Criterion-Related Validity and Reliability of the Front Plank Test in Adults: The ADULT-FIT Project
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Physical Activity Levels
2.3.2. Body Composition
2.3.3. Front Plank Test
2.3.4. Isokinetic and Isometric Test
2.3.5. Electromyography
2.4. Statistical Analyses
2.4.1. Criterion-Related Validity
2.4.2. Reliability
3. Results
3.1. Criterion-Related Validity
3.2. Reliability
4. Discussion
4.1. Criterion-Related Validity
4.2. Reliability
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FPT | Front Plank Test |
sEMG | Surface Electromyography |
MVIC | Maximum Voluntary Isometric Contraction |
BMI | Body Mass Index |
URA | Upper Rectus Abdominis |
LRA | Lower Rectus Abdominis |
EO | External Oblique |
MF | Multifidus |
ES | Erector Spinae |
RMS | Root Mean Square |
RPE | Rate of Perceived Exertion |
ICC | Intraclass Correlation Coefficient |
SSE | Sum of Squared Errors |
MSE | Mean Sum of squared Errors |
RMSE | Root Mean Sum of squared Errors |
SEM | Standard Error of Measurement |
SEE | Standard Error of Estimate |
CV | Coefficient of Variation |
MDC | Minimal Detectable Change |
References
- Takai, Y.; Nakatani, M.; Akamine, T.; Shiokawa, K.; Komori, D.; Kanehisa, H. Effect of Core Training on Trunk Flexor Musculature in Male Soccer Players. Sports Med. Int. Open 2017, 1, E147. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.A.; Moseley, G.L.; Hodges, P.W. The lumbar multifidus: Does the evidence support clinical beliefs? Man. Ther. 2006, 11, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Owen, P.J.; Miller, C.T.; Mundell, N.L.; Verswijveren, S.J.J.M.; Tagliaferri, S.D.; Brisby, H.; Bowe, S.J.; Belavy, D.L. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br. J. Sports Med. 2020, 54, 1279. [Google Scholar] [CrossRef]
- Manchado, C.; García-Ruiz, J.; Cortell-Tormo, J.M.; Tortosa-Martínez, J. Effect of Core Training on Male Handball Players’ Throwing Velocity. J. Hum. Kinet. 2017, 56, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Perea, Á.; Reyes-Ferrada, W.; Jerez-Mayorga, D.; Ríos, L.C.; Van den Tillar, R.; Ríos, I.C.; Martínez-García, D. Core training and performance: A systematic review with meta-analysis. Biol. Sport 2023, 40, 975–992. [Google Scholar] [CrossRef]
- Mesquita, M.M.A.; Santos, M.S.; Vasconcelos, A.B.S.; De Sá, C.A.; Pereira, L.C.D.; Silva-Santos, Í.B.M.D.; Da Silva Junior, W.M.; De Matos, D.G.; Fontes, A.D.S.; Oliveira, P.M.P.; et al. Reliability of a Test for Assessment of Isometric Trunk Muscle Strength in Elderly Women. J. Aging Res. 2019, 2019, 9061839. [Google Scholar] [CrossRef]
- Reyes-Ferrada, W.; Chirosa-Rios, L.; Chirosa-Rios, I.; Martínez-Garcia, D.; Barboza-gonzalez, P.; Ulloa-Diaz, D.; Jerez-mayorga, D.; Rodríguez-Perea, A. A New Reliable Device to Assess Trunk Extensors Strength. Acta Bioeng. Biomech. 2022, 24, 2022. [Google Scholar] [CrossRef]
