Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.1.1. Experimental Design
- Group 1—Repeated Sample (Sample 1): Sample 1 was produced with a 10% hull content and 5% impurities. This sample was repeated five times to ensure consistency and minimize variability.
- Group 2—Variable Hull and Impurity Contents: Samples 2 to 9 represented different combinations of hull content (ranging from 0% to 20% at 5% intervals) and impurities (ranging from 0% to 10% at 2.5% intervals), aimed at exploring the effects of changing seed properties on oil quality.
- Group 3—Boundary Samples (Samples 10 and 11): Sample 10 was produced using seeds with 0% hull content and 0% impurities, serving as a baseline with minimal interference from seed components. Sample 11 was produced with 20% hull content and 10% impurities, representing the maximum content of hulls and impurities to observe their most significant effects.
Hull content, h (%) | 20 | Sample 5 | Sample 11 ** | |||
15 | Sample 7 | Sample 4 | ||||
10 | Sample 9 | Sample 1 * | Sample 6 | |||
5 | Sample 2 | Sample 3 | ||||
0 | Sample 10 ** | Sample 8 | ||||
0 | 2.5 | 5 | 7.5 | 10 | ||
Impurity content, i (%) |
2.1.2. Production of Cold-Pressed Oil and Cake
2.2. Fatty Acid Composition
- Injector temperature: 250 °C;
- Initial column temperature: 50 °C (held for 1 min);
- Increase to 200 °C at 25 °C/min;
- Further increase to 230 °C at 3 °C/min;
- Final hold at 230 °C for 7 min.
2.3. Refractive Index
2.4. Iodine Value
2.5. Pressing Efficiency and Capacity
- Ep is the efficiency (yield) of cold-pressed oil, expressed as a percentage (% w/w);
- Oc is the oil content in the cake, expressed as a percentage (%);
- Os is the oil content in the raw material (seeds), expressed as a percentage (% tel quel).
2.6. Color Analysis
2.7. Statistics
2.7.1. Regression and Model Validation
2.7.2. Clustered Heat Maps (Double Dendrograms)
3. Results and Discussion
3.1. Fatty Acid Composition, Refractive Index, and Iodine Value
3.2. Pressing Efficiency, Capacity, and Cold-Pressed Oil Yield
3.3. Color of Cold-Pressed Oils
3.4. Prediction of Cake Composition and Pressing Efficiency (Oil Yield) Using Multiple Linear Regression (MLR)
3.5. Clustered Heat Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
h | hull content (%) |
i | impurity content (%) |
Ms | moisture content in the seed (%) |
Mc | moisture content in the cake (%) |
Os | oil content in the seed (% tel quel) |
Oc | oil content in the cake (%) |
Ep | pressing efficiency (% w/w) |
S | seed mass/mass of the pressed material (kg) |
t | pressing time (h) |
Qp | material flow rate (kgseeds/h) |
Q | quantity of produced oil (kgoil/h) |
Y | brightness (%) |
λ | dominant wavelength (nm) |
P | color purity (%) |
T | transparency (%) |
MLR | multiple linear regression |
R | Pearson’s correlation coefficient |
R2 | determination coefficient |
R2adj | adjusted coefficient of determination |
F | Fisher’s value |
SD | standard deviation |
p | probability |
R2cv | cross-validation coefficient of determination |
TSS | total squares sum |
PRESS | predicted residual squares sum |
CV | coefficient of variation |
VIF | variance inflation factor |
References
- Yang, Y.; Zhang, L.; Li, P.; Yu, L.; Mao, J.; Wang, X.; Zhang, Q. A review of chemical composition and nutritional properties of minor vegetable oils in China. Trends Food Sci. Technol. 2018, 74, 26–32. [Google Scholar] [CrossRef]
- Dorni, C.; Sharma, P.; Saikia, G.; Longvah, T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018, 238, 9–15. [Google Scholar] [CrossRef]
- O’Brien, R.D. Fats and Oils: Formulating and Processing for Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 1–147. [Google Scholar]
- Majchrzak, T.; Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in classification and quality control of edible oils: A review. Food Chem. 2018, 246, 192–201. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Arslan, M.; Oksuz, A. Physicochemical properties of cold pressed sunflower, peanut, rapeseed, mustard and olive oils grown in the Eastern Mediterranean region. Saudi J. Biol. Sci. 2019, 26, 340–344. [Google Scholar] [CrossRef] [PubMed]
- USDA. Oilseeds: World Markets and Trade. World Agricultural Outlook Board; United States Department of Agriculture: Washington, DC, USA, 2025. Available online: https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf (accessed on 3 February 2025).
