AI Applications in Supply Chain Management: A Survey
Abstract
:1. Introduction
2. Supply Chain
3. Artificial Intelligence
3.1. Customer Relationship Management
3.2. Inventory Management
3.3. Transportation Networks
3.4. Procurement
3.5. Demand Forecasting
3.6. Resilience and Risk
4. Future Trends, Challenges, Threats
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Artificial Intelligence | AI |
Internet of Things | IoT |
supply chain management | SCM |
customer relationship management | CRM |
Machine Learning | ML |
Deep Learning | DL |
Neural Networks | NNs |
Natural Language Processing | NLP |
Computer Vision | CV |
Knowledge Representation and Reasoning | KR&R |
Recommender Systems | RSs |
optimization | OP |
Generative AI | GEN AI |
Deep Convolutional Neural Networks | DCNNs |
Manufacturing-as-a-Service | MaaS |
Return on Investment | ROI |
References
- Rashid, A.B.; Kausik, A.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Sharma, R.; Shishodia, A.; Gunasekaran, A.; Min, H.; Munim, Z.H. The role of artificial intelligence in supply chain management: Mapping the territory. Int. J. Prod. Res. 2022, 60, 7527–7550. [Google Scholar] [CrossRef]
- Khaleel, M.; Jebrel, A.; Shwehdy, D.M. Artificial Intelligence in Computer Science. Int. J. Electr. Eng. Sustain. 2024, 2, 1–21. [Google Scholar] [CrossRef]
- Pournader, M.; Ghaderi, H.; Hassanzadegan, A.; Fahimnia, B. Artificial intelligence applications in supply chain management. Int. J. Prod. Econ. 2021, 241, 108250. [Google Scholar] [CrossRef]
- Sharma, P.; Gunasekaran, A.; Subramanian, G. Enhancing Supply Chain: Exploring and Exploiting AI Capabilities. J. Comput. Inf. Syst. 2024, 1–15. [Google Scholar] [CrossRef]
- Cooper, M.; Lambert, D.; Pagh, J. Supply Chain Management: More Than a New Name for Logistics. Int. J. Logist. Manag. 1997, 8, 1–14. [Google Scholar] [CrossRef]
- MacCarthy, B.L.; Ahmed, W.A.; Demirel, G. Mapping the supply chain: Why, what and how? Int. J. Prod. Econ. 2022, 250, 108688. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B. Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”. Transp. Res. Part Logist. Transp. Rev. 2022, 160, 102676. [Google Scholar] [CrossRef]
- Fantozzi, I.C.; Olhager, J.; Johnsson, C.; Schiraldi, M.M. Guiding organizations in the digital era: Tools and metrics for success. Int. J. Eng. Bus. Manag. 2025, 17, 18479790241312804. [Google Scholar] [CrossRef]
- Modgil, S.; Singh, R.K.; Hannibal, C. Artificial intelligence for supply chain resilience: Learning from Covid-19. Int. J. Logist. Manag. 2022, 33, 1246–1268. [Google Scholar] [CrossRef]
- Modgil, S.; Gupta, S.; Stekelorum, R.; Laguir, I. AI technologies and their impact on supply chain resilience during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 130–149. [Google Scholar] [CrossRef]
- Dey, P.K.; Chowdhury, S.; Abadie, A.; Vann Yaroson, E.; Sarkar, S. Artificial intelligence-driven supply chain resilience in Vietnamese manufacturing small-and medium-sized enterprises. Int. J. Prod. Res. 2024, 62, 5417–5456. [Google Scholar] [CrossRef]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Ganesh, A.D.; Kalpana, P. Future of artificial intelligence and its influence on supply chain risk management—A systematic review. Comput. Ind. Eng. 2022, 169, 108206. [Google Scholar] [CrossRef]
- Nimmagadda, V.S.P. AI-Powered Predictive Analytics for Retail Supply Chain Risk Management: Advanced Techniques, Applications, and Real-World Case Studies. Distrib. Learn. Broad Appl. Sci. Res. 2020, 6, 152–194. [Google Scholar]