- Rodríguez-Perea, A.; Jerez-Mayorga, D.; Morenas-Aguilar, M.D.; Martínez-García, D.; Chirosa-Ríos, I.J.; Chirosa-Ríos, L.J.; Reyes-Ferrada, W. Influence of Sex and Dominant Side on the Reliability of Two Trunk Rotator Exercises. Appl. Sci. 2023, 13, 2441. [Google Scholar] [CrossRef]
- Moussa, A.Z.B.; Zouita, S.; Salah, F.B.; Behm, D.; Chaouachi, A. Isokinetic trunk strength, validity, reliability, normative data and relation to physical performance and low back pain: A review of the literature. Int. J. Sports Phys. Ther. 2020, 15, 160. [Google Scholar] [CrossRef]
- Verbrugghe, J.; Agten, A.; Eijnde, B.O.; Vandenabeele, F.; De Baets, L.; Huybrechts, X.; Timmermans, A. Reliability and agreement of isometric functional trunk and isolated lumbar strength assessment in healthy persons and persons with chronic nonspecific low back pain. Phys. Ther. Sport 2019, 38, 1–7. [Google Scholar] [CrossRef]
- Roth, R.; Donath, L.; Kurz, E.; Zahner, L.; Faude, O. Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer. Phys. Ther. Sport 2017, 24, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Estrázulas, J.A.; Estrázulas, J.A.; de Jesus, K.; de Jesus, K.; da Silva, R.A.; Libardoni dos Santos, J.O. Evaluation isometric and isokinetic of trunk flexor and extensor muscles with isokinetic dynamometer: A systematic review. Phys. Ther. Sport 2020, 45, 93–102. [Google Scholar] [CrossRef] [PubMed]
- García-Vaquero, M.P.; Barbado, D.; Juan-Recio, C.; López-Valenciano, A.; Vera-Garcia, F.J. Isokinetic trunk flexion-extension protocol to assess trunk muscle strength and endurance: Reliability, learning effect, and sex differences. J. Sport Health Sci. 2016, 9, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wu, W.; Zhang, C.; Wang, D.; Chen, C.; Tang, Y.; Li, K.; Xu, J.; Luo, F. Reliability and validity of three isometric back extensor strength assessments with different test postures. J. Int. Med. Res. 2020, 48, 0300060519885268. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Romero, M.T.; Ayala, F.; De Ste Croix, M.; Vera-Garcia, F.J.; De Baranda, P.S.; Santonja-Medina, F.; Sánchez-Meca, J. A Meta-Analysis of the Reliability of Four Field-Based Trunk Extension Endurance Tests. Int. J. Environ. Res. Public Health 2020, 17, 3088. [Google Scholar] [CrossRef]
- Juan-Recio, C.; Prat-Luri, A.; Galindo, A.; Manresa-Rocamora, A.; Barbado, D.; Vera-Garcia, F.J. Is the Side Bridge Test Valid and Reliable for Assessing Trunk Lateral Flexor Endurance in Recreational Female Athletes? Biology 2022, 11, 1043. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Steffl, M.; Glenney, S.S.; Green, M.; Cashwell, L.; Prajerova, K.; Bunn, J. The prone bridge test: Performance, validity, and reliability among older and younger adults. J. Bodyw. Mov. Ther. 2018, 22, 385–389. [Google Scholar] [CrossRef]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Timón, R.; Olcina, G.; Camacho-Cardeñosa, M.; Camacho-Cardenosa, A.; Martinez-Guardado, I.; Marcos-Serrano, M. 48-hour recovery of biochemical parameters and physical performance after two modalities of CrossFit workouts. Biol. Sport 2019, 36, 283. [Google Scholar] [CrossRef] [PubMed]