- FAO. Food Outlook, Biannual Report on Global Food Markets; Food and Agriculture Organization of United Nations: Rome, Italy, 2024; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f8c73abe-d26d-4d47-9272-c9b464cc0fc1/content (accessed on 3 February 2025).
- Lužaić, T.; Romanić, R.; Grahovac, N.; Jocić, S.; Cvejić, S.; Hladni, N.; Pezo, L. Prediction of mechanical extraction oil yield of new sunflower hybrids: Artificial neural network model. J. Sci. Food Agric. 2021, 101, 5827–5833. [Google Scholar] [CrossRef]
- Codex Alimentarius. Standard for Named Vegetable Oils Codex Stan 210-1999; Codex Alimentarius: Rome, Italy, 1999. [Google Scholar]
- Salas, J.; Bootello, M.; Garcés, R. Food Uses of Sunflower Oils. In Sunflower Chemistry, Production, Processing, and Utilization; Martínez-Force, E., Turgut Dunford, N., Salas, J.J., Eds.; AOCS Press: Urbana, IL, USA, 2015; pp. 441–464. [Google Scholar]
- Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- FDA. Completes Review of Qualified Health Claim Petition for Oleic Acid and the Risk of Coronary Heart Disease; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/food/hfp-constituent-updates/fda-completes-review-qualified-health-claim-petition-oleic-acid-and-risk-coronary-heart-disease (accessed on 3 February 2025).
- Yu, K.S.; Cho, H.; Hwang, K.T. Physicochemical properties and oxidative stability of frying oils during repeated frying of potato chips. Food Sci. Biotechnol. 2017, 27, 651–659. [Google Scholar] [CrossRef]
- Romano, R.; Filosa, G.; Pizzolongo, F.; Durazzo, A.; Lucarini, M.; Severino, P.; Souto, E.B.; Santini, A. Oxidative stability of high oleic sunflower oil during deep-frying process of purple potato Purple Majesty. Heliyon 2021, 7, e06294. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F. Healthy blends of high linoleic sunflower oil with selected cold pressed oils: Functionality, stability and antioxidative characteristics. Ind. Crops Prod. 2013, 43, 65–72. [Google Scholar] [CrossRef]
- Kiralan, M.; Çalik, G.; Kiralan, S.; Ramadan, M.F. Monitoring stability and volatile oxidation compounds of cold-pressed flax seed, grape seed and black cumin seed oils upon photo-oxidation. J. Food Meas. Charact. 2018, 12, 616–621. [Google Scholar] [CrossRef]
- El Makawy, A.I.; Ibrahim, F.M.; Mabrouk, D.M.; Ahmed, K.A.; Fawzy Ramadan, M. Effect of antiepileptic drug (Topiramate) and cold pressed ginger oil on testicular genes expression, sexual hormones and histopathological alterations in mice. Biomed. Pharmacother. 2019, 110, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.S.; Gopala Krishna, A.G. Lipid classes and subclasses of cold-pressed and solvent-extracted oils from commercial Indian Niger (Guizotia abyssinica (L.f.) Cass.) seed. J. Am. Oil Chem. Soc. 2014, 91, 1205–1216. [Google Scholar] [CrossRef]
- Prescha, A.; Grajzer, M.; Dedyk, M.; Grajeta, H. The antioxidant activity and oxidative stability of cold-pressed oils. J. Am. Oil Chem. Soc. 2014, 91, 1291–1301. [Google Scholar] [CrossRef]
- Ramadan, M.F. Introduction to cold pressed oils: Green technology, bioactive compounds, functionality, and applications. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications; Ramadan, M.F., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 1–5. [Google Scholar]
