GIS-Based Environmental Monitoring and Analysis
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Feng, X.; Liu, G.; Chen, J.; Chen, M.; Liu, J.; Ju, W.; Sun, R.; Zhou, W. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. J. Environ. Manag. 2007, 85, 563–573. [Google Scholar] [CrossRef]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Han, N.; Xu, X.; Liu, Y.; Zhu, D.; Zheng, J.; Dong, L.; et al. Assimilating spatiotemporal MODIS LAI data with a particle filter algorithm for improving carbon cycle simulations for bamboo forest ecosystems. Sci. Total Environ. 2019, 694, 133803.1–133803.14. [Google Scholar] [CrossRef]
- Pelt, R.; Sillett, S.; Kruse, W.; Freund, J.; Kramer, R. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. For. Ecol. Manag. 2016, 375, 279–308. [Google Scholar] [CrossRef]
- Running, S.; Coughlan, J. A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar] [CrossRef]
- Xue, M.; Chen, Y.; Jia, L.; Wang, X.; Yan, M.; Tian, X. Estimation of net primary productivity by beps model-a case study in Fujian province. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6213–6216. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Qing, Y.; Li, H.; Hong, L.; Lu, W. Net Primary Production Simulation and Influencing Factors Analysis of Forest Ecosystem Based on a Process-Based Model. Appl. Sci. 2024, 14, 10912. [Google Scholar] [CrossRef]
- Sallaba, F.; Lehsten, D.; Seaquist, J.; Sykes, M. A rapid NPP meta-model for current and future climate and CO2 scenarios in Europe. Ecol. Model. 2015, 302, 29–41. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Identifying Soil Erosion-Prone Areas in theWadi Haly Catchment, Saudi Arabia Using Morphometric Analysis and Watershed Features. Appl. Sci. 2024, 14, 10854. [Google Scholar] [CrossRef]
- Benzougagh, B.; Meshram, S.G.; Dridri, A.; Boudad, L.; Baamar, B.; Sadkaoui, D.; Khedher, K.M. Identification of critical watershed at risk of soil erosion using morphometric and geographic information system analysis. Appl. Water Sci. 2022, 12, 8. [Google Scholar] [CrossRef]
- Rahaman, S.A.; Ajeez, S.A.; Aruchamy, S.; Jegankumar, R. Prioritization of SubWatershed Based on Morphometric Characteristics Using Fuzzy Analytical Hierarchy Process and Geographical Information System—A Study of Kallar Watershed, Tamil Nadu. Aquat. Procedia 2015, 4, 1322–1330. [Google Scholar] [CrossRef]
- Saha, S.; Gayen, A.; Pourghasemi, H.R.; Tiefenbacher, J.P. Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India. Environ. Earth Sci. 2019, 78, 649. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Application of Geomorphic Signatures in Relative Tectonic Activity Assessment of a Red Sea Coastal Basin between Al Farrah and Heelan, Saudi Arabia. Appl. Sci. 2024, 14, 4980. [Google Scholar] [CrossRef]
- Faghih, A.; Samani, B.; Kusky, T.; Khabazi, S.; Roshanak, R. Geomorphologic assessment of relative tectonic activity in the Maharlou Lake Basin, Zagros Mountains of Iran. Geol. J. 2012, 47, 30–40. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turk. J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Topal, S.; Keller, E.; Bufe, A.; Koçyigit, A. Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology 2016, 259, 55–69. [Google Scholar] [CrossRef]
- Yildirim, C. Relative tectonic activity assessment of the Tuz Gölü Fault Zone Central Anatolia, Turkey. Tectonophysics 2014, 630, 183–192. [Google Scholar] [CrossRef]
- Ommer, J.; Neumann, J.; Vranić, S.; Kalas, M.; Leo, L.S.; Sabatino, S.; Cloke, H.L. The Impact of Spatial Resolutions on Nature-Based Solution Suitability Mapping for Europe. Appl. Sci. 2024, 14, 4608. [Google Scholar] [CrossRef]
- Amirzada, Z.; Pavlova, I.; de Chaisemartin, M.; Denoon, R.; Kalas, M.; Vrani´c, S.; Ommer, J.; Sabbatini, T.; Kumar, P.; Debele, S.; et al. Reducing Hydro-Meteorological Risks through Nature-Based Solutions: A Comprehensive Review of Enabling Policy Frameworks in the European Union. Nat.-Based Solut. 2023, 4, 100097. [Google Scholar] [CrossRef]
- Anderson, C.C.; Renaud, F.G. A Review of Public Acceptance of Nature-Based Solutions: The ‘Why’, ‘When’, and ‘How’ of Success for Disaster Risk Reduction Measures. Ambio 2021, 50, 1552–1573. [Google Scholar] [CrossRef]
- Croeser, T.; Garrard, G.; Sharma, R.; Ossola, A.; Bekessy, S. Choosing the Right Nature-Based Solutions to Meet Diverse Urban Challenges. Urban Green 2021, 65, 127337. [Google Scholar] [CrossRef]
- Debele, S.E.; Leo, L.S.; Kumar, P.; Sahani, J.; Ommer, J.; Bucchignani, E.; Vrani´c, S.; Kalas, M.; Amirzada, Z.; Pavlova, I.; et al. Nature-Based Solutions Can Help Reduce the Impact of Natural Hazards: A Global Analysis of NBS Case Studies. Sci. Total Environ. 2023, 902, 165824. [Google Scholar] [CrossRef]
- Mubeen, A.; Ruangpan, L.; Vojinovic, Z.; Sanchez Torrez, A.; Plavšić, J. Planning and Suitability Assessment of Large-Scale Nature-Based Solutions for Flood-Risk Reduction. Water Resour. Manag. 2021, 35, 3063–3081. [Google Scholar] [CrossRef]
