A Component-Based Approach to Early Warning Systems: A Theoretical Model
Abstract
:1. Introduction
1.1. Early Warning Systems
- “Number of countries that have multi-hazard monitoring and forecasting systems,
- number of people per 100,000 that are covered by early warning information through local governments or through national dissemination mechanisms,
- percentage of local governments having a plan to act on early warnings,
- number of countries that have accessible, understandable, usable and relevant disaster risk information and assessment available to the people at the national and local levels,
- percentage of population exposed to or at risk from disasters protected through pre-emptive evacuation following early warning” [10].
- Disaster risk knowledge;
- Observations, monitoring, analysis, and forecasting;
- Warning dissemination;
- Preparedness and response capabilities.
1.2. Factors Influencing the Occurrence and Effect of Natural Hazards
1.3. Aims and Contributions of This Article
2. Materials and Methods
- Technology for data collection;
- Timeline and probability of occurrence;
- Information distribution requirements;
- Relevant measures and restrictions.
- Floods;
- Droughts;
- Extreme temperature;
- Wildfires;
- Wind;
- Landslides;
- Earthquakes.
3. Results
3.1. Components of Early Warning Systems
- Initial threat component;
- Emerging threat component;
- Imminent threat component.
3.2. The Importance of Sensors in Early Warning Systems
- Water level height;
- Flow velocity.
- The river level at a sensor site reaches a critical threshold;
- The rate of water level increase suggests that overflow will occur in the near future.
3.3. Requirements for Early Warning Systems
- Primary causes, which directly trigger a crisis event;
- Secondary causes, which influence the intensity and extent of the event.
3.4. Flowchart for Early Warning Systems
3.5. Types of Sensors for Monitoring Natural Hazards
4. Discussion
Data Management and Data Quality
- Centralisation of data;
- Data integrability;
- Focus on local-level data;
- Data accessibility for decision-makers;
- Ensuring data quality;
- Focus on data security [9].
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulik, S. Convective Environment and Development of a Tornadic Supercell in the Czech Republic on 24 June 2021. Meteorol. Hydrol. Water Manage. 2022, 10, 60–72. [Google Scholar] [CrossRef]
- 2023 Turkey-Syria Earthquake. Available online: https://disasterphilanthropy.org/disasters/2023-turkey-syria-earthquake/ (accessed on 17 January 2025).
- Titko, M.; Ristvej, J.; Zamiar, Z. Population Preparedness for Disasters and Extreme Weather Events as a Predictor of Building a Resilient Society: The Slovak Republic. Int. J. Environ. Res. Public Health 2021, 18, 2311. [Google Scholar] [CrossRef] [PubMed]
- Bezak, N.; Panagos, P.; Liakos, L.; Mikoš, M. Brief Communication: A First Hydrological Investigation of Extreme August 2023 Floods in Slovenia, Europe. Nat. Hazards Earth Syst. Sci. 2023, 23, 3885–3893. [Google Scholar] [CrossRef]
- Germany Floods|JBA Risk Management Event Response. Available online: https://www.jbarisk.com/knowledge-hub/event-response/germany-floods-may-june-2024/ (accessed on 17 January 2025).
- Czech Republic: Floods—DREF Operation MDRCZ003—Czechia|ReliefWeb. Available online: https://reliefweb.int/report/czechia/czech-republic-floods-dref-operation-mdrcz003 (accessed on 17 January 2025).
- The Copernicus Emergency Management Service Monitors the Floods in Valencia, Spain|Copernicus. Available online: https://www.copernicus.eu/en/media/image-day-gallery/copernicus-emergency-management-service-monitors-floods-valencia-spain (accessed on 17 January 2025).
- Grünig, M.; Seidl, R.; Senf, C. Increasing Aridity Causes Larger and More Severe Forest Fires across Europe. Glob. Change Biol. 2023, 29, 1648–1659. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); UN Office for Disaster Risk Reduction (UNDRR). Global Status of Multi-Hazard Early Warning Systems 2024. Available online: https://library.wmo.int/records/item/69085-global-status-of-multi-hazard-early-warning-systems-2024 (accessed on 7 January 2025).
- Sendai Framework for Disaster Risk Reduction 2015–2030. Available online: https://sdgs.un.org/sites/default/files/publications/2157sendaiframeworkfordrren.pdf (accessed on 21 January 2025).
- The Report of the Midterm Review of the Implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030|UNDRR. Available online: https://www.undrr.org/publication/report-midterm-review-implementation-sendai-framework-disaster-risk-reduction-2015-2030 (accessed on 20 January 2025).