- Brühl, L. Determination of trans fatty acids in cold pressed oils and in dried seeds. Fett/Lipid 1996, 98, 380–383. [Google Scholar] [CrossRef]
- Rotkiewicz, D.; Konopka, I.; Zylik, S. State of works on the rapeseed oil processing optimization. I. Oil obtaining. Rośliny Oleiste/Oilseed Crops 1999, 20, 151–168. [Google Scholar]
- Bhuiya, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Mofijur, M. Optimisation of Oil Extraction Process from Australian Native Beauty Leaf Seed (Calophyllum inophyllum). Energy Procedia 2015, 75, 56–61. [Google Scholar] [CrossRef]
- Guédé, S.S.; Soro, Y.R.; Kouamé, A.F.; Brou, K. Optimization of Screw Press Extraction of Citrillus Lanatus Seed Oil and Physiochemical Characterization. Eur. Food Res. Technol. 2017, 5, 35–46. [Google Scholar]
- Çakaloğlu, B.; Özyurt, V.H.; Ötleş, S. Cold press in oil extraction. A review. Ukr. Food J. 2018, 7, 640–654. [Google Scholar] [CrossRef]
- Elhassan, S.H.A.R. Mechanical Expression of Oil from Sesame (Sesamum indicum L.). Ph.D. Thesis, University of Khartoum: Khartoum, Sudan, 2009. [Google Scholar]
- Nde, D.B.; Foncha, A.C. Optimization methods for the extraction of vegetable oils: A review. Processes 2020, 8, 209. [Google Scholar] [CrossRef]
- Fils, J.M. The production of oils. In Edible Oil Processing; Hamm, W., Hamilton, R.J., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 47–48. [Google Scholar]
- Zheng, Y.; Wiesenborn, P.; Tostenson, K.; Kangas, N. Screw pressing of whole and dehulled flaxseed for organic oil. J. Am. Oil Chem. Soc. 2003, 80, 1039–1045. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Cold-pressed edible rapeseed oil production in Germany. INFORM 2004, 15, 266–268. [Google Scholar]
- Dimić, E.; Premović, T.; Takači, A. Effects of the contents of impurities and seed hulls on the quality of cold-pressed sunflower oil. Czech J. Food Sci. 2012, 30, 343–350. [Google Scholar] [CrossRef]
- Popović, S.; Hromiš, N.; Šuput, D.; Bulut, S.; Romanić, R.; Lazić, V. Valorization of by-products from the production of pressed edible oils to produce biopolymer films. In Cold Pressed Oils: Green Technology, Bioactive Compounds, Functionality, and Applications; Ramadan, M.F., Ed.; Academic Press: London, UK, 2020; pp. 15–30. [Google Scholar]
- Pedroche, J. Utilization of Sunflower Proteins. In Sunflower Chemistry, Production, Processing, and Utilization; Martínez-Force, E., Turgut Dunford, N., Salas, J.J., Eds.; AOCS Press: Urbana, IL, USA, 2015; pp. 395–439. [Google Scholar]
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6320:2017; Animal and Vegetable Fats and Oils—Determination of Refractive Index. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 3961:2024; Animal and Vegetable Fats and Oils—Determination of Iodine Value. International Organization for Standardization: Geneva, Switzerland, 2024.
- Karaj, S.; Müller, J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crop. Prod. 2011, 34, 1010–1016. [Google Scholar] [CrossRef]
- ISO 659:2009; Oilseeds—Determination of Oil Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 665:2020; Oilseeds—Determination of Moisture and Volatile Matter Content. International Organization for Standardization: Geneva, Switzerland.