- Khadem, M.; Khadem, A.; Khadem, S. Application of artificial intelligence in supply chain revolutionizing efficiency and optimization. Int. J. Ind. Eng. Oper. Res. 2023, 5, 29–38. [Google Scholar]
- Pal, S. Integrating AI in sustainable supply chain management: A new paradigm for enhanced transparency and sustainability. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 2979–2984. [Google Scholar] [CrossRef]
- Charles, V.; Emrouznejad, A.; Gherman, T. A critical analysis of the integration of blockchain and artificial intelligence for supply chain. Ann. Oper. Res. 2023, 327, 7–47. [Google Scholar] [CrossRef]
- Gayam, S.R. AI for Supply Chain Visibility in E-Commerce: Techniques for Real-Time Tracking, Inventory Management, and Demand Forecasting. Distrib. Learn. Broad Appl. Sci. Res. 2019, 5, 218–251. [Google Scholar]
- Sanders, N.R.; Boone, T.; Ganeshan, R.; Wood, J.D. Sustainable supply chains in the age of AI and digitization: Research challenges and opportunities. J. Bus. Logist. 2019, 40, 229–240. [Google Scholar] [CrossRef]
- Kollia, I.; Stevenson, J.; Kollias, S. Ai-enabled efficient and safe food supply chain. Electronics 2021, 10, 1223. [Google Scholar] [CrossRef]
- Culot, G.; Podrecca, M.; Nassimbeni, G. Artificial intelligence in supply chain management: A systematic literature review of empirical studies and research directions. Comput. Ind. 2024, 162, 104132. [Google Scholar] [CrossRef]
- Sony, M.; Naik, S. Key ingredients for evaluating Industry 4.0 readiness for organizations: A literature review. Benchmarking Int. J. 2020, 27, 2213–2232. [Google Scholar] [CrossRef]
- Min, H. Artificial intelligence in supply chain management: Theory and applications. Int. J. Logist. Res. Appl. 2010, 13, 13–39. [Google Scholar] [CrossRef]
- Toorajipour, R.; Sohrabpour, V.; Nazarpour, A.; Oghazi, P.; Fischl, M. Artificial intelligence in supply chain management: A systematic literature review. J. Bus. Res. 2021, 122, 502–517. [Google Scholar] [CrossRef]
- Riahi, Y.; Saikouk, T.; Gunasekaran, A.; Badraoui, I. Artificial intelligence applications in supply chain: A descriptive bibliometric analysis and future research directions. Expert Syst. Appl. 2021, 173, 114702. [Google Scholar] [CrossRef]
- Shahzadi, G.; Jia, F.; Chen, L.; John, A. AI adoption in supply chain management: A systematic literature review. J. Manuf. Technol. Manag. 2024, 35, 1125–1150. [Google Scholar] [CrossRef]
- Cannas, V.G.; Ciano, M.P.; Saltalamacchia, M.; Secchi, R. Artificial intelligence in supply chain and operations management: A multiple case study research. Int. J. Prod. Res. 2024, 62, 3333–3360. [Google Scholar] [CrossRef]
- Hangl, J.; Behrens, V.J.; Krause, S. Barriers, drivers, and social considerations for AI adoption in supply chain management: A tertiary study. Logistics 2022, 6, 63. [Google Scholar] [CrossRef]
- Hendriksen, C. Artificial intelligence for supply chain management: Disruptive innovation or innovative disruption? J. Supply Chain. Manag. 2023, 59, 65–76. [Google Scholar] [CrossRef]
- Eyo-Udo, N. Leveraging artificial intelligence for enhanced supply chain optimization. Open Access Res. J. Multidiscip. Stud. 2024, 7, 1–15. [Google Scholar] [CrossRef]
- Jackson, I.; Ivanov, D.; Dolgui, A.; Namdar, J. Generative artificial intelligence in supply chain and operations management: A capability-based framework for analysis and implementation. Int. J. Prod. Res. 2024, 62, 1–26. [Google Scholar] [CrossRef]
