Strategic Elements in Holocene Sediments of the Tinto River Estuary (SW Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Chemical Analysis
2.3. Dating
3. Results and Discussion
3.1. Age and Sedimentation Rates
3.2. Strategic Elements and Paleoenvironmental Evolution
3.3. Estuarine Sediments as Ore Deposits?
3.4. Strategic Elements in Pre-Holocene Sediments from Southwestern Spain: A Preliminary Approach
4. Conclusions
- The geochemical analysis of a sediment core extracted from the middle estuary of the Tinto River (SW Spain) revealed that the strategic elements studied (Al, Be, Li, Mo, Sb, Sc, and Ti) can be considered markers of the pollution episodes (one natural and three anthropogenic) that have occurred in this area during the Holocene.
- A natural acid rock drainage occurred during the MIS-1 transgression (6.2 kyr BP), followed by two episodes of mining-related contamination around 4.4 kyr BP and 2–1.9 kyr BP.
- The main pollution episode is associated with mining activities (1850–1990) and industrial discharges (1960–1990) in recent years.
- These estuarine sediments and other pre-Holocene formations and terraces do not serve as ores of these elements due to their very low concentrations in relation to those obtained in current mines in various parts of the world.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayes, S.M.; McCullough, E.A. Critical minerals: A review of element trends in comprehensive critical studies. Resour. Policy 2018, 59, 192–199. [Google Scholar] [CrossRef]
- Kamran, M.; Raugei, M.; Hutchinson, A. Critical elements for a successful energy transition: A systematic review. Renew. Sustain. Energy Transit. 2023, 4, 100068. [Google Scholar] [CrossRef]
- Silva, G.F.; Silva, A.D.R.; Souza Gaia, S.M. An Overview of Critical and Strategic Minerals of Brazil; Serviço Geológico do Brasil: Brasília, Brazil, 2024; 35p. [Google Scholar]
- Su, Y.; Hu, D. Global Dynamics and Reflections on Critical Minerals. E3S Web Conf. 2022, 352, 03045. [Google Scholar] [CrossRef]
- Carrara, S.; Bobba, S.; Blagoeva, D.; Alves Dias, P.; Cavalli, A.; Georgitzikis, K.; Grohol, M.; Itul, A.; Kuzov, T.; Latunussa, C.; et al. Supply Chain Analysis and Material Demand Forecast in Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Bedoya Londoño, J.A.; Franco Sepúlveda, G.; De la Barra Olivares, E. Strategic Minerals for Climate Change and the Energy Transition: The Mining Contribution of Colombia. Sustainability 2024, 16, 83. [Google Scholar] [CrossRef]
- Kuang, Z. Molybdenum and its alloys in advanced engine applications: From material selection to surface optimization. E3S Web Conf. 2024, 560, 02016. [Google Scholar] [CrossRef]
- Bagherifam, S.; Brown, T.C.; Wijayawardena, A.; Naid, R. The influence of different antinomy (SB) compounds and ageing on bioavailability and fractionation of antimony in two dissimilar soils. Environ. Pollut. 2021, 270, 116270. [Google Scholar] [CrossRef]
- Schulz, K.J.; DeYoung, J.H., Jr.; Bradley, D.C.; Seal, R.R. Critical mineral resources of the United States—An introduction. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, Bradley, D.C., Eds.; U.S. Geological Survey Professional Paper 1802; U.S. Geological Survey: Reston, VA, USA, 2017; pp. A1–A14. [Google Scholar] [CrossRef]
- Kumar, S.; Haque, N.; Bhuiyan, M.; Bruckard, W.; Pramanik, B.K. Recovery of strategically important critical minerals from mine tailings. J. Environ. Chem. Eng. 2022, 10, 107622. [Google Scholar] [CrossRef]
- Sryrvatka, V.; Rabets, A.; Gromyko, O.; Luzhetskyy, A.; Fedorenko, V. Scandium-microorganism interactions in new biotechnologies. Trends Bibtechnol. 2022, 40, 1088–1101. [Google Scholar] [CrossRef]
- Najafizadeh, M.; Yazdi, S.; Bozorg, M.; Ghasempour-Mouziraji, M.; Hosseinzadeh, M.; Zarrabian, M.; Cavaliere, P. Classification and applications of titanium and its alloys: A review. J. Alloys Compd. Commun. 2024, 3, 100019. [Google Scholar] [CrossRef]
- Chen, J.; Peng, D. Management and disposal of alumina production wastes. In Managing Mining and Minerals Processing Wastes. Concepts, Design and Applications; Qi, C., Benson, C.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–163. [Google Scholar] [CrossRef]
- Meyer, F.M. Availability of bauxite reserves. Nat. Resour. Res. 2004, 13, 161–172. [Google Scholar] [CrossRef]
- Lederer, G.W.; Foley, N.K.; Jaskula, B.W.; Ayuso, R.A. Beryllium—A Critical Mineral Commodity—Resources, Production, and Supply Chain; Fact Sheet 2016–3081; U.S. Geological Survey: Reston, VA, USA, 2016. Available online: https://pubs.usgs.gov/fs/2016/3081/fs20163081.pdf (accessed on 30 September 2024).