- Škaljac, S.; Jokanović, M.; Tomović, V.; Ivić, M.; Tasić, T.; Ikonić, P.; Šojić, B.; Džinić, N.; Petrović, L. Influence of smoking in traditional and industrial conditions on colour and content of polycyclic aromatic hydrocarbons in dry fermented sausage “Petrovská klobása”. LWT 2018, 87, 158–162. [Google Scholar] [CrossRef]
- Dimić, E.; Turkulov, J. Kontrola Kvaliteta u Tehnologiji Jestivih Ulja; University of Novi Sad, Faculty of Technology Novi Sad: Novi Sad, Serbia, 2000. [Google Scholar]
- Minovski, N.; Jezierska-Mazzarello, A.; Vračko, M.; Solmajer, T. Investigation of 6-fluoroquinolones activity against Mycobacterium tuberculosis using theoretical molecular descriptors: A case study. Open Chem. 2011, 9, 855–866. [Google Scholar] [CrossRef]
- Marquardt, D.W.; Snee, R.D. Ridge regression in practice. Am. Stat. 1975, 29, 3–19. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Young, T.M.; Shaffer, L.B.; Guess, F.M.; Bensmail, H.; Léon, R.V. A Comparison of multiple linear regression and quantile regression for modeling the internal bond of medium density fiberboard. For. Prod. J. 2008, 58, 39–48. [Google Scholar]
- Jevrić, L.R.; Karadžić, M.; Podunavac-Kuzmanović, S.O.; Tepić Horecki, A.N.; Kovačević, S.Z.; Vidović, S.S.; Šumić, Z.M.; Ilin, Ž.M. New guidelines for prediction of antioxidant activity of Lactuca sativa L. varieties based on phytochemicals content and multivariate chemometrics. J. Food Process. Preserv. 2018, 42, e13355. [Google Scholar] [CrossRef]
- Ferguson, R.I.; Mather, P.M. Computational Methods of Multivariate Analysis in Physical Geography. J. Biogeogr. 1977, 4, 201–202. [Google Scholar] [CrossRef]
- Saraçli, S.; Doǧan, N.; Doǧan, I. Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequal. Appl. 2013, 2013, 203. [Google Scholar] [CrossRef]
- Rohlf, J.F. NTSYSpc, Numerical Taxonomy and Multivariate Analysis System Version 2.0 User Guide; Natural History: London, UK, 1998. [Google Scholar]
- Lužaić, T.Z.; Grahovac, N.L.; Hladni, N.T.; Romanić, R.S. Evaluation of oxidative stability of new cold-pressed sunflower oils during accelerate thermal stability tests. Food Sci. Tech.—Brazil 2022, 42, e67320. [Google Scholar] [CrossRef]
- Liu, J.; Meng, P.; Yang, G.; Yang, R.; Chen, J.; Sun, C.; Liu, W. Effects of interesterification with solid base catalyst on physicochemical properties of lard and high-oleic sunflower oil blends. LWT—Food Sci. Technol. 2024, 211, 116915. [Google Scholar] [CrossRef]
- Dunford, N. Oil and oilseed processing I. Food Technol. Fact Sheet 2008, 158, 1–4. [Google Scholar]
- Laisney, J. Obtention des corps gras. In Manuel des Corps Gras; Lavoisier, T., Ed.; Technique et Documentation—Lavoisier: Paris, France, 1992; pp. 695–768. [Google Scholar]
- Savoire, R.; Lanoisellé, J.L.; Vorobiev, E. Mechanical Continuous Oil Expression from Oilseeds: A Review. Food Bioprocess Technol. 2012, 6, 1–16. [Google Scholar] [CrossRef]
- De Figueiredo, A.K.; Rodríguez, L.M.; Riccobene, I.C.; Nolasco, S.M. Analysis of the Performance of a Dehulling System for Confectionary Sunflower Seeds. Food Nutr. Sci. 2014, 5, 541–548. [Google Scholar] [CrossRef]
- Romanić, R.S.; Lužaić, T.Z. Dehulling effectiveness of high-oleic and linoleic sunflower oilseeds using air-jet impact dehuller: A comparative study. Food Sci. Tech.—Brazil 2022, 42, e58620. [Google Scholar] [CrossRef]
