The Impact of State Depression on Proactive Control and Distractor Processing in a Memory Task: An Electrophysiological Study
Abstract
:1. Introduction
The Current Study
2. Materials and Methods
2.1. Participants
2.2. Self-Report Measure of State Depression
2.3. Stimuli, Experimental Procedure, and Task
2.4. Electrophysiological Data
2.4.1. General Pre-Processing of Electrophysiological Data
2.4.2. Analysis of Event-Related Potentials
2.5. Statistical Analysis
3. Results
3.1. Electrophysiological Results
3.2. Behavioral Results
4. Discussion
4.1. Limitations of the Current Study
4.2. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDD | Major depressive disorder; |
DASS | Depression Anxiety Stress Scale; |
VWM | Visual working memory; |
ERP | Event-related potential; |
PD | Distractor positivity; |
PLT | Perceptual load theory; |
SSH | Signal suppression hypothesis; |
LSD | Low state depression; |
HSD | High state depression; |
MEG | Magnetoencephalographic; |
SNP | Spatial negative priming; |
SPP | Spatial positive priming. |
Appendix A
References
- Keller, A.S.; Leikauf, J.E.; Holt-Gosselin, B.; Staveland, B.R.; Williams, L.M. Paying attention to attention in depression. Transl. Psychiatry 2019, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, F.; Constantinidis, C. Bottom-Up and Top-Down Attention:Different Processes and Overlapping Neural Systems. Neuroscientist 2014, 20, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Nobre, A.C.; Kastner, S. 1201Attention: Time Capsule 2013. In The Oxford Handbook of Attention; ANobre, C., Kastner, S., Eds.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Keller, A.S.; Ball, T.M.; Williams, L.M. Deep phenotyping of attention impairments and the ‘Inattention Biotype’ in Major Depressive Disorder. Psychol. Med. 2020, 50, 2203–2212. [Google Scholar] [CrossRef] [PubMed]
- Ladouceur, C.D.; Slifka, J.S.; Dahl, R.E.; Birmaher, B.; Axelson, D.A.; Ryan, N.D. Altered error-related brain activity in youth with major depression. Dev. Cogn. Neurosci. 2012, 2, 351–362. [Google Scholar] [CrossRef]
- Olvet, D.M.; Klein, D.N.; Hajcak, G. Depression symptom severity and error-related brain activity. Psychiatry Res. 2010, 179, 30–37. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 2013, 17, 391–400. [Google Scholar] [CrossRef]
- Lavie, N. Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 451–468. [Google Scholar] [CrossRef]
- Lavie, N.; Tsal, Y. Perceptual load as a major determinant of the locus of selection in visual attention. Percept. Psychophys. 1994, 56, 183–197. [Google Scholar] [CrossRef]
- Lavie, N.; Fox, E. The role of perceptual load in negative priming. J. Exp. Psychol. Hum. Percept. Perform. 2000, 26, 1038–1052. [Google Scholar] [CrossRef]
- Brockhoff, L.; Schindler, S.; Bruchmann, M.; Straube, T. Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neurosci. Biobehav. Rev. 2022, 135, 104580. [Google Scholar] [CrossRef]
- Drisdelle, B.L.; Eimer, M. PD components and distractor inhibition in visual search: New evidence for the signal suppression hypothesis. Psychophysiology 2021, 58, e13878. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J. Electrophysiological correlates of the focusing of attention within complex visual scenes: N2pc and related ERP components. In The Oxford Handbook of Event-Related Potential Components; Oxford University Press: New York, NY, USA, 2012; pp. 329–360. [Google Scholar]
