An Observation Scheduling System for Radio Telescope Array
Abstract
:1. Introduction
2. The 4 × 4.5 m Telescope Array at Guizhou Normal University
3. The Overall Architecture of the System
3.1. Target Trajectory Prediction Module
3.2. Intelligent Scheduling Module
3.3. Calibrator Prediction Module
3.4. Coverage Module
4. Main Function Testing
4.1. Trajectory Prediction Module
4.2. Intelligent Scheduling Module
4.3. Calibrator Prediction Module
4.4. Coverage Test and Analysis
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nan, R.; Li, D.; Jin, C.; Wang, Q.; Zhu, L.; Zhu, W.; Zhang, H.; Yue, Y.; Qian, L. The Five-Hundred Aperture Spherical Radio Telescope (fast) Project. Int. J. Mod. Phys. D 2011, 20, 989–1024. [Google Scholar] [CrossRef]
- Li, D.; Wang, P.; Qian, L.; Krco, M.; Dunning, A.; Jiang, P.; Yue, Y.; Jin, C.; Zhu, Y.; Pan, Z.; et al. FAST in Space: Considerations for a Multibeam, Multipurpose Survey Using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microw. Mag. 2018, 19, 112–119. [Google Scholar] [CrossRef]
- Li, D.; Dickey, J.M.; Liu, S. Preface: Planning the scientific applications of the Five-hundred-meter Aperture Spherical radio Telescope. Res. Astron. Astrophys. 2019, 19, 16. [Google Scholar] [CrossRef]
- CHIME/FRB Collaboration; Amiri, M.; Bandura, K.; Berger, P.; Bhardwaj, M.; Boyce, M.M.; Boyle, P.J.; Brar, C.; Burhanpurkar, M.; Chawla, P.; et al. The CHIME Fast Radio Burst Project: System Overview. Astrophys. J. 2018, 863, 48. [Google Scholar] [CrossRef]
- Ravi, V.; Hallinan, G.; The Deep Synoptic Array Team. The Deep Synoptic Array. Bull. AAS 2021, 53. Available online: https://baas.aas.org/pub/2021n1i316p04 (accessed on 11 October 2024).
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L. The square kilometre array. Proc. IEEE 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- O’Neil, K.; Balser, D.; Bignell, C.; Clark, M.; Condon, J.; McCarty, M.; Marganian, P.; Shelton, A.; Braatz, J.; Harnett, J.; et al. The GBT Dynamic Scheduling System: A New Scheduling Paradigm. In Proceedings of the Astronomical Data Analysis Software and Systems XVIII, Quebec City, QC, Canada, 2–5 November 2008; Bohlender, D.A., Durand, D., Dowler, P., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacifi: San Francisco, CA, USA, 2008; Volume 411, p. 147. [Google Scholar]
- Duffett-Smith, P.; Zwart, J. Practical Astronomy with your Calculator or Spreadsheet; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Bennett, A.S. The revised 3C catalogue of radio sources. Mem. R. Astron. Soc. 1962, 68, 163. [Google Scholar]
- Perley, R.A.; Butler, B.J. An accurate flux density scale from 50 MHz to 50 GHz. Astrophys. J. Suppl. Ser. 2017, 230, 7. [Google Scholar] [CrossRef]
- Perley, R.A.; Butler, B.J. An accurate flux density scale from 1 to 50 GHz. Astrophys. J. Suppl. Ser. 2013, 204, 19. [Google Scholar] [CrossRef]
- Thompson, A.R.; Moran, J.M.; Swenson, G.W. Interferometry and synthesis in Radio Astronomy; Springer Nature: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Levanda, R.; Leshem, A. Synthetic aperture radio telescopes. IEEE Signal Process. Mag. 2010, 27, 14–29. [Google Scholar] [CrossRef]
- Rowson, B. High resolution observations with a tracking radio interferometer. Mon. Not. R. Astron. Soc. 1962, 125, 177–188. [Google Scholar] [CrossRef]
- Ke, Z.; WeiMin, Z.; FengXian, T.; Lei, L. A study of VLBI imaging techniques for deep space probes. Sci. Phys. Mech. Astron. 2016, 46, 105–113. [Google Scholar]
- Shen, Z. Progress in space VLBI science. Prog. Astron. 1998, 16, 117–134. [Google Scholar]
- Zhao, Z.; An, T.; Lao, B. VLBI Network SIMulator: An Integrated Simulation Tool for Radio Astronomers. J. Korean Astron. Soc. 2019, 52, 207–216. [Google Scholar] [CrossRef]
- An, T.; Lao, B.; Wang, J.; Lu, Y.; Wei, Y.; Wu, X. Space Millimeter-Wavelength Very Long Baseline Interferometry Simulation Software. In Proceedings of the 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN 2016), Beijing, China, 4–6 June 2016; pp. 154–159. [Google Scholar]
- Yong-qiang, C.; Huan, Z.; Wei, L.; Ming, Q. New VLBI Method for Relative Position Determination Between Deep Space Probes Using Single Baseline. J. Astronaut. 2017, 38, 605–611. [Google Scholar]