- Gil-Alana, L.-A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Han, G.; Wang, M.; Huang, Y.; Su, S.; Xue, Y.; Wang, Y. Clean separation and purification for strategic metals of molybdenum and rhenium from minerals and waste allí scraps—A review. Resour. Conserv. Recycl. 2022, 181, 106232. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Sboras, S.; Voudouris, P.; Soukis, K.; Moritz, R. Antimony’s significance as a critical metal: The global perspective and the Greek deposits. Minerals 2024, 14, 121. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.Y.H.; Liu, Z.R.; Zhou, M. Scandium: Ore deposits, the pivotal role of magmatic enrichment and future exploration. Ore Geol. Rev. 2021, 128, 103906. [Google Scholar] [CrossRef]
- El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An Overview of Resources and Production Methods. Minerals 2021, 11, 1425. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Blengini, G.; El Latunussa, C.; Eynard, U.; Torres De Matos, C.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; et al. Study on the EU’s List of Critical Raw Materials (2020)—Final Report; Publications Office of the European Union: Luxembourg, 2020; Available online: https://data.europa.eu/doi/10.2873/11619 (accessed on 30 September 2024).
- Ministry for the Ecological Transition and the Demographic Challenge. Road Map for the Sustainable Managements of Mineral Raw Materials; Ministry for the Ecological Transition and the Demographic Challenge: Madrid, Spain, 2022. Available online: https://www.miteco.gob.es/content/dam/miteco/es/ministerio/planes-estrategias/materias-primas-minerales/roadmapforthesustainablemanagementofmineralrawmaterials_tcm30-561498.pdf (accessed on 30 September 2024).
- Rosario-Beltré, A.J.; Sánchez-España, J.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Bellido-Martín, E.; Adánez-Sanjuán, P.; Arranz-González, J.C. Critical Raw Materials recovery potential from Spanish mine wastes: A national-scale preliminary assessment. J. Clean. Prod. 2023, 407, 137163. [Google Scholar] [CrossRef]
- Urdangaray, A.; García, E.; Pous, J.; Ortega, M.F.; Mora, P. A stydy on potential lithium extraction in Spain. Dyna 2023, 98, 215–217. [Google Scholar] [CrossRef]
- Sánchez-García, T. Aluminum in Spain: Mineral Deposits and Mining Production; Instituto Geológico y Minero de España: Madrid, Spain, 2021; Available online: https://asgmi.org/wp-content/uploads/2021/08/ASGMI_Aluminum-in-SPAIN.pdf (accessed on 30 September 2024).