- Luck, S.J.; Hillyard, S.A. Spatial filtering during visual search: Evidence from human electrophysiology. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 1000–1014. [Google Scholar] [CrossRef] [PubMed]
- Luck, S.J.; Hillyard, S.A. Electrophysiological correlates of feature analysis during visual search. Psychophysiology 1994, 31, 291–308. [Google Scholar] [CrossRef]
- Hopf, J.-M.; Luck, S.J.; Girelli, M.; Hagner, T.; Mangun, G.R.; Scheich, H.; Heinze, H.-J. Neural Sources of Focused Attention in Visual Search. Cereb. Cortex 2000, 10, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Gaspelin, N.; Luck, S.J. Combined Electrophysiological and Behavioral Evidence for the Suppression of Salient Distractors. J. Cogn. Neurosci. 2018, 30, 1265–1280. [Google Scholar] [CrossRef]
- Hickey, C.; Di Lollo, V.; McDonald, J.J. Electrophysiological Indices of Target and Distractor Processing in Visual Search. J. Cogn. Neurosci. 2009, 21, 760–775. [Google Scholar] [CrossRef]
- Luck, S.J.; Gaspelin, N.; Folk, C.L.; Remington, R.W.; Theeuwes, J. Progress Toward Resolving the Attentional Capture Debate. Vis Cogn 2021, 29, 1–21. [Google Scholar] [CrossRef]
- Sawaki, R.; Luck, S.J. Active suppression of distractors that match the contents of visual working memory. Vis. Cogn. 2011, 19, 956–972. [Google Scholar] [CrossRef]
- Gaspelin, N.; Leonard, C.J.; Luck, S.J. Suppression of overt attentional capture by salient-but-irrelevant color singletons. Atten. Percept. Psychophys. 2017, 79, 45–62. [Google Scholar] [CrossRef]
- Gaspelin, N.; Luck, S.J. The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends Cogn. Sci. 2018, 22, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Ipata, A.E.; Gee, A.L.; Gottlieb, J.; Bisley, J.W. LIP responses to a popout stimulus are reduced if it is overtly ignored. Nat. Neurosci. 2006, 9, 1071–1076. [Google Scholar] [CrossRef]
- Sawaki, R.; Luck, S.J. Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Atten. Percept. Psychophys. 2010, 72, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Vatterott, D.B.; Vecera, S.P. Experience-dependent attentional tuning of distractor rejection. Psychon. Bull. Rev. 2012, 19, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Gaspelin, N.; Lamy, D.; Egeth, H.E.; Liesefeld, H.R.; Kerzel, D.; Mandal, A.; Müller, M.M.; Schall, J.D.; Schubö, A.; Slagter, H.A.; et al. The Distractor Positivity Component and the Inhibition of Distracting Stimuli. J. Cogn. Neurosci. 2023, 35, 1693–1715. [Google Scholar] [CrossRef]
- Feldmann-Wüstefeld, T.; Vogel, E.K. Neural Evidence for the Contribution of Active Suppression During Working Memory Filtering. Cereb. Cortex 2018, 29, 529–543. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, N.; Lavie, N. Dissociable roles of different types of working memory load in visual detection. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 919–924. [Google Scholar] [CrossRef]
- Lavie, N. Distracted and confused?: Selective attention under load. Trends Cogn. Sci. 2005, 9, 75–82. [Google Scholar] [CrossRef]
- Lavie, N.; Cox, S. On the Efficiency of Visual Selective Attention: Efficient Visual Search Leads to Inefficient Distractor Rejection. Psychol. Sci. 1997, 8, 395–396. [Google Scholar] [CrossRef]
- Lavie, N.; Dalton, P. Load Theory of Attention and Cognitive Control. In The Oxford Handbook of Attention; Nobre, A.C., Kastner, S., Eds.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Gaspelin, N.; Leonard, C.J.; Luck, S.J. Direct Evidence for Active Suppression of Salient-but-Irrelevant Sensory Inputs. Psychol. Sci. 2015, 26, 1740–1750. [Google Scholar] [CrossRef]