- Crimaldi, M.; Faugno, S.; Sannino, M.; Ardito, L. Optimization of hemp seeds (Canapa sativa L.) oil mechanical extraction. Chem. Eng. Trans. 2017, 58, 373–378. [Google Scholar]
- Kabutey, A.; Herák, D.; Mizera, Č. Assessment of Quality and Efficiency of Cold-Pressed Oil from Selected Oilseeds. Foods 2023, 12, 363. [Google Scholar] [CrossRef]
- Gikuru, M.; Lamech, M.A. Study of Yield Characteristics During Mechanical Oil Extraction of Preheated and Ground Soybeans. J. Appl. Sci. Res. 2007, 3, 1146–1151. [Google Scholar]
- Wiesenborn, D.; Doddapaneni, R.; Tostenson, K.; Kangas, N. Cooking indices to predict screw-press perfomance for crambe seed. J. Am. Oil Chem. Soc. 2001, 78, 467–471. [Google Scholar] [CrossRef]
- Šmit, K.; Dimić, E.; Romanić, R.; Bjelobaba-Bošnjak, K.; Mojsin, K. Uticaj ljuske na kvalitet hladno ceđenog ulja suncokreta. In Zbornik Radova 46; Savetovanje Industrije Ulja, Proizvodnja i Prerada Uljarica: Petrovac na Moru, Montenegro, 2005. [Google Scholar]
- Sikorska, E.; Caponio, F.; Bilancia, M.T.; Summo, C.; Pasqualone, A.; Khmelinskii, I.V.; Sikorski, M. Changes in colour of extra-virgin olive oil during storage. Pol. J. Food Nutr. Sci. 2007, 57, 495–498. [Google Scholar]
- Esalami, S.M. Karakterizacija Kvaliteta, Nutritivne Vrednosti i Stabilnosti Devičanskih Maslinovih Ulja Proizvedenih u Različitim Regionima Libije/Characterization of the Quality, Nutritive Value and Stability of Virgin Olive Oils Produced Indifferent Regions of Libya. PhD Thesis, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia, 2018. [Google Scholar]
- Bollinger, G.; Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. J. Mark. Res. 1981, 18, 392–393. [Google Scholar]
Parameters | Results | |
---|---|---|
Fatty acid (% w/w) | C14:0 | 0.04 ± 0.03 a |
C16:0 | 4.32 ± 0.07 c | |
C16:1 | 0.14 ± 0.05 ab | |
C18:0 | 4.04 ± 0.04 c | |
C18:1 | 83.32 ± 0.02 e | |
C18:2 | 7.46 ± 0.13 d | |
C18:3 | 0.30 ± 0.03 b | |
C20:0 | 0.35 ± 0.03 b | |
SFA | 8.71 ± 0.09 | |
MUFA | 83.46 ± 0.06 | |
PUFA | 7.81 ± 0.14 | |
MUFA/PUFA | 10.69 ± 0.19 | |
PUFA/MUFA | 0.09 ± 0.00 | |
Refractive index (nD40 °C) | 1.462 ± 0.000 | |
Iodine value (gI2/100 g) | 86 ± 1 |
Sample | Sunflower Seed (Raw Material) | Cold-Pressed Cake | Indicators of Cold-Pressed Oil Yield | Cold-Pressed Oil (Color) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hull Content, h (%) | Impurity Content, i (%) | Moisture Content, Ms (%) | Oil Content, Os (%) tel quel | Moisture Content, Mc (%) | Oil Content, Oc (%) | Pressing Efficiency, Ep % (w/w) | Pressing Time, t (h) | Pressing Capacity | CIE Y-xy | Transpa-rency, T (%) | ||||
Material Flow Rate, Qp (kgseeds/h) | Quantity of Produced Oil, Q (kgoil/h) | Brightness, Y (%) | Dominant Wavelength, λ (nm) | Color Purity, P (%) | ||||||||||
1 | 10 | 5 | 5.73 ± 0.02 ef | 46.61 ± 0.43 ef | 6.61 ± 0.03 de | 22.65 ± 0.12 f | 66.46 ± 0.75 de | 0.1183 | 8.45 | 5.62 | 3.63 ± 0.04 a | 567 ± 1 abc | 23.82 ± 0.17 d | 43.59 ± 0.06 f |
2 | 5 | 2.5 | 5.34 ± 0.10 bc | 50.96 ± 0.07 hi | 6.01 ± 0.02 c | 26.60 ± 0.04 h | 65.12 ± 0.06 d | 0.1869 | 5.35 | 3.48 | 3.92 ± 0.01 abc | 567 ± 1 abc | 23.67 ± 0.15 cd | 50.52 ± 0.03 h |