- Rios, M.; Becker, K.M.; Monteiro, A.S.; Fonseca, P.; Pyne, D.B.; Reis, V.M.; Moreira-Gonçalves, D.; Fernandes, R.J. Effect of the Fran CrossFit Workout on Oxygen Uptake Kinetics, Energetics, and Postexercise Muscle Function in Trained CrossFitters. Int. J. Sports Physiol. Perform. 2024, 19, 299–306. [Google Scholar] [CrossRef] [PubMed]
- De Blaiser, C.; De Ridder, R.; Willems, T.; Danneels, L.; Bossche, L.V.; Palmans, T.; Roosen, P. Evaluating abdominal core muscle fatigue: Assessment of the validity and reliability of the prone bridging test. Scand. J. Med. Sci. Sports 2018, 28, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Durall, C.J.; Greene, P.F.; Kernozek, T.W. A comparison of two isometric tests of trunk flexor endurance. J. Strength Cond. Res. 2012, 26, 1939–1944. [Google Scholar] [CrossRef] [PubMed]
- Strand, S.L.; Hjelm, J.; Shoepe, T.C.; Fajardo, M.A. Norms for an Isometric Muscle Endurance Test. J. Hum. Kinet. 2014, 40, 93. [Google Scholar] [CrossRef] [PubMed]
- Castro-Piñero, J.; Marin-Jimenez, N.; Fernandez-Santos, J.R.; Martin-Acosta, F.; Segura-Jimenez, V.; Izquierdo-Gomez, R.; Ruiz, J.R.; Cuenca-Garcia, M. Criterion-related validity of field-based fitness tests in adults: A systematic review. J. Clin. Med. 2021, 10, 3743. [Google Scholar] [CrossRef] [PubMed]
- Boyer, C.; Tremblay, M.; Saunders, T.J.; McFarlane, A.; Borghese, M.; Lloyd, M.; Longmuir, P. Feasibility, validity, and reliability of the plank isometric hold as a field-based assessment of torso muscular endurance for children 8–12 years of age. Pediatr. Exerc. Sci. 2013, 25, 407–422. [Google Scholar] [CrossRef]
- Ikezaki, F.; Krueger, E.; de Souza Guerino Macedo, C. Performance, reliability and fatigue in prone bridge test and supine unilateral bridge test. J. Bodyw. Mov. Ther. 2021, 26, 238–245. [Google Scholar] [CrossRef]
- Cuenca-Garcia, M.; Marin-Jimenez, N.; Perez-Bey, A.; Sánchez-Oliva, D.; Camiletti-Moiron, D.; Alvarez-Gallardo, I.C.; Ortega, F.B.; Castro-Piñero, J. Reliability of Field-Based Fitness Tests in Adults: A Systematic Review. Sports Med. 2022, 52, 1961–1979. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. 2010. Available online: https://apps.who.int/iris/bitstream/handle/10665/44399/9789245599975_chi.pdf (accessed on 5 April 2023).
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, L. ISAK Accreditation Handbook. 2006. Available online: https://researchportal.vub.be/en/publications/isak-accreditation-handbook (accessed on 5 April 2023).
- Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am. J. Clin. Nutr. 1996, 64, 524S. [CrossRef] [PubMed]
