Particles with Distance Using a 9×19 mm Indian Ammunition. Forensic Sci. Med. Pathol. 2024, 20, 1371–1387. [Google Scholar] [CrossRef]
- Serol, M.; Ahmad, S.M.; Quintas, A.; Família, C. Chemical Analysis of Gunpowder and Gunshot Residues. Molecules 2023, 28, 5550. [Google Scholar] [CrossRef] [PubMed]
- Nešić, N.; Heiligenstein, X.; Zopf, L.; Blüml, V.; Keuenhof, K.S.; Wagner, M.; Höög, J.L.; Qi, H.; Li, Z.; Tsaramirsis, G.; et al. Automated Segmentation of Cell Organelles in Volume Electron Microscopy Using Deep Learning. Microsc. Res. Tech. 2024, 87, 1718–1732. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Ziatdinov, M.; Hinkle, J.; Jesse, S.; Ghosh, A.; Kelley, K.P.; Lupini, A.R.; Sumpter, B.G.; Vasudevan, R.K. Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano 2021, 15, 12604–12627. [Google Scholar] [CrossRef] [PubMed]
- Kapun, G.; Majorovits, E.; Šturm, S.; Marinšek, M.; Skalar, T. The Microstructural Reconstruction of Variously Sintered Ni-SDC Cermets Using Focused Ion Beam Scanning Electron Microscopy Nanotomography. Materials 2024, 17, 3068. [Google Scholar] [CrossRef]
- Stempinski, E.S.; Pagano, L.; Riesterer, J.L.; Adamou, S.K.; Thibault, G.; Song, X.; Chang, Y.H.; López, C.S. Automated Large Volume Sample Preparation for vEM. Methods Cell Biol. 2023, 177, 1–32. [Google Scholar] [CrossRef]
- Batsungnoen, K.; Riediker, M.; Suárez, G.; Hopf, N.B. From Nano to Micrometer Size Particles—A Characterization of Airborne Cement Particles During Construction Activities. J. Hazard. Mater. 2020, 398, 122838. [Google Scholar] [CrossRef]
- Zappa, D. The Influence of Nb on the Synthesis of WO3 Nanowires and the Effects on Hydrogen Sensing Performance. Sensors 2019, 19, 2332. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, J.; Wang, Z.; Yao, S.; Du, F. Compact Vacuum Transfer Devices for Highly Air-Sensitive Materials in Scanning Electron Microscopy. Micron 2024, 187, 103720. [Google Scholar] [CrossRef] [PubMed]
- Kamel, A.H.; Al-Sabbagh, N.H.A.; Moussa, I.; Obaida, M.; Abd-Rabboh, H.S.M.; Boraie, W.E. A New Compact Potentiometric Electrode for pH Monitoring Built Upon a Glass Substrate with a Ce-Doped SnO2 Layer. Anal. Methods 2024, 17, 92–103. [Google Scholar] [CrossRef]
- Demircioğlu, D.; Yildirim, M.Ş.; Erkan, E.; Çapaci, M.; Tümer, A.R.; Akçan, R. Beyond the shot: Exploring secondary transfer of gunshot residue on common surfaces and the impact of hand cleaning methods. Forensic Sci. Int. 2024, 361, 112135. [Google Scholar] [CrossRef]
- Minzière, V.R.; Weyermann, C. Organic and inorganic gunshot residues on the hands, forearms, face, and nostrils of shooters 30 min after a discharge. Sci. Justice 2024, 64, 557–571. [Google Scholar] [CrossRef] [PubMed]
- Akçan, R.; Demircioglu, D.; Aydogan, H.C.; Cavlak, M.; Erkan, E.; Demiray, E.; Mercan, M.; Rıza Tümer, A. Ear as an alternative sampling site for GSR analysis following shotgun discharge. J. Forensic Sci. 2021, 66, 1267–1275. [Google Scholar] [CrossRef] [PubMed]
- Doña-Fernández, A.; de Andres-Gimeno, I.; Santiago-Toribio, P.; Valtuille-Fernández, E.; Aller-Sanchez, F.; Heras-González, A. Real-time detection of GSR particles from crime scene: A comparative study of SEM/EDX and portable LIBS system. Forensic Sci. Int. 2018, 292, 167–175. [Google Scholar] [CrossRef]
- Redouté Minzière, V.; Werner, D.; Schneider, D.; Manganelli, M.; Jung, B.; Weyermann, C.; Gassner, A.L. Combined collection and analysis of inorganic and organic gunshot residues. J. Forensic Sci. 2020, 65, 1102–1113. [Google Scholar] [CrossRef]
- Mandel, M.; Israelsohn Azulay, O.; Zidon, Y.; Tsach, T.; Cohen, Y. Classification Improvements in Automated Gunshot Residue (GSR) Scans. J. Forensic Sci. 2018, 63, 1269–1274. [Google Scholar] [CrossRef]
- Charles, S.; Dodier, T.; Kaindl, M.; Kastéropoulos, A.; Knijnenberg, A.; Larsson, M.; Lauper, S.; Merat, N.; Niewoehner, L.; Scholz, T.; et al. Conduction of a round-robin test on a real sample for the identification of gunshot residues by SEM/EDX. Forensic Sci. Int. 2020, 309, 110183. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, X.; Shentu, X.; Li, D. The Application and Development of Electron Microscopy for Three-Dimensional Reconstruction in Life Science: A Review. Cell Tissue Res. 2024, 396, 1–18. [Google Scholar] [CrossRef]