- Sodiya, E.O.; Jacks, B.S.; Ugwuanyi, E.D.; Adeyinka, M.A.; Umoga, U.J.; Daraojimba, A.I.; Lottu, O.A. Reviewing the role of AI and machine learning in supply chain analytics. GSC Adv. Res. Rev. 2024, 18, 312–320. [Google Scholar] [CrossRef]
- Dubey, R.; Bryde, D.J.; Blome, C.; Roubaud, D.; Giannakis, M. Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Ind. Mark. Manag. 2021, 96, 135–146. [Google Scholar] [CrossRef]
- Cadden, T.; Dennehy, D.; Mantymaki, M.; Treacy, R. Understanding the influential and mediating role of cultural enablers of AI integration to supply chain. Int. J. Prod. Res. 2022, 60, 4592–4620. [Google Scholar] [CrossRef]
- Naz, F.; Kumar, A.; Majumdar, A.; Agrawal, R. Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Oper. Manag. Res. 2022, 15, 378–398. [Google Scholar] [CrossRef]
- Han, M.; Yang, T.; Zhong, J.; Zhong, Y. AI applications and supply chain concentration. Appl. Econ. Lett. 2024, 31, 2099–2103. [Google Scholar] [CrossRef]
- Kalusivalingam, A.K.; Sharma, A.; Patel, N.; Singh, V. Enhancing Supply Chain Visibility through AI: Implementing Neural Networks and Reinforcement Learning Algorithms. Int. J. AI ML 2020, 1, 1–27. [Google Scholar]
- Elufioye, O.A.; Ike, C.U.; Odeyemi, O.; Usman, F.O.; Mhlongo, N.Z. Ai-Driven predictive analytics in agricultural supply chains: A review: Assessing the benefits and challenges of ai in forecasting demand and optimizing supply in agriculture. Comput. Sci. Res. J. 2024, 5, 473–497. [Google Scholar] [CrossRef]
- Olan, F.; Arakpogun, E.O.; Jayawickrama, U.; Suklan, J.; Liu, S. Sustainable supply chain finance and supply networks: The role of artificial intelligence. IEEE Trans. Eng. Manag. 2022, 71, 13296–13311. [Google Scholar] [CrossRef]
- Olan, F.; Liu, S.; Suklan, J.; Jayawickrama, U.; Arakpogun, E.O. The role of Artificial Intelligence networks in sustainable supply chain finance for food and drink industry. Int. J. Prod. Res. 2022, 60, 4418–4433. [Google Scholar] [CrossRef]
- Ejjami, R.; Boussalham, K. Resilient supply chains in Industry 5.0: Leveraging AI for predictive maintenance and risk mitigation. IJFMR Int. J. Multidiscip. Res. 2024, 6. [Google Scholar] [CrossRef]
- Monjur, M.E.I.; Akon, T. Supply chain management and logistics: How important interconnection is for business success. Open J. Bus. Manag. 2023, 11, 2505–2524. [Google Scholar] [CrossRef]
- Shcherbakov, V.; Silkina, G. Supply chain management open innovation: Virtual integration in the network logistics system. J. Open Innov. Technol. Mark. Complex. 2021, 7, 54. [Google Scholar] [CrossRef]
- Gurtu, A.; Johny, J. Supply chain risk management: Literature review. Risks 2021, 9, 16. [Google Scholar] [CrossRef]
- Sánchez-Flores, R.B.; Ojeda-Benítez, S.; Cruz-Sotelo, S.E.; Navarro-González, C.R. Supply chain performance improvement: A Sustainable perspective. In Techniques, Tools and Methodologies Applied to Global Supply Chain Ecosystems; Springer: Cham, Switzerland, 2020; pp. 333–358. [Google Scholar] [CrossRef]
- Khanuja, A.; Jain, R.K. Supply chain integration: A review of enablers, dimensions and performance. Benchmarking Int. J. 2019, 27, 264–301. [Google Scholar] [CrossRef]
- Vanpoucke, E.; Boyer, K.K.; Vereecke, A. Supply chain information flow strategies: An empirical taxonomy. Int. J. Oper. Prod. Manag. 2009, 29, 1213–1241. [Google Scholar] [CrossRef]
- Power, D. Supply chain management integration and implementation: A literature review. Supply Chain. Manag. Int. J. 2005, 10, 252–263. [Google Scholar] [CrossRef]