- Lao, B.Q.; An, T.; Chen, X.; Wu, X.C.; Lu, Y. Research on Wide-field Imaging Techniques for Low-frequency Radio Arraytwo. Chin. Astron. Astrophys. 2018, 42, 626–651. [Google Scholar] [CrossRef]
- Lao, B.; An, T.; Yu, A.; Zhang, W.; Wang, J.; Guo, Q.; Guo, S.; Wu, X. Parallel implementation of w-projection wide-field imaging. Sci. Bull. 2019, 64, 586–594. [Google Scholar] [CrossRef]
- Lao, B.Q.; An, T.; Yu, A.; Guo, S.G. Research on Parallel Algorithms for uv-faceting Imaging. Chin. Astron. Astrophys. 2019, 43, 424–443. [Google Scholar] [CrossRef]
- Wang, B. Research and Design on Remote Control System of a 4.5 m Radio Telescope. Master’s Thesis, Guizhou Normal University, Guiyang, China, 2023. [Google Scholar]
- Ni, F.; Chen, F.-X.; Shen, J. Study on a Simplified Algorithm of Latitude Conversion from Spatial Rectangular Coordinate to Geodetic Coordinate. Ournal Nantong Vocat. Tech. Shipp. Coll. 2018, 17, 54–56. [Google Scholar]
- Xu, S.; Jia, G.; Wang, L.; Sun, C. The Relationships of Precision between Rectangular Space Coordinate and Geodetic Coordinate. Beijing Surv. Mapp. 2018, 32, 290–293. [Google Scholar] [CrossRef]
- Fan, H.P. Research on Key Technologies andApplications of the New-GenerationGeodetic VLBI. Ph.D. Thesis, Information Engineering University, Zhengzhou, China, 2018. [Google Scholar]
- Perley, R.; Napier, P.; Jackson, J.; Butler, B.; Carlson, B.; Fort, D.; Dewdney, P.; Clark, B.; Hayward, R.; Durand, S.; et al. The Expanded Very Large Array. IEEE Proc. 2009, 97, 1448–1462. [Google Scholar] [CrossRef]
- Hotan, A.W.; van Straten, W.; Manchester, R.N. PSRCHIVE and PSRFITS: An Open Approach to Radio Pulsar Data Storage and Analysis. Publ. Astron. Soc. Aust. 2004, 21, 302–309. [Google Scholar] [CrossRef]
Telescope Name | Longitude | Latitude | Altitude |
---|---|---|---|
(deg) | (deg) | (m) | |
Telescope 1 | 106.388 | 26.2249 | 1168 |
Telescope 2 | 106.387 | 26.2249 | 1168 |
Telescope 3 | 106.387 | 26.2251 | 1174 |
Telescope 4 | 106.388 | 26.2251 | 1174 |
Name | Parameters |
---|---|
Diameter | 4.5 m |
Frequency range | 1.0–1.5 GHz |
Focal ratio | 0.38 |
Pointing accuracy | < RMS |
Source switching time | ≤10 min |
Azimuth rotation range | 0– |
Elevation rotation range | 0– |
Source switching speed |
Target | RA | DEC | Rise Time | Set Time | Visible Time Range |
---|---|---|---|---|---|
(h:m:s) | (d:m:s) | (h:m) | (h:m) | (h:m–h:m) | |
PSR B0329+54 | 03:32:59.4096 | +54:34:43.329 | 00:50 | 14:30 | 00:50–14:30 |
PSR B0531+21 | 05:34:31.973 | +22:00:52.06 | 04:10 | 15:20 | 04:10–15:20 |
PSR J1846-0258 | 18:46:24.94 | −02:58:30.1 | 18:10 | 03:50 | 00:00–03:50, 18:10–24:00 |
FRB190523 | 13:48:15.60 | +72:28:11 | 09:20 | 02:40 | 00:00–02:40, 09:20–24:00 |
SGR1935 | 19:34:55.68 | +21:53:48.2 | 18:50 | 05:10 | 00:00–05:10, 18:50–24:00 |
FRB20220912A | 23:09:04.90 | +48:42:25.4 | 20:50 | 09:50 | 00:00–09:20, 20:50–24:00 |
Target | RA | DEC | Difference | Observation Priority | Visible Time Range |
---|---|---|---|---|---|
(h:m:s) | (d:m:s) | (deg) | (h) | ||
FRB190523 | 13:48:15.6 | +72:28:11 | 29.08 | 1 | 15.53–20.49 |
PSR J1846-0258 | 18:46:24.94 | −02:58:30.1 | 45.43 | 2 | 20.52–24, 0–2.47 |
PSR B0329+54 | 03:32:59.4096 | +54:34:43.329 | 46.73 | 3 | 6.74–10.7 |
FRB20220912A | 23:09:04.9 | +48:42:25.4 | 52.50 | 4 | 4.13–7.1 |
SGR1935 | 19:34:55.68 | +21:53:48.2 | 70.47 | 5 | 2.5–4.1 |
PSR B0531+21 | 05:34:31.973 | +22:00:52.06 | 70.49 | 6 | 10.73–15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Zhao, R.; Lao, B.; Xiao, W.; Liu, H.; You, Z. An Observation Scheduling System for Radio Telescope Array. Appl. Sci. 2025, 15, 3088. https://doi.org/10.3390/app15063088
Ma C, Zhao R, Lao B, Xiao W, Liu H, You Z. An Observation Scheduling System for Radio Telescope Array. Applied Sciences. 2025; 15(6):3088. https://doi.org/10.3390/app15063088
Chicago/Turabian StyleMa, Chi, Rushuang Zhao, Baoqiang Lao, Wenjun Xiao, Hui Liu, and Ziyi You. 2025. "An Observation Scheduling System for Radio Telescope Array" Applied Sciences 15, no. 6: 3088. https://doi.org/10.3390/app15063088
APA StyleMa, C., Zhao, R., Lao, B., Xiao, W., Liu, H., & You, Z. (2025). An Observation Scheduling System for Radio Telescope Array. Applied Sciences, 15(6), 3088. https://doi.org/10.3390/app15063088