- Ogura, T.; Okada, T. Observation of Biological and Emulsion Samples by Newly Developed Three-Dimensional Impedance Scanning Electron Microscopy. Comput. Struct. Biotechnol. J. 2024, 23, 4064–4076. [Google Scholar] [CrossRef] [PubMed]
- Pratiush, U.; Houston, A.; Kalinin, S.V.; Duscher, G. Realizing Smart Scanning Transmission Electron Microscopy Using High Performance Computing. Rev. Sci. Instrum. 2024, 95, 103701. [Google Scholar] [CrossRef] [PubMed]
- Fresnais, M.; Richardin, P.; Gimat, A.; Sepúlveda, M.; Leize-Wagner, E.; Charrié, A. Recent Advances in the Characterization of Hair of Mummies from the Chilean Andean Coast. Forensic Sci. Int. 2015, 249, 25–34. [Google Scholar] [CrossRef]
- Brożek-Mucha, Z. Scanning electron microscopy and X-ray microanalysis for chemical and morphological characterisation of the inorganic component of gunshot residue: Selected problems. Biomed. Res. Int. 2014, 2014, 428038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Charles, S.; Geusens, N.; Vergalito, E.; Nys, B. Interpol review of gunshot residue 2016–2019. Forensic Sci. Int. Synerg. 2020, 2, 416–428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonizzoni, L.; Mazzarelli, D.; Franceschetti, L.; Vitali, C.; Amadasi, A.; Cattaneo, C. Investigating gunshot wounds in charred bone with XRF spectroscopy: A technical note. Int. J. Legal Med. 2024, 138, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Onetto, M.A.; Carignano, E.; Pregliasco, R.G. False-negative probability in the SEM/EDS automated discovery of iGSR particles: A Bayesian approach. J. Forensic Sci. 2023, 68, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Ristova, M.; Skenderovska, M.; Skulic, Z.; Brożek-Mucha, Z. A study of dispersion of gunshot residue from a frequently used Serbian ammunition cal. 7.65 mm to support selected aspects of casework in North Macedonia. Sci. Justice 2023, 63, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Dasgupta, J.; Umre, S.; Rajput, P. Harnessing Electron Microscope for Trace Evidence Analysis; IntechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Redouté Minzière, V.; Robyr, O.; Weyermann, C. Should inorganic or organic gunshot residues be analysed first? Forensic Sci. Int. 2023, 348, 111600. [Google Scholar] [CrossRef] [PubMed]
- Osnat, I.A.; Hila, R.; Amit, C.; Yigal, Z.; Zohar, P. A likelihood-ratio framework for evaluating results of forensic gunshot-residue analysis. Forensic Sci. Int. 2022, 336, 111339. [Google Scholar] [CrossRef] [PubMed]
- Maitre, M.; Horder, M.; Kirkbride, K.P.; Gassner, A.L.; Weyermann, C.; Gupta, A.; Beavis, A.; Roux, C. An application example of the likelihood ratio approach to the evaluation of organic gunshot residues using a fictional scenario and recently published data. Forensic Sci. Int. 2022, 335, 111267. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, N.W.M.; DeGaetano, D.; Edwards, D.; Niewoehner, L.; Platek, F.; Wyatt, J.M. Proposed practices for validating the performance of instruments used for automated inorganic gunshot residue analysis. Forensic Chem. 2020, 20, 100252. [Google Scholar] [CrossRef]
- Tahirukaj, M.; Olluri, B.; Surleva, A. A study of the effect of working parameters and validation of SEM/EDS method for determination of elemental composition of commonly encountered GSR samples in shooting events in Kosovo. J. Forensic Sci. 2021, 66, 2393–2404. [Google Scholar] [CrossRef] [PubMed]