- Muhammed, D.D.; Simon, N.; Utley, J.E.P.; Verhagen, I.T.E.; Duller, R.A.; Griffiths, J.; Wooldridge, L.J.; Worden, R.H. Geochemistry of Sub-Depositional Environments in Estuarine Sediments: Development of an Approach to Predict Palaeo-Environments from Holocene Cores. Geosciences 2022, 12, 23. [Google Scholar] [CrossRef]
- Marco-Barba, J.; Burjachs, F.; Reed, J.M.; Santisteban, C.; Usera, J.M.; Alberola, C.; Expósito, I.; Guillem, J.; Patchett, F.; Vicente, E.; et al. Mid-Holocene and historical palaeoecology of the Albufera de València coastal lagoon. Limnetica 2019, 38, 353–389. [Google Scholar] [CrossRef]
- Scholz, F.; Siebert, C.; Dale, A.W.; Frank, M. Intense molybdenum accumulation in sediments underneath a nitrogenous water column and implications for the reconstruction of paleo-redox conditions based on molybdenum isotopes. Geochim. Cosmochim. Acta 2017, 213, 400–417. [Google Scholar] [CrossRef]
- Ruiz, F.; Borrego, J.; López-González, M.; Abad, M.; González-Regalado, M.L.; Carro, B.; Pendón, J.G.; Rodríguez Vidal, J.; Cáceres, L.M.; Prudencio, M.I.; et al. The geological record of a mid-Holocene marine storm. Geobios 2007, 40, 689–699. [Google Scholar] [CrossRef]
- Olías, M.; Nieto, J.M.; Miguel, A.; Ruiz, C. La Contaminación Minera de los Ríos Tinto y Odiel; Universidad de Huelva: Huelva, Spain, 2010; 166p. [Google Scholar]
- Arroyo, M.; Ruiz, F.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Olías, M.; Campos, J.M.; Fernández, L.; Abad, M.; Izquierdo, T.; et al. Natural and anthropic pollution episodes during the Late Holocene evolution of the Tinto River estuary (SW Spain). Sci. Mar. 2021, 85, 113–123. [Google Scholar] [CrossRef]
- Arroyo, M.; Ruiz, F.; Campos, J.M.; Bermejo, J.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Olías, M.; Abad, M.; Izquierdo, T.; et al. Where did Christopher Columbus start?: The estuarine scenario of a historical date. Estuar. Coast. Shelf Sci. 2021, 250, 107162. [Google Scholar] [CrossRef]
- Carro, B.; Borrego, J.; López-González, N.; Grande, J.A.; Gómez, T.; De la Torre, M.; Valente, T. Impact of Acid Mine Drainage on the hydrogeochemical characteristics of the Tinto-Odiel Estuary (SW Spain). J. Iber. Geol. 2011, 37, 87–96. [Google Scholar] [CrossRef]
- Lario, J.; Zazo, C.; Goy, J.L.; Dabrio, C.J.; Borja, F.; Silva, P.G.; Sierro, F.J.; González, A.; Soler, V.; Yll, E. Changes in sedimentation trends in SW Iberia Holocene estuaries (Spain). Quat. Int. 2002, 93–94, 171–176. [Google Scholar] [CrossRef]
- Abad, M.; Arroyo, M.; Ruiz, F.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Izquierdo, T.; Toscano, A.; Gómez, P.; Gómez, G.; et al. Miocene-Holocene paleoenvironmental changes in the Tinto River estuary (SW Spain) evidenced by sedimentology, geochemistry and fauna. Carnets Geol. 2022, 22, 825–845. [Google Scholar] [CrossRef]
- Dabrio, C.J.; Zazo, C.; Sierro, F.J.; Borja, F.; Lario, J.; González, J.A.; Flores, J.A. Depositional history of estuarine infill during the last postglacial transgression (Gulf of Cadiz, Southern Spain). Mar. Geol. 2000, 162, 381–404. [Google Scholar] [CrossRef]
- Cáceres, L.M.; Olías, M.; de Andrés, J.R.; Rodríguez-Vidal, J.; Clemente, L.; Galván, L.; Medina, B. Geochemistry of Quaternary sediments in terraces of the Tinto River (SW Spain): Paleoenvironmental implications. Catena 2013, 101, 1–10. [Google Scholar] [CrossRef]
- Leblanc, M.; Morales, J.A.; Borrego, J.; Elbaz-Poulichet, F. 4500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 2000, 95, 655–662. [Google Scholar] [CrossRef]
- Olías, M.; Nieto, J.M. El impacto de la minería en los ríos Tinto y Odiel a lo largo de la historia. Rev. Soc. Geológica España 2012, 25, 177–192. [Google Scholar]
- Davis, R.A.; Welty, A.T.; Borrego, J.; Morales, J.A.; Pendón, J.G.; Ryan, J.G. Río Tinto estuary (Spain): 5000 years of pollution. Environ. Geol. 2000, 39, 1107–1116. [Google Scholar] [CrossRef]
- Olías, M.; Nieto, J.M. Background conditions and mining pollution throughout history in the río Tinto (SW Spain). Environments 2015, 2, 295–316. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics; Taylor & Francis Group: Boca Raton, FI, USA, 2008. [Google Scholar]
- Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Kesler, S.E.; Everson, M.P.; Wallington, T.J. Global Lithium Availability. J. Ind. Ecol. 2011, 15, 760–775. [Google Scholar] [CrossRef]
- Warren, I. Techno-Economic Analysis of Lithium Extraction from Geothermal Brines. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5700-79178, 2021. Available online: https://www.nrel.gov/docs/fy21osti/799178.pdf (accessed on 30 September 2024).