- Words into Action Guidelines: Multi-Hazard Early Warning Systems|UNDRR. Available online: https://www.undrr.org/words-into-action/guide-multi-hazard-early-warning (accessed on 20 January 2025).
- Luino, F.; Barriendos, M.; Gizzi, F.T.; Glaser, R.; Gruetzner, C.; Palmieri, W.; Porfido, S.; Sangster, H.; Turconi, L. Historical Data for Natural Hazard Risk Mitigation and Land Use Planning. Land 2023, 12, 1777. [Google Scholar] [CrossRef]
- Early Warnings for All Dashboard. Available online: https://earlywarningsforall.org/site/early-warnings-all/early-warnings-all-dashboard (accessed on 20 January 2025).
- Definition: Early Warning System|UNDRR. Available online: https://www.undrr.org/terminology/early-warning-system (accessed on 29 January 2025).
- Mohanty, A.; Dubey, A.; Singh, R.B. The Application of Early Warning System in India. In Cyclonic Disasters and Resilience: An Empirical Study on South Asian Coastal Regions; Mohanty, A., Dubey, A., Singh, R.B., Eds.; Springer Nature: Singapore, 2022; pp. 65–102. ISBN 978-981-19121-5-3. [Google Scholar]
- Banzal, P. Disaster Early Warning Communication Systems. In Hydro-Meteorological Extremes and Disasters; Goyal, M.K., Gupta, A.K., Gupta, A., Eds.; Springer Nature: Singapore, 2022; pp. 87–102. ISBN 978-981-19072-5-8. [Google Scholar]
- Zarocostas, J. Early Warning Systems for Disasters Key for Health. Lancet 2022, 400, 1396. [Google Scholar] [CrossRef]
- Meninno, S.; Giambelli, M.; Deda, M.; Masi, R.; Gioia, A.; Ponte, E.; Massabò, M.; Morando, M.; Vio, R.; Paniccia, C.; et al. Establishing Effective Links between Early Warnings and Early Action: General Criteria for Floods. In Proceedings of the European Geosciences Union General Assembly 2024 (EGU24), Vienna, Austria, 14–19 April 2024. Copernicus Meetings. [Google Scholar]
- Oktari, R.S.; Munadi, K.; Ridha, M. Effectiveness of Dissemination and Communication Element of Tsunami Early Warning System in Aceh. Procedia Econ. Financ. 2014, 18, 136–142. [Google Scholar] [CrossRef]
- Hermans, T.D.G.; Šakić Trogrlić, R.; van den Homberg, M.J.C.; Bailon, H.; Sarku, R.; Mosurska, A. Exploring the Integration of Local and Scientific Knowledge in Early Warning Systems for Disaster Risk Reduction: A Review. Nat. Hazards 2022, 114, 1125–1152. [Google Scholar] [CrossRef]
- Zhou, H.; Taal, A.; Koulouzis, S.; Wang, J.; Hu, Y.; Suciu, G.; Poenaru, V.; de Laat, C.; Zhao, Z. Dynamic Real-Time Infrastructure Planning and Deployment for Disaster Early Warning Systems. In Proceedings of the Computational Science—ICCS 2018, Wuxi, China, 11–13 June 2018; Shi, Y., Fu, H., Tian, Y., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 644–654. [Google Scholar]
- Uchida, N.; Ishida, T.; Yuze, H.; Shibata, Y. Early Weather Warning System with Real-Time Monitoring by IoT Sensors Considering Scalability and Reliability. In Proceedings of the Mobile Internet Security, Okinawa, Japan, 19–21 December 2023; You, I., Choraś, M., Shin, S., Kim, H., Astillo, P.V., Eds.; Springer Nature: Singapore, 2024; pp. 220–230. [Google Scholar]
- Hammood, W.A.; Abdullah Arshah, R.; Mohamad Asmara, S.; Al Halbusi, H.; Hammood, O.A.; Al Abri, S. A Systematic Review on Flood Early Warning and Response System (FEWRS): A Deep Review and Analysis. Sustainability 2021, 13, 440. [Google Scholar] [CrossRef]
- Henao Salgado, M.J.; Zambrano Nájera, J. Assessing Flood Early Warning Systems for Flash Floods. Front. Clim. 2022, 4, 787042. [Google Scholar] [CrossRef]
- Zang, Y.; Meng, Y.; Guan, X.; Lv, H.; Yan, D. Study on Urban Flood Early Warning System Considering Flood Loss. Int. J. Disaster Risk Reduct. 2022, 77, 103042. [Google Scholar] [CrossRef]
- Shang, D.; Zhang, F.; Yuan, D.; Hong, L.; Zheng, H.; Yang, F. Deep Learning-Based Forest Fire Risk Research on Monitoring and Early Warning Algorithms. Fire 2024, 7, 151. [Google Scholar] [CrossRef]