- Fuggetta, G.; Duke, P.A. Enhancing links between visual short term memory, visual attention and cognitive control processes through practice: An electrophysiological insight. Biol. Psychol. 2017, 126, 48–60. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Zanon, C.; Brenner, R.E.; Baptista, M.N.; Vogel, D.L.; Rubin, M.; Al-Darmaki, F.R.; Gonçalves, M.; Heath, P.J.; Liao, H.-Y.; Mackenzie, C.S.; et al. Examining the Dimensionality, Reliability, and Invariance of the Depression, Anxiety, and Stress Scale–21 (DASS-21) Across Eight Countries. Assessment 2021, 28, 1531–1544. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, J.M.; McDonald, J.J. High Level of Trait Anxiety Leads to Salience-Driven Distraction and Compensation. Psychol. Sci. 2018, 29, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.; Wong, J.L.; Bagge, C.L.; Freedenthal, S.; Gutierrez, P.M.; Lozano, G. The Depression Anxiety Stress Scales—21 (DASS-21): Further Examination of Dimensions, Scale Reliability, and Correlates. J. Clin. Psychol. 2012, 68, 1322–1338. [Google Scholar] [CrossRef]
- Clara, I.P.; Cox, B.J.; Enns, M.W. Confirmatory Factor Analysis of the Depression–Anxiety–Stress Scales in Depressed and Anxious Patients. J. Psychopathol. Behav. Assess. 2001, 23, 61–67. [Google Scholar] [CrossRef]
- Sinclair, S.J.; Siefert, C.J.; Slavin-Mulford, J.M.; Stein, M.B.; Renna, M.; Blais, M.A. Psychometric Evaluation and Normative Data for the Depression, Anxiety, and Stress Scales-21 (DASS-21) in a Nonclinical Sample of U.S. Adults. Eval. Health Prof. 2012, 35, 259–279. [Google Scholar] [CrossRef]
- Attneave, F.; Arnoult, M.D. The quantitative study of shape and pattern perception. Psychol. Bull. 1956, 53, 452–471. [Google Scholar] [CrossRef]
- Hautzel, H.; Mottaghy, F.M.; Specht, K.; Müller, H.-W.; Krause, B.J. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. NeuroImage 2009, 47, 2073–2082. [Google Scholar] [CrossRef]
- Thürling, M.; Hautzel, H.; Küper, M.; Stefanescu, M.; Maderwald, S.; Ladd, M.; Timmann, D. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: A 7T fMRI study. NeuroImage 2012, 62, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Shum, D.H.; O’Gorman, J.G.; Eadie, K. Normative data for a new memory test: The Shum Visual Learning Test. Clin Neuropsychol 1999, 13, 121–135. [Google Scholar] [CrossRef]
- Eadie, K.; Shum, D. Assessment of visual memory: A comparison of Chinese characters and geometric figures as stimulus materials. J. Clin. Exp. Neuropsychol. 1995, 17, 731–739. [Google Scholar] [CrossRef]
- Maljkovic, V.; Nakayama, K. Priming of pop-out: II. Role Position. Percept. Psychophys. 1996, 58, 977–991. [Google Scholar] [CrossRef]
- Neill, W.T.; Kleinsmith, A.L. Spatial negative priming: Location or response? Atten. Percept. Psychophys. 2016, 78, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Vogel, E.K. Individual differences in recovery time from attentional capture. Psychol. Sci. 2011, 22, 361–368. [Google Scholar] [CrossRef]
- Konstantinou, N.; Beal, E.; King, J.-R.; Lavie, N. Working memory load and distraction: Dissociable effects of visual maintenance and cognitive control. Atten. Percept. Psychophys. 2014, 76, 1985–1997. [Google Scholar] [CrossRef]
- Roper, Z.J.J.; Vecera, S.P. Visual short-term memory load strengthens selective attention. Psychon. Bull. Rev. 2014, 21, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Winkler, I.; Debener, S.; Müller, K.R.; Tangermann, M. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015. [Google Scholar]