- Armstrong, L.E.; Soto, J.A.H.; Hacker, F.T.; Casa, D.J.; Kavouras, S.A.; Maresh, C.M. Urinary Indices during Dehydration, Exercise, and Rehydration. Int. J. Sport Nutr. Exerc. Metab. 1998, 8, 345–355. [Google Scholar] [CrossRef]
- Cruz-Montecinos, C.; Bustamante, A.; Candia-González, M.; González-Bravo, C.; Gallardo-Molina, P.; Andersen, L.L.; Calatayud, J. Perceived physical exertion is a good indicator of neuromuscular fatigue for the core muscles. J. Electromyogr. Kinesiol. 2019, 49, 102360. [Google Scholar] [CrossRef]
- Reyes-Ferrada, W.; Chirosa-Rios, L.; Rodriguez-Perea, A.; Jerez-Mayorga, D.; Chirosa-Rios, I. Isokinetic trunk strength in acute low back pain patients compared to healthy subjects: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 2576. [Google Scholar] [CrossRef] [PubMed]
- Yeom, S.; Jeong, H.; Lee, H.; Jeon, K. Effects of Lumbar Stabilization Exercises on Isokinetic Strength and Muscle Tension in Sedentary Men. Bioengineering 2023, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Escriche-Escuder, A.; Cruz-Montecinos, C.; Andersen, L.L.; Pérez-Alenda, S.; Aiguadé, R.; Casaña, J. Tolerability and Muscle Activity of Core Muscle Exercises in Chronic Low-back Pain. Int. J. Environ. Res. Public Health 2019, 16, 3509. [Google Scholar] [CrossRef]
- González-Izal, M.; Malanda, A.; Gorostiaga, E.; Izquierdo, M. Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 2012, 22, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Davis, L.; Avela, J.; Häkkinen, K. Neuromuscular fatigue during dynamic maximal strength and hypertrophic resistance loadings. J. Electromyogr. Kinesiol. 2012, 22, 356–362. [Google Scholar] [CrossRef]
- Szpala, A.; Rutkowska-Kucharska, A.; Drapała, J.; Brzostowski, K. Choosing the right body position for assessing trunk flexors and extensors torque output. Hum. Mov. 2011, 12, 57–64. [Google Scholar] [CrossRef]
- Vera-Garcia, F.J.; Moreside, J.M.; McGill, S.M. MVC techniques to normalize trunk muscle EMG in healthy women. J. Electromyogr. Kinesiol. 2010, 20, 10–16. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995, 346, 1085–1087. [Google Scholar] [CrossRef]
- Weir, J. Quantifying test-retest reliability using the intraclass correlation coefficient. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Brown, C.E. Coefficient of variation. Applied Multivariate Statistics in Geohydrology and Related Sciences. In Applied Multivariate Statistics in Geohydrology and Related Sciences; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–157. [Google Scholar] [CrossRef]