- Worthington, J. Porphyry and Other Molybdenum Deposits of Idaho and Montana; Idaho Geological Survey: Boise, Idaho, 2007; Technical Report 07-3. [Google Scholar]
- Schulz, K.J.; De Young, J.H.; Seal, R.R.; Bradley, D. Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; Professional Paper 1802–C; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Martín, T.; Martín, S.; Gómez-Ortiz, D.; De Ignacio, C.; Lillo, J. A Geochemical and Geophysical Characterization of Sulfide Mine Ponds at the Iberian Pyrite Belt (Spain). Water Air Soil Pollut. 2011, 217, 387–405. [Google Scholar] [CrossRef]
- Martín-Mendez, I.; llamas, J.; Bel-lan, A.; Locutura, J. Geochemical distribution in residual soils of Iberian Pyrite Belt (Spain). J. Iber. Geol. 2023, 49, 97–114. [Google Scholar] [CrossRef]
- Tornos, F. La Geología y Metalogenia de la Faja Pirítica Ibérica. Macla 2008, 10, 13–23. [Google Scholar]
- Civis, J.; Sierro, F.J.; González Delgado, J.A.; Aores, J.A.; Andrés, l.; de Porta, J.; Valle, M.E. El Neógeno marino de la provincial de Huelva: Antecedentes y definición de las unidades litoestratigráficas. In Paleontología del Neógeno de Huelva (W. Cuenca del Guadalquivir); Universidad de Salamanca: Salamanca, Spain, 1987; pp. 9–21. Available online: https://gredos.usal.es/bitstream/handle/10366/127804/DGL_UnidadesLitoestratigraficas.pdf?sequence=1&isAllowed=y (accessed on 30 September 2024).
- Romero, V.; Toscano, A.; Ruiz, F.; González-Regalado, M.L.; Abad, M.; Izquierdo, T.; Rodríguez Vidal, J.; Cáceres, L.M.; Marques, R.; Prudencio, M.I.; et al. Análisis geológico multidisciplinar de la Unidad Arenas de Trigueros (Formación Arcillas de Gibraleón, S.O. de España). Estud. Geológicos 2023, 79, e154. [Google Scholar] [CrossRef]
- Galán, E.; González, I.; Mayoral, E.; Vázquez, M.A. Caracterización y origen de la facies glauconítica de la cuenca del Guadalquivir. Estud. Geológicos 1989, 45, 169–175. [Google Scholar] [CrossRef]
SAMPLE | Al2O3 | Be | Li | Mo | Sb | Sc | TiO2 |
---|---|---|---|---|---|---|---|
% | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | % | |
A-1 | 2.85 | 0.91 | 11.8 | 0.84 | 0.5 | 3.2 | 0.2 |
A-2 | 2.69 | 0.8 | 11 | 0.61 | 0.5 | 2.9 | 0.21 |
A-3 | 3.8 | 1.13 | 18 | 1.44 | 0.5 | 5.5 | 0.25 |
A-4 | 3.33 | 1.01 | 15.2 | 1.2 | 0.5 | 4.3 | 0.24 |
A-5 | 5.35 | 1.58 | 35.2 | 1.12 | 2.3 | 8.1 | 0.3 |