- Daios, A.; Kostavelis, I. Industry 4.0 Technologies in Distribution Centers: A Survey. In Proceedings of the Olympus International Conference on Supply Chains, Katerini, Greece, 24–26 May 2024; pp. 3–11. [Google Scholar] [CrossRef]
- Samper, M.G.; Florez, D.G.; Borre, J.R.; Ramirez, J. Industry 4.0 for sustainable supply chain management: Drivers and barriers. Procedia Comput. Sci. 2022, 203, 644–650. [Google Scholar] [CrossRef]
- Nzeako, G.; Akinsanya, M.O.; Popoola, O.A.; Chukwurah, E.G.; Okeke, C.D. The role of AI-Driven predictive analytics in optimizing IT industry supply chains. Int. J. Manag. Entrep. Res. 2024, 6, 1489–1497. [Google Scholar] [CrossRef]
- Anantrasirichai, N.; Bull, D. Artificial intelligence in the creative industries: A review. Artif. Intell. Rev. 2022, 55, 589–656. [Google Scholar] [CrossRef]
- Wamba, S.F.; Queiroz, M.M.; Jabbour, C.J.C.; Shi, C.V. Are both generative AI and ChatGPT game changers for 21st-Century operations and supply chain excellence? Int. J. Prod. Econ. 2023, 265, 109015. [Google Scholar] [CrossRef]
- Fosso Wamba, S.; Guthrie, C.; Queiroz, M.M.; Minner, S. ChatGPT and generative artificial intelligence: An exploratory study of key benefits and challenges in operations and supply chain management. Int. J. Prod. Res. 2024, 62, 5676–5696. [Google Scholar] [CrossRef]
- Parida, P.R.; Ratnala, A.K.; Kondaveeti, D. Integrating IoT with AI-Driven Real-Time Analytics for Enhanced Supply Chain Management in Manufacturing. J. Artif. Intell. Res. Appl. 2024, 4, 40–84. [Google Scholar]
- Nozari, H.; Szmelter-Jarosz, A.; Ghahremani-Nahr, J. Analysis of the challenges of artificial intelligence of things (AIoT) for the smart supply chain (case study: FMCG industries). Sensors 2022, 22, 2931. [Google Scholar] [CrossRef]
- Mohsen, B.M. Impact of artificial intelligence on supply chain management performance. J. Serv. Sci. Manag. 2023, 16, 44–58. [Google Scholar] [CrossRef]
- Chen, Y.; Biswas, M.I.; Talukder, M.S. The role of artificial intelligence in effective business operations during COVID-19. Int. J. Emerg. Mark. 2022, 18, 6368–6387. [Google Scholar] [CrossRef]
- Kosasih, E.E.; Papadakis, E.; Baryannis, G.; Brintrup, A. A review of explainable artificial intelligence in supply chain management using neurosymbolic approaches. Int. J. Prod. Res. 2024, 62, 1510–1540. [Google Scholar] [CrossRef]
- Adenekan, O.A.; Solomon, N.O.; Simpa, P.; Obasi, S.C. Enhancing manufacturing productivity: A review of AI-Driven supply chain management optimization and ERP systems integration. Int. J. Manag. Entrep. Res. 2024, 6, 1607–1624. [Google Scholar] [CrossRef]
- Hao, X.; Demir, E. Artificial intelligence in supply chain decision-making: An environmental, social, and governance triggering and technological inhibiting protocol. J. Model. Manag. 2024, 19, 605–629. [Google Scholar] [CrossRef]
- Amirkolaii, K.N.; Baboli, A.; Shahzad, M.; Tonadre, R. Demand forecasting for irregular demands in business aircraft spare parts supply chains by using artificial intelligence (AI). IFAC PapersOnLine 2017, 50, 15221–15226. [Google Scholar] [CrossRef]
- Abaku, E.A.; Edunjobi, T.E.; Odimarha, A.C. Theoretical approaches to AI in supply chain optimization: Pathways to efficiency and resilience. Int. J. Sci. Technol. Res. Arch. 2024, 6, 092–107. [Google Scholar] [CrossRef]
- Kasaraneni, R.K. AI-Enhanced Supply Chain Collaboration Platforms for Retail: Improving Coordination and Reducing Costs. J. Bioinform. Artif. Intell. 2021, 1, 410–450. [Google Scholar]
- Daios, A.; Kladovasilakis, N.; Kostavelis, I. Mixed Palletizing for Smart Warehouse Environments: Sustainability Review of Existing Methods. Sustainability 2024, 16, 1278. [Google Scholar] [CrossRef]