3 | 5 | 7.5 | 5.63 ± 0.04 de | 48.23 ± 0.14 fg | 6.01 ± 0.05 c | 26.74 ± 0.04 h | 60.81 ± 0.29 c | 0.0986 | 10.14 | 6.17 | 3.78 ± 0.01 abc | 566 ± 1 ab | 23.77 ± 0.15 d | 44.00 ± 0.09 g |
4 | 15 | 7.5 | 6.13 ± 0.03 hi | 42.54 ± 0.12 bc | 6.96 ± 0.03 f | 16.33 ± 0.02 d | 73.64 ± 0.12 fg | 0.1256 | 7.96 | 5.87 | 3.77 ± 0.02 abc | 568 ± 2 abcd | 23.02 ± 0.88 cd | 41.00 ± 0.27 e |
5 | 20 | 5 | 6.22 ± 0.03 i | 41.38 ± 0.58 b | 7.22 ± 0.09 g | 14.22 ± 0.09 a | 76.52 ± 0.67 h | 0.1819 | 5.50 | 4.21 | 3.81 ± 0.05 abc | 571 ± 1 d | 24.73 ± 0.20 d | 36.71 ± 0.02 d |
6 | 10 | 10 | 6.00 ± 0.02 gh | 43.93 ± 0.81 cd | 6.98 ± 0.07 f | 15.80 ± 0.03 c | 76.05 ± 0.81 gh | 0.1500 | 6.67 | 5.07 | 3.68 ± 0.08 ab | 571 ± 2 d | 24.29 ± 0.33 d | 33.10 ± 0.05 b |
7 | 15 | 2.5 | 5.83 ± 0.05 fg | 45.42 ± 0.36 de | 6.71 ± 0.09 e | 17.41 ± 0.04 e | 74.66 ± 0.36 fgh | 0.0767 | 13.04 | 9.74 | 3.91 ± 0.15 bc | 566 ± 1 a | 23.82 ± 0.02 d | 43.34 ± 0.06 f |
8 | 0 | 5 | 5.26 ± 0.03 b | 52.35 ± 0.73 i | 5.42 ± 0.04 b | 36.35 ± 0.03 i | 48.01 ± 1.50 b | 0.1278 | 7.83 | 3.76 | 3.89 ± 0.20 abc | 570 ± 1 cd | 18.89 ± 0.06 b | 54.26 ± 0.03 i |
9 | 10 | 0 | 5.51 ± 0.08 cd | 49.54 ± 0.68 gh | 6.51 ± 0.06 d | 23.78 ± 0.08 g | 68.20 ± 0.95 e | 0.1017 | 9.84 | 6.71 | 4.02 ± 0.16 c | 568 ± 2 abc | 18.33 ± 0.66 b | 60.30 ± 0.08 j |
10 | 0 | 0 | 4.98 ± 0.09 a | 55.08 ± 0.90 j | 5.19 ± 0.01 a | 42.68 ± 0.05 j | 39.24 ± 2.27 a | 0.0875 | 11.43 | 4.48 | 4.01 ± 0.09 c | 566 ± 1 a | 12.60 ± 1.97 a | 71.96 ± 0.14 k |
11 | 20 | 10 | 6.49 ± 0.15 j | 38.76 ± 0.60 a | 7.31 ± 0.08 g | 15.13 ± 0.13 b | 71.84 ± 0.51 f | 0.1181 | 8.47 | 6.09 | 3.62 ± 0.10 a | 568 ± 2 abc | 21.74 ± 0.33 c | 32.00 ± 0.05 a |
Control | 22 | 1.9 | 5.66 ± 0.06 e | 43.46 ± 0.69 cd | 7.32 ± 0.11 g | 17.43 ± 0.07 e | 72.54 ± 0.51 fg | 0.1201 | 8.33 | 6.04 | 3.82 ± 0.05 abc | 569 ± 1 bcd | 23.89 ± 0.13 d | 35.11 ± 0.26 c |
Parameters | Model 1 | Model 2 | Model 3 |
---|---|---|---|
R | 0.9650 | 0.9305 | 0.8569 |
R2 | 0.9313 | 0.8659 | 0.7344 |
R2adj | 0.9141 | 0.8324 | 0.6679 |
R2cv | 0.8499 | 0.6929 | 0.3965 |
F | 54.20 | 25.83 | 11.06 |
p | 0.0000 | 0.0003 | 0.0050 |
SD | 0.2074 | 3.7924 | 6.9364 |
CV% | 3.2200 | 16.2000 | 10.5900 |
PRESS | 0.7514 | 263.4902 | 874.4389 |
TSS | 5.0060 | 858.1150 | 1448.9430 |
PRESS/TSS | 0.1501 | 0.3071 | 0.6035 |
VIF (X1) | 1.1905 | 1.1905 | 1.1905 |
VIF (X2) | 1.1905 | 1.1905 | 1.1905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lužaić, T.; Nakov, G.; Kravić, S.; Jocić, S.; Romanić, R. Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield. Appl. Sci. 2025, 15, 3012. https://doi.org/10.3390/app15063012
Lužaić T, Nakov G, Kravić S, Jocić S, Romanić R. Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield. Applied Sciences. 2025; 15(6):3012. https://doi.org/10.3390/app15063012
Chicago/Turabian StyleLužaić, Tanja, Gjore Nakov, Snežana Kravić, Siniša Jocić, and Ranko Romanić. 2025. "Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield" Applied Sciences 15, no. 6: 3012. https://doi.org/10.3390/app15063012
APA StyleLužaić, T., Nakov, G., Kravić, S., Jocić, S., & Romanić, R. (2025). Influence of Hull and Impurity Content in High-Oleic Sunflower Seeds on Pressing Efficiency and Cold-Pressed Oil Yield. Applied Sciences, 15(6), 3012. https://doi.org/10.3390/app15063012