A-6 | 8.98 | 2.78 | 76 | 2.65 | 6.1 | 17.9 | 0.48 |
A-7 | 7.61 | 2.3 | 66 | 6.57 | 1.4 | 13.4 | 0.4 |
A-8 | 7.99 | 2.67 | 71.3 | 2.45 | 1 | 15.8 | 0.46 |
A-9 | 5.38 | 1.73 | 40.8 | 2.18 | 0.6 | 9 | 0.35 |
A-10 | 5.32 | 1.54 | 41.6 | 2.12 | 1.1 | 8.1 | 0.31 |
A-11 | 6.28 | 1.96 | 49.2 | 2.03 | 0.7 | 10.9 | 0.37 |
A-12 | 6.64 | 1.96 | 55.2 | 1.86 | 1.3 | 10.8 | 0.35 |
A-13 | 4.92 | 1.66 | 36.3 | 1.05 | 0.6 | 8.3 | 0.3 |
A-14 | 5.19 | 1.53 | 40.5 | 0.9 | 0.9 | 7.6 | 0.29 |
A-15 | 4.96 | 1.48 | 36.3 | 0.83 | 0.9 | 7.3 | 0.29 |
A-16 | 5.38 | 1.66 | 35.9 | 1.04 | 0.5 | 8.5 | 0.33 |
A-17 | 4.71 | 1.4 | 32.1 | 0.87 | 0.8 | 6.8 | 0.27 |
A-18 | 2.5 | 0.75 | 16.3 | 1.02 | 0.7 | 3.2 | 0.25 |
A-19 | 3.02 | 0.98 | 19.2 | 1.51 | 0.5 | 4.3 | 0.3 |
A-20 | 3.17 | 1.07 | 18.6 | 2.25 | 0.5 | 4.2 | 0.25 |
A-21 | 5.51 | 1.83 | 38 | 5.1 | 0.6 | 8.8 | 0.35 |
A-22 | 3.95 | 1.24 | 27.6 | 1.06 | 0.5 | 6.1 | 0.43 |
A-23 | 3.29 | 1.07 | 18.1 | 0.63 | 0.5 | 4.3 | 0.29 |
A-24 | 2.92 | 0.9 | 15.2 | 0.44 | 0.5 | 3.6 | 0.31 |
A-25 | 2.93 | 0.95 | 15.8 | 0.38 | 0.5 | 3.8 | 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, V.; Ruiz, F.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Toscano, A.; Gómez, P.; Abad, M.; Izquierdo, T.; Gómez, G. Strategic Elements in Holocene Sediments of the Tinto River Estuary (SW Spain). Appl. Sci. 2025, 15, 2655. https://doi.org/10.3390/app15052655
Romero V, Ruiz F, González-Regalado ML, Rodríguez Vidal J, Cáceres LM, Toscano A, Gómez P, Abad M, Izquierdo T, Gómez G. Strategic Elements in Holocene Sediments of the Tinto River Estuary (SW Spain). Applied Sciences. 2025; 15(5):2655. https://doi.org/10.3390/app15052655
Chicago/Turabian StyleRomero, Verónica, Francisco Ruiz, María Luz González-Regalado, Joaquín Rodríguez Vidal, Luis Miguel Cáceres, Antonio Toscano, Paula Gómez, Manuel Abad, Tatiana Izquierdo, and Gabriel Gómez. 2025. "Strategic Elements in Holocene Sediments of the Tinto River Estuary (SW Spain)" Applied Sciences 15, no. 5: 2655. https://doi.org/10.3390/app15052655
APA StyleRomero, V., Ruiz, F., González-Regalado, M. L., Rodríguez Vidal, J., Cáceres, L. M., Toscano, A., Gómez, P., Abad, M., Izquierdo, T., & Gómez, G. (2025). Strategic Elements in Holocene Sediments of the Tinto River Estuary (SW Spain). Applied Sciences, 15(5), 2655. https://doi.org/10.3390/app15052655