- Daios, A.; Xanthopoulos, A.; Folinas, D.; Kostavelis, I. Towards automating stocktaking in warehouses: Challenges, trends, and reliable approaches. Procedia Comput. Sci. 2024, 232, 1437–1445. [Google Scholar] [CrossRef]
- Krishnamoorthy, G.; Kurkute, M.V.; Sreerama, J. Integrating LLMs into ai-driven supply chains: Best practices for training, development, and deployment in the retail and manufacturing industries. J. Artif. Intell. Res. Appl. 2024, 4, 592–627. [Google Scholar]
- Surana, A.; Kumara, S.; Greaves, M.; Raghavan, U.N. Supply-chain networks: A complex adaptive systems perspective. Int. J. Prod. Res. 2005, 43, 4235–4265. [Google Scholar] [CrossRef]
- Kondapaka, K.K. Advanced AI Models for Retail Supply Chain Network Design and Optimization: Techniques, Applications, and Real-World Case Studies. Distrib. Learn. Broad Appl. Sci. Res. 2019, 5, 598–636. [Google Scholar]
- Yandrapalli, V. Revolutionizing supply chains using power of generative ai. Int. J. Res. Publ. Rev. 2023, 4, 1556–1562. [Google Scholar] [CrossRef]
- Skoularikis, K.; Savvas, I.K.; Garani, G.; Kakarontzas, G. A Scalable Framework for Customer Sentiment Analysis in the Telecommunication Industry. In Proceedings of the 2021 29th Telecommunications Forum (TELFOR), Belgrade, Serbia, 23–24 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Khatua, A.; Khatua, A.; Chi, X.; Cambria, E. Artificial intelligence, social media and supply chain management: The way forward. Electronics 2021, 10, 2348. [Google Scholar] [CrossRef]
- Mukherjee, S.; Baral, M.M.; Nagariya, R.; Chittipaka, V.; Pal, S.K. Artificial intelligence-based supply chain resilience for improving firm performance in emerging markets. J. Glob. Oper. Strateg. Sourc. 2024, 17, 516–540. [Google Scholar] [CrossRef]
- Ivanov, D. Two views of supply chain resilience. Int. J. Prod. Res. 2024, 62, 4031–4045. [Google Scholar] [CrossRef]
- Singh, R.K.; Modgil, S.; Shore, A. Building artificial intelligence enabled resilient supply chain: A multi-method approach. J. Enterp. Inf. Manag. 2024, 37, 414–436. [Google Scholar] [CrossRef]
- Nezamoddini, N.; Gholami, A.; Aqlan, F. A risk-based optimization framework for integrated supply chains using genetic algorithm and artificial neural networks. Int. J. Prod. Econ. 2020, 225, 107569. [Google Scholar] [CrossRef]
- Kalusivalingam, A.K.; Sharma, A.; Patel, N.; Singh, V. Enhancing Supply Chain Resilience through AI: Leveraging Deep Reinforcement Learning and Predictive Analytics. Int. J. AI ML 2022, 3, 1–23. [Google Scholar]
- Kassa, A.; Kitaw, D.; Stache, U.; Beshah, B.; Degefu, G. Artificial intelligence techniques for enhancing supply chain resilience: A systematic literature review, holistic framework, and future research. Comput. Ind. Eng. 2023, 186, 109714. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial intelligence-driven innovation for enhancing supply chain resilience and performance under the effect of supply chain dynamism: An empirical investigation. Ann. Oper. Res. 2024, 333, 627–652. [Google Scholar] [CrossRef]
- Chukwu, N.; Yufenyuy, S.; Ejiofor, E.; Ekweli, D.; Ogunleye, O.; Clement, T.; Obunadike, C.; Adeniji, S.; Elom, E.; Obunadike, C. Resilient Chain: AI-Enhanced Supply Chain Security and Efficiency Integration. Int. J. Sci. Manag. Res 2024, 7, 46–65. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.; Fosso Wamba, S.; Queiroz, M.M. Building supply-chain resilience: An artificial intelligence-based technique and decision-making framework. Int. J. Prod. Res. 2022, 60, 4487–4507. [Google Scholar] [CrossRef]