- Braver, T.S. The variable nature of cognitive control: A dual mechanisms framework. Trends Cogn. Sci. 2012, 16, 106–113. [Google Scholar] [CrossRef]
- Corriveau, I.; Fortier-Gauthier, U.; Pomerleau, V.J.; McDonald, J.; Dell’Acqua, R.; Jolicoeur, P. Electrophysiological evidence of multitasking impairment of attentional deployment reflects target-specific processing, not distractor inhibition. Int. J. Psychophysiol. 2012, 86, 152–159. [Google Scholar] [CrossRef]
- Fortier-Gauthier, U.; Moffat, N.; Dell’Acqua, R.; McDonald, J.J.; Jolicœur, P. Contralateral cortical organisation of information in visual short-term memory: Evidence from lateralized brain activity during retrieval. Neuropsychologia 2012, 50, 1748–1758. [Google Scholar] [CrossRef]
- Leblanc, É.; Prime, D.J.; Jolicoeur, P. Tracking the Location of Visuospatial Attention in a Contingent Capture Paradigm. J. Cogn. Neurosci. 2008, 20, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Barras, C.; Kerzel, D. Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biol. Psychol. 2016, 121, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Barras, C.; Kerzel, D. Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. Psychophysiology 2017, 54, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Jannati, A.; Gaspar, J.M.; McDonald, J.J. Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. J. Exp. Psychol. Hum. Percept. Perform. 2013, 39, 1713–1730. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336–353. [Google Scholar] [CrossRef]
Group | HSD (N = 14) | LSD (N = 19) | Statistics |
---|---|---|---|
Age (years) | 22.00 (3.35), 21.00 (18–27) | 24.05 (8.10), 21.00 (19–45) | t (31) = −8.89, p = n.s. * |
Gender (male, female) | 4, 10 | 9, 10 | χ2 (1) = 1.19, p = n.s. * |
Depression score | 21.86 (6.35), 24.00 (14–32) | 4.74 (4.18), 4.00 (0–12) | UStdz (31) = −4.87, p < 0.001. r = 0.85 * |
Anxiety score | 15.00 (9.54), 15.00 (4–30) | 4.21 (4.89), 2.00 (0–14) | UStdz (31) = −3.42, p < 0.001. r = 0.60 * |
Stress score | 19.57 (6.98), 17.00 (8–30) | 8.32 (6.26), 8.00 (0–20) | UStdz (31) = −3.63, p < 0.001. r = 0.63 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuggetta, G.; Duke, P.A.; Chakraborty, R.; Murugesan, P.; Cocciarelli, J.; Delibashi, E. The Impact of State Depression on Proactive Control and Distractor Processing in a Memory Task: An Electrophysiological Study. Appl. Sci. 2025, 15, 3069. https://doi.org/10.3390/app15063069
Fuggetta G, Duke PA, Chakraborty R, Murugesan P, Cocciarelli J, Delibashi E. The Impact of State Depression on Proactive Control and Distractor Processing in a Memory Task: An Electrophysiological Study. Applied Sciences. 2025; 15(6):3069. https://doi.org/10.3390/app15063069
Chicago/Turabian StyleFuggetta, Giorgio, Philip A. Duke, Rajanya Chakraborty, Parthasarathi Murugesan, Jacopo Cocciarelli, and Elvis Delibashi. 2025. "The Impact of State Depression on Proactive Control and Distractor Processing in a Memory Task: An Electrophysiological Study" Applied Sciences 15, no. 6: 3069. https://doi.org/10.3390/app15063069
APA StyleFuggetta, G., Duke, P. A., Chakraborty, R., Murugesan, P., Cocciarelli, J., & Delibashi, E. (2025). The Impact of State Depression on Proactive Control and Distractor Processing in a Memory Task: An Electrophysiological Study. Applied Sciences, 15(6), 3069. https://doi.org/10.3390/app15063069