- del Corral, T.; Sánchez, Á.G.; López-de-Uralde-Villanueva, I. Test-retest reliability, minimal detectable change and minimal clinically important differences in modified shuttle walk test in children and adolescents with cystic fibrosis. J. Cyst. Fibros. 2020, 19, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Imai, A.; Kaneoka, K.; Okubo, Y.; Shiina, I.; Tatsumura, M.; Izumi, S.; Shiraki, H. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J. Orthop. Sports Phys. Ther. 2010, 40, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Youdas, J.W.; Coleman, K.C.; Holstad, E.E.; Long, S.D.; Veldkamp, N.L.; Hollman, J.H. Magnitudes of muscle activation of spine stabilizers in healthy adults during prone on elbow planking exercises with and without a fitness ball. Physiother. Theory Pract. 2018, 34, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Park, D.J.; Park, S.Y. Which trunk exercise most effectively activates abdominal muscles? A comparative study of plank and isometric bilateral leg raise exercises. J. Back Musculoskelet. Rehabil. 2019, 32, 797–802. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y.; Cho, H.Y.; Lee, K.B.; Hong, S.; Pyo, S.; Lee, G. Investigation of trunk muscle activity for modified plank exercise: A preliminary study. Isokinet. Exerc. Sci. 2017, 25, 209–213. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, M.H.; Kim, E.R.; Jung, I.G.; Seo, E.Y.; Oh, J.S. Comparison of EMG activity on abdominal muscles during plank exercise with unilateral and bilateral additional isometric hip adduction. J. Electromyogr. Kinesiol. 2016, 30, 9–14. [Google Scholar] [CrossRef]
- Harris, S.; Ruffin, E.; Brewer, W.; Ortiz, A. Muscle activation patterns during suspension training exercises. Int. J. Sports Phys. Ther. 2017, 12, 42. [Google Scholar] [CrossRef]
- Czaprowski, D.; Afeltowicz, A.; Gebicka, A.; Pawłowska, P.; Kedra, A.; Barrios, C.; Hadała, M. Abdominal muscle EMG-activity during bridge exercises on stable and unstable surfaces. Phys. Ther. Sport 2014, 15, 162–168. [Google Scholar] [CrossRef]
- Oliva-Lozano, J.M.; Muyor, J.M. Core Muscle Activity during Physical Fitness Exercises: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4306. [Google Scholar] [CrossRef]
- Martuscello, J.M.; Nuzzo, J.L.; Ashley, C.D.; Campbell, B.I.; Orriola, J.J.; Mayer, J.M. Systematic review of core muscle activity during physical fitness exercises. J. Strength Cond. Res. 2013, 27, 1684–1698. [Google Scholar] [CrossRef] [PubMed]
- Tsartsapakis, I.; Pantazi, G.A.; Konstantinidou, A.; Zafeiroudi, A.; Kellis, E. Spinal Muscle Thickness and Activation During Abdominal Hollowing and Bracing in CrossFit® Athletes. Sports 2023, 11, 159. [Google Scholar] [CrossRef] [PubMed]
Total (n = 84) | Male (n = 52) | Female (n = 32) | Young Adults (n = 64) | Adults (n = 20) | |
---|---|---|---|---|---|
Age (years) | 28.16 ± 12.32 | 24.37 ± 8.75 | 34.31 ± 14.75 *** | 21.84 ± 3.02 | 48.35 ± 8.37 *** |
Weight (kg) | 68.83 ± 11.13 | 74.77 ± 8.14 | 59.18 ± 8.20 *** | 69.53 ± 11.12 | 66.60 ± 11.11 |
Height (cm) | 1.71 ± 0.10 | 1.77 ± 0.07 | 1.62 ± 0.07 *** | 1.72 ± 0.1 | 1.67 ± 0.08 * |
BMI (kg/m2) | 23.31 ± 2.31 | 23.80 ± 2.25 | 22.51 ± 2.21 * | 23.14 ± 2.11 | 23.84 ± 2.84 |
Waist circumference (cm) | 76.40 ± 7.12 | 79.23 ± 5.91 | 71.80 ± 6.56 *** | 75.71 ± 6.26 | 78.58 ± 9.22 |