- Ommer, J.; Bucchignani, E.; Leo, L.S.; Kalas, M.; Vrani´c, S.; Debele, S.; Kumar, P.; Cloke, H.L.; Di Sabatino, S. Quantifying Co-Benefits and Disbenefits of Nature-Based Solutions Targeting Disaster Risk Reduction. Int. J. Disaster Risk Reduct. 2022, 75, 102966. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; de Vries, B.; Romme, A.G.L. The Nature-Based Solutions Planning Support System: A Playground for Site and Solution Prioritization. Sustain. Cities Soc. 2022, 78, 103608. [Google Scholar] [CrossRef]
- Kogut, T.; Wancel, D.; Stępień, G.; Smuga-Kogut, M.; Szostak, M.; Całka, B. Risk of Tree Fall on High-Traffic Roads: A Case Study of the S6 in Poland. Appl. Sci. 2024, 14, 4479. [Google Scholar] [CrossRef]
- Poddaeva, O.; Fedosova, A. ExtremeWind Speeds Analysis Using Extended Wind Rose Based on Statistic Methods. Energy Rep. 2022, 8, 1177–1184. [Google Scholar] [CrossRef]
- Bakuła, K. Multispectral Airborne Laser Scanning—A New Trend in the Development of LiDAR Technology. Arch. Fotogram. Kartogr. I Teledetekcji 2015, 27, 25–44. [Google Scholar]
- Zięba-Kulawik, K.; Wężyk, P. Object Based Image Analysis of Dying Spruce Stands in Gorce and Tatra National Parks Using the Plane. 2018. Available online: https://karolinaannazieba.wixsite.com/phd-labgeo/single-post/2014/05/02/life-at-16000-feet (accessed on 30 April 2024).
- Zörner, J.; Dymond, J.; Shepherd, J.; Jolly, B. PyCrown—Fast Raster-Based Individual Tree Segmentation for LiDAR Data; Landcare Research Ltd.: Lincoln, New Zealand, 2018. [Google Scholar]
- Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A Framework for Airborne Laser Scanning Data Analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Azizi, L.; Kouddane, N. The green city as a driver of sustainable development. J. Umm Al-Qura Univ. Eng. Archit. 2024, 15, 384–397. [Google Scholar] [CrossRef]
- Dadvand, P.; Bartoll, X.; Basagaña, X.; Dalmau-Bueno, A.; Martinez, D.; Ambros, A.; Cirach, M.; Triguero-Mas, M.; Gascon, M.; Borrell, C.; et al. Green spaces and General Health: Roles of mental health status, social support, and physical activity. Environ. Int. 2016, 91, 161–167. [Google Scholar] [CrossRef]
- Islam, M.Z.; Johnston, J.; Sly, P.D. Green space and early childhood development: A systematic review. Rev. Environ. Health 2020, 35, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.; Churkina, G.; Rivera, M.A. How Green Is a ‘Green City’? A Review of Existing Indicators and Approaches; IASS Working Paper; Institute for Advanced Sustainability Studies: Potsdam, Germany, 2016. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, C.L.; Kolokotsa, D.D. Greenery as a mitigation and adaptation strategy to urban heat. Nat. Rev. Earth Environ. 2021, 2, 166–181. [Google Scholar] [CrossRef]
- Wyrzykowski, B.; Mościcka, A. Implementation of the 3-30-300 Green City Concept: Warsaw Case Study. Appl. Sci. 2024, 14, 10566. [Google Scholar] [CrossRef]
- Konijnendijk, C.C. Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. J. For. Res. 2023, 34, 821–830. [Google Scholar] [CrossRef]
- Koeser, A.K.; Hauer, R.J.; Andreu, M.G.; Northrop, R.; Clarke, M.; Diaz, J.; Hilbert, D.R.; Konijnendijk, C.C.; Landry, S.M.; Thompson, G.L.; et al. Using the 3-30-300 Rule to Assess Urban Forest Access and Preferences in Florida (United States). Arboric. Urban For. 2024, 50, 241–257. [Google Scholar] [CrossRef]
- Sahin, E.; Iban, M.C.; Bilgilioglu, S.S. Remote Sensing-Enabled Urban Growth Simulation Overlaid with AHP-GIS-Based Urban Land Suitability for Potential Development in Mersin Metropolitan Area, Türkiye. Appl. Sci. 2024, 14, 3484. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine Learning Data-Driven Approaches for Land Use/Cover Mapping and Trend Analysis Using Google Earth Engine. J. Environ. Plan. Manag. 2023, 66, 665–697. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert Systems and GIS: An Application of Land Suitability Evaluation. Comput. Environ. Urban Syst. 2002, 26, 89–112. [Google Scholar] [CrossRef]
- Mas, J.-F. Monitoring Land-Cover Changes: A Comparison of Change Detection Techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Musa, S.I.; Hashim, M.; Reba, M.N.M. A Review of Geospatial-Based Urban Growth Models and Modelling Initiatives. Geocarto Int. 2017, 32, 813–833. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. https://doi.org/10.3390/app15063155
Calka B, Szostak M. GIS-Based Environmental Monitoring and Analysis. Applied Sciences. 2025; 15(6):3155. https://doi.org/10.3390/app15063155
Chicago/Turabian StyleCalka, Beata, and Marta Szostak. 2025. "GIS-Based Environmental Monitoring and Analysis" Applied Sciences 15, no. 6: 3155. https://doi.org/10.3390/app15063155
APA StyleCalka, B., & Szostak, M. (2025). GIS-Based Environmental Monitoring and Analysis. Applied Sciences, 15(6), 3155. https://doi.org/10.3390/app15063155