- Kotroni, V.; Cartalis, C.; Michaelides, S.; Stoyanova, J.; Tymvios, F.; Bezes, A.; Christoudias, T.; Dafis, S.; Giannakopoulos, C.; Giannaros, T.M.; et al. DISARM Early Warning System for Wildfires in the Eastern Mediterranean. Sustainability 2020, 12, 6670. [Google Scholar] [CrossRef]
- Kumar, R.; Mittal, H.; Sandeep; Sharma, B. Earthquake Genesis and Earthquake Early Warning Systems: Challenges and a Way Forward. Surv. Geophys. 2022, 43, 1143–1168. [Google Scholar] [CrossRef]
- Barla, M.; Antolini, F. An Integrated Methodology for Landslides’ Early Warning Systems. Landslides 2016, 13, 215–228. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical Landslide Early Warning Systems. Earth-Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Kollar, B.; Haluskova, B.; Novakova, K.; Ristvej, J. Modern Technologies in the Field of Hydrology to Prevent Crisis Phenomena and Extraordinary Events. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM 23, Albena, Bulgaria, 3–9 July 2023; pp. 171–178. [Google Scholar]
- Bindzárová Gergeľová, M.; Kuzevičová, Ž.; Labant, S.; Gašinec, J.; Kuzevič, Š.; Unucka, J.; Liptai, P. Evaluation of Selected Sub-Elements of Spatial Data Quality on 3D Flood Event Modeling: Case Study of Prešov City, Slovakia. Appl. Sci. 2020, 10, 820. [Google Scholar] [CrossRef]
- Nabinejad, S.; Schüttrumpf, H. Flood Risk Management in Arid and Semi-Arid Areas: A Comprehensive Review of Challenges, Needs, and Opportunities. Water 2023, 15, 3113. [Google Scholar] [CrossRef]
- Vojtek, M.; Janizadeh, S.; Vojteková, J. Riverine Flood Potential Assessment at Municipal Level in Slovakia. J. Hydrol. Reg. Stud. 2022, 42, 101170. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Q.; Shi, P. Spatial Pattern and Influencing Factors of Landslide Casualty Events. J. Geogr. Sci. 2018, 28, 259–274. [Google Scholar] [CrossRef]
- Fangrong, Z.; Yuning, G.; Guochao, Q.; Yi, M.; Guofang, W. Multi-Factor Coupled Forest Fire Model Based on Cellular Automata. J. Saf. Sci. Resil. 2024, 5, 413–421. [Google Scholar] [CrossRef]
- Vyazilova, N.A.; Vyazilova, A.E. Storm Cyclones in the North Atlantic. Russ. Meteorol. Hydrol. 2014, 39, 371–377. [Google Scholar] [CrossRef]
- Feser, F. Constructing Records of Storminess. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-19-022862-0. [Google Scholar]
- Below, R.; Wirtz, A.; Guha-Sapir, D. Disaster Category Classification and Peril Terminology for Operational Purposes; Centre for Research on the Epidemiology of Disasters (CRED), University of Louvain (UCLouvain): Brussels, Belgium, 2009. [Google Scholar]
- Gillespie, T.W.; Chu, J.; Frankenberg, E.; Thomas, D. Assessment and Prediction of Natural Hazards from Satellite Imagery. Prog. Phys. Geogr. Earth Environ. 2007, 31, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Hubig, N.; Fengler, P.; Züfle, A.; Yang, R.; Günnemann, S. Detection and Prediction of Natural Hazards Using Large-Scale Environmental Data. In Proceedings of the Advances in Spatial and Temporal Databases: 15th International Symposium, SSTD 2017, Arlington, VA, USA, 21–23 August 2017; Gertz, M., Renz, M., Zhou, X., Hoel, E., Ku, W.-S., Voisard, A., Zhang, C., Chen, H., Tang, L., Huang, Y., et al., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 300–316. [Google Scholar]
- Význam Posudzovania Rizík v Rámci Cyklu Krízového Riadenia—ProQuest. Available online: https://www.proquest.com/docview/3115153973/fulltextPDF/98A1F9C955EC47FCPQ/1?accountid=49401&sourcetype=Scholarly%20Journals (accessed on 29 January 2025).
- Ristvej, J.; Sokolová, L.; Starackova, J.; Ondrejka, R.; Lacinak, M. Experiences with Implementation of Information Systems within Preparation to Deal with Crisis Situations in Terms of Crisis Management and Building Resilience in the Slovak Republic. In Proceedings of the 2017