Level of physical activity (d/w) | 4.01 ± 1.42 | 4.33 ± 1.23 | 3.50 ± 1.57 ** | 4.19 ± 1.32 | 3.42 ± 1.61 * |
Body fat (%) | 19.59 ± 6.64 | 16.13 ± 3.81 | 25.10 ± 6.49 *** | 17.93 ± 5.16 | 25.15 ± 8.08 *** |
Lean Mass (kg) | 52.44 ± 9.98 | 59.21 ± 5.08 | 41.63 ± 5.07 *** | 54.07 ± 9.31 | 46.93 ± 10.42 ** |
Trunk Fat-free mass (kg) | 29.82 ± 4.78 | 32.72 ± 2.86 | 25.20 ± 3.39 *** | 30.45 ± 4.42 | 27.71 ± 5.44 * |
Trunk Fat Mass (%) | 19.26 ± 6.52 | 18.69 ± 4.73 | 20.17 ± 8.67 | 17.99 ± 5.87 | 23.54 ± 6.98 *** |
Lean Trunk Mass (kg) | 28.41 ± 4.57 | 31.18 ± 2.75 | 23.99 ± 3.22 *** | 29.91 ± 4.24 | 26.38 ± 5.17 * |
Time in FPT | |||||||
---|---|---|---|---|---|---|---|
Total (n = 84) | Sex | Age | |||||
Male (n = 52) | Female (n = 32) | Young Adults (n = 64) | Adults (n = 20) | ||||
FPT and body composition variables and RPE at the end | |||||||
BMI (kg/m2) | −0.11 | −0.17 | −0.11 | −0.10 | −0.15 | ||
Waist circumference (cm) | −0.05 | −0.14 | −0.13 | −0.10 | 0.04 | ||
Body fat (%) | −0.32 ** | −0.35 * | −0.37 * | −0.31 * | −0.55 * | ||
Lean Mass (kg) | 0.02 | −0.27 | −0.06 | −0.04 | 0.25 | ||
Trunk Fat-free mass (kg) | 0.02 | −0.20 | −0.04 | −0.05 | 0.24 | ||
Trunk Fat Mass (%) | −0.39 *** | −0.35 * | −0.42 * | −0.37 ** | −0.59 ** | ||
Lean Trunk Mass (kg) | 0.02 | −0.20 | −0.04 | −0.05 | 0.24 | ||
RPE at the end | 0.13 | −0.03 | 0.29 | 0.25 * | −0.04 | ||
FPT and muscle activation | |||||||
URA (%MVIC) | −0.04 | 0.08 | −0.20 | 0.04 | −0.30 | ||
LRA (%MVIC) | −0.17 | −0.18 | −0.22 | −0.18 | −0.13 | ||
EO (%MVIC) | −0.27 * | −0.34 * | −0.19 | −0.24 | −0.34 | ||
MF (%MVIC) | 0.16 | 0.27 | −0.18 | 0.25 | −0.48 | ||
ES (%MVIC) | 0.20 | −0.04 | 0.59 *** | 0.23 | 0.03 | ||
FTP and force in isokinetic device | |||||||
Isokinetic Con-Con (120°/s) | Flexors | Initial Peak Torque (Nm) | 0.17 | 0.12 | 0.11 | 0.10 | 0.39 |
Initial Peak Torque per BW (Nm/kg) | 0.27 * | 0.26 | 0.23 | 0.21 | 0.50 * | ||
Fatigue Index | 0.18 | 0.12 | 0.20 | 0.17 | 0.24 | ||
Total Work (N/m) | 0.14 | 0.06 | 0.08 | 0.06 | 0.38 | ||
Total Work per BW (N/m/kg) | 0.25 * | 0.25 | 0.19 | 0.19 | 0.49 * | ||
Average Power per Rep (W/av) | 0.14 | 0.06 | 0.05 | 0.06 | 0.39 | ||
Average Power per Rep per BW (W/av/kg) | 0.24 * | 0.25 | 0.16 | 0.18 | 0.49 * | ||
Time to Peak (s) | −0.11 | −0.16 | 0.04 | −0.05 | −0.29 | ||
Isokinetic Con-Con (120°/s) | Extensors | Initial Peak Torque (Nm) | 0.20 | 0.13 | 0.22 | 0.19 | 0.33 |
Initial Peak Torque per BW (Nm/kg) | 0.30 ** | 0.22 | 0.35 | 0.30 * | 0.41 | ||
Fatigue Index | 0.12 | 0.11 | 0.08 | 0.17 | 0.01 | ||
Total Work (N/m) | 0.15 | 0.03 | 0.18 | 0.12 | 0.38 | ||
Total Work per BW (N/m/kg) | 0.24 * | 0.13 | 0.31 | 0.24 | 0.44 | ||
Average Power per Rep (W/av) | 0.13 | 0.02 | 0.14 | 0.10 | 0.38 | ||
Average Power per Rep per BW (W/av/kg) | 0.22 | 0.12 | 0.26 | 0.21 | 0.44 | ||
Time to Peak (s) | <0.01 | 0.19 | −0.27 | 0.09 | −0.32 | ||