- Cecchetto, G.; Giraudo, C.; Amagliani, A.; Viel, G.; Fais, P.; Cavarzeran, F.; Feltrin, G.; Ferrara, S.D.; Montisci, M. Estimation of the firing distance through micro-CT analysis of gunshot wounds. Int. J. Leg. Med. 2011, 125, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.K.; Martinez, M.; Garcia, J.; DiMaio, V.J. Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive X-ray. Am. J. Forensic Med. Pathol. 2007, 28, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Pagano, F.; Vincenti, F.; Montesano, C.; Fanti, F.; Gregori, A.; Curini, R.; Sergi, M. Oral fluid as a new investigative matrix for the determination of organic gunshot residue exposure. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1210, 123477. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Wang, T.; Liu, G.; Cao, Z.; Frank, L.A.; Jiang, S.; Zhang, C.; Li, Z.; Krasitskaya, V.V.; Li, Q.; et al. Analysis of interactions between proteins and small-molecule drugs by a biosensor based on a graphene field-effect transistor. Sensors 2021, 326, 128991. [Google Scholar] [CrossRef]
- Liu, G.; Wei, J.; Li, X.; Tian, M.; Wang, Z.; Shen, C.; Sun, W.; Li, C.; Li, X.; Lv, E.; et al. Near-Infrared-Responded High Sensitivity Nanoprobe for Steady and Visualized Detection of Albumin in Hepatic Organoids and Mouse Liver. Adv. Sci. 2022, 9, e2202505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tian, M.; Wei, J.; Lv, E.; Li, C.; Liu, G.; Sun, Y.; Yang, W.; Wang, Q.; Shen, C.; Zhang, C.; et al. Drug evaluation platform based on non-destructive and real-time in situ organoid fate state monitoring by graphene field-effect transistor. Chem. Eng. J. 2024, 498, 155355. [Google Scholar] [CrossRef]
Section | Key Points |
---|---|
Applications of SEM | SEM is applied in nanotechnology, materials science, geology, electronics, and forensic science, offering high-resolution analysis. |
Applications of SEM in Forensic Science | SEM aids in identifying textile fibers, bullet residues, explosives, and drug samples, playing a vital role in forensic investigations. |
Identification and Composition of Bullet Residue Particles | SEM provides high-resolution imaging and chemical analysis of bullet residues, identifying key elements like Pb, Ba, and Sb. |
Future Prospects of SEM in Forensic Science | Advances in AI, automation, miniaturization, and 3D imaging are improving SEM capabilities for forensic investigations. |
Discussion | GSR formation and dispersion depend on firearm type and environmental factors. Recent SEM/EDS advancements enhance GSR identification and classification. |
Collection Phase | Adhesive stubs or swabs are used to collect GSR samples, which are then prepared for SEM analysis using conductive coatings. |
Analytical Procedures and Protocols | SEM-EDX is used for automated particle screening, calibration, and standardization to ensure accuracy and reproducibility. |
Interpretation and Reporting of Results | Morphological and elemental analysis criteria help distinguish GSR particles from environmental contaminants, ensuring forensic reliability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, M.A.; Gualtieri, S.; Santos, A.; Mendes, B.; Raffaele, R.; Tarallo, A.P.; Verrina, M.C.; Ranno, F.; Monterossi, M.D.; Ricci, P.; et al. Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review. Appl. Sci. 2025, 15, 2634. https://doi.org/10.3390/app15052634
Sacco MA, Gualtieri S, Santos A, Mendes B, Raffaele R, Tarallo AP, Verrina MC, Ranno F, Monterossi MD, Ricci P, et al. Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review. Applied Sciences. 2025; 15(5):2634. https://doi.org/10.3390/app15052634
Chicago/Turabian StyleSacco, Matteo Antonio, Saverio Gualtieri, Agostinho Santos, Bárbara Mendes, Roberto Raffaele, Alessandro Pasquale Tarallo, Maria Cristina Verrina, Francesco Ranno, Maria Daniela Monterossi, Pietrantonio Ricci, and et al. 2025. "Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review" Applied Sciences 15, no. 5: 2634. https://doi.org/10.3390/app15052634
APA StyleSacco, M. A., Gualtieri, S., Santos, A., Mendes, B., Raffaele, R., Tarallo, A. P., Verrina, M. C., Ranno, F., Monterossi, M. D., Ricci, P., & Aquila, I. (2025). Scanning Electron Microscopy Techniques in the Analysis of Gunshot Residues: A Literature Review. Applied Sciences, 15(5), 2634. https://doi.org/10.3390/app15052634