- Mittal, U.; Panchal, D. AI-based evaluation system for supply chain vulnerabilities and resilience amidst external shocks: An empirical approach. Rep. Mech. Eng. 2023, 4, 276–289. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Artificial intelligence in operations management and supply chain management: An exploratory case study. Prod. Plan. Control 2022, 33, 1573–1590. [Google Scholar] [CrossRef]
- Nimmagadda, V.S.P. Artificial Intelligence for Supply Chain Visibility and Transparency in Retail: Advanced Techniques, Models, and Real-World Case Studies. J. Mach. Learn. Pharm. Res. 2023, 3, 87–120. [Google Scholar]
- krishna Vaddy, R. Future of AI/ML in digital commerce and supply chain. Int. Trans. Artif. Intell. 2023, 7, 1–19. [Google Scholar]
- Zamani, E.D.; Smyth, C.; Gupta, S.; Dennehy, D. Artificial intelligence and big data analytics for supply chain resilience: A systematic literature review. Ann. Oper. Res. 2023, 327, 605–632. [Google Scholar] [CrossRef]
- Sodhi, M.S.; Seyedghorban, Z.; Tahernejad, H.; Samson, D. Why emerging supply chain technologies initially disappoint: Blockchain, IoT, and AI. Prod. Oper. Manag. 2022, 31, 2517–2537. [Google Scholar] [CrossRef]
- Tsolakis, N.; Schumacher, R.; Dora, M.; Kumar, M. Artificial intelligence and blockchain implementation in supply chains: A pathway to sustainability and data monetisation? Ann. Oper. Res. 2023, 327, 157–210. [Google Scholar] [CrossRef]
- Younis, H.; Sundarakani, B.; Alsharairi, M. Applications of artificial intelligence and machine learning within supply chains: Systematic review and future research directions. J. Model. Manag. 2022, 17, 916–940. [Google Scholar] [CrossRef]
SCM Activities | AI Apps |
---|---|
Customer relationship management | Agent-based models, chatbots and virtual assistants |
Inventory management | Machine Learning, robots, drones, agent-based models and Large Language Models |
Transportation networks | Network theory, graph algorithms, genetic algorithms, ant colony optimization and reinforcement learning |
Procurement | Agent-based models, process automation and Generative AI |
Demand forecasting | Machine Learning, support vector machines, Neural Networks, decision trees, Deep Neural Networks, data mining, fuzzy models, sentiment analysis and Large Language Models |
Resilience | Artificial Neural Networks, deep reinforcement learning and Bayesian Networks |
Risk | Ensemble learning, Neural Networks, fuzzy logic programming, Machine Learning, Big Data, agent-based systems, Generative AI, Deep Convolutional Neural Networks and Large Language Models |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daios, A.; Kladovasilakis, N.; Kelemis, A.; Kostavelis, I. AI Applications in Supply Chain Management: A Survey. Appl. Sci. 2025, 15, 2775. https://doi.org/10.3390/app15052775
Daios A, Kladovasilakis N, Kelemis A, Kostavelis I. AI Applications in Supply Chain Management: A Survey. Applied Sciences. 2025; 15(5):2775. https://doi.org/10.3390/app15052775
Chicago/Turabian StyleDaios, Adamos, Nikolaos Kladovasilakis, Athanasios Kelemis, and Ioannis Kostavelis. 2025. "AI Applications in Supply Chain Management: A Survey" Applied Sciences 15, no. 5: 2775. https://doi.org/10.3390/app15052775
APA StyleDaios, A., Kladovasilakis, N., Kelemis, A., & Kostavelis, I. (2025). AI Applications in Supply Chain Management: A Survey. Applied Sciences, 15(5), 2775. https://doi.org/10.3390/app15052775