Isokinetic Con-Con (120°/s) | Flexors and extensors | Ratio Peak Torque | −0.03 | 0.03 | −0.10 | −0.06 | 0.02 |
Ratio Total Work | −0.12 | −0.08 | −0.13 | −0.10 | −0.19 | ||
Ratio Average Power | −0.10 | −0.04 | −0.13 | −0.07 | −0.21 | ||
Isometric Con | Flexors | Peak Torque (Nm) | 0.08 | 0.06 | −0.22 | 0.01 | 0.39 |
Peak Torque per BW (Nm/kg) | 0.16 | 0.21 | −0.14 | 0.06 | 0.53 * | ||
Average Torque (Nm) | 0.12 | 0.14 | −0.20 | 0.05 | 0.32 | ||
Average Torque per BW(Nm/kg) | 0.19 | 0.30 * | −0.15 | 0.11 | 0.46 | ||
Time to Peak (s) | 0.07 | 0.02 | 0.28 | 0.24 | −0.35 |
Test (s) | Retest (s) | Intertrial Difference (T2-T1) | p-Value | Cohen’s d | ICC (95% CI) | SSE | MSE | RMSE | % Error | % CV | % SEM | MDC90 | SEE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 158.65 ± 72.15 | 162.72 ± 76.88 | 4.07 ± 1.59 | 0.012 | 0.06 | 0.99 (0.98–0.99) | 18,130.75 | 221.11 | 14.87 | 4.68 | 6.33 | −2.56 | −0.06 | 13.97 |
Sex | ||||||||||||||
Male | 167.93 ± 70.04 | 170.05 ± 73.95 | 2.12 ± 1.68 | 0.213 | 0.03 | 0.99 (0.99–1.00) | 7256.50 | 142.28 | 11.93 | 3.76 | 4.91 | −1.43 | −0.03 | 11.45 |
Female | 143.39 ± 74.12 | 150.66 ± 81.26 | 7.27 ± 3.12 | 0.027 | 0.09 | 0.99 (0.97–0.99) | 10,874.25 | 350.78 | 18.73 | 6.00 | 5.47 | −1.80 | −0.04 | 16.84 |
Age groups | ||||||||||||||
Young adults | 159.98 ± 74.80 | 162.97 ± 80.50 | 2.99 ± 1.78 | 0.098 | 0.04 | 0.98 (0.97–0.99) | 13,803.25 | 212.36 | 14.57 | 4.59 | 6.29 | −1.87 | −0.04 | 13.69 |
Adults | 153.59 ± 78.33 | 161.76 ± 79.52 | 8.18 ± 3.43 | 0.029 | 0.11 | 0.99 (0.96–0.99) | 4327.50 | 66.58 | 8.16 | 4.40 | 3.55 | −1.39 | −0.03 | 14.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Perea, Á.; Aragón-Aragón, P.; Cuenca-García, M.; Cruz-León, C.; Torres-Banduc, M.; Sánchez-Parente, S.; Castro-Piñero, J. Criterion-Related Validity and Reliability of the Front Plank Test in Adults: The ADULT-FIT Project. Appl. Sci. 2025, 15, 2722. https://doi.org/10.3390/app15052722
Rodríguez-Perea Á, Aragón-Aragón P, Cuenca-García M, Cruz-León C, Torres-Banduc M, Sánchez-Parente S, Castro-Piñero J. Criterion-Related Validity and Reliability of the Front Plank Test in Adults: The ADULT-FIT Project. Applied Sciences. 2025; 15(5):2722. https://doi.org/10.3390/app15052722
Chicago/Turabian StyleRodríguez-Perea, Ángela, Pedro Aragón-Aragón, Magdalena Cuenca-García, Carolina Cruz-León, Maximiliano Torres-Banduc, Sandra Sánchez-Parente, and José Castro-Piñero. 2025. "Criterion-Related Validity and Reliability of the Front Plank Test in Adults: The ADULT-FIT Project" Applied Sciences 15, no. 5: 2722. https://doi.org/10.3390/app15052722
APA StyleRodríguez-Perea, Á., Aragón-Aragón, P., Cuenca-García, M., Cruz-León, C., Torres-Banduc, M., Sánchez-Parente, S., & Castro-Piñero, J. (2025). Criterion-Related Validity and Reliability of the Front Plank Test in Adults: The ADULT-FIT Project. Applied Sciences, 15(5), 2722. https://doi.org/10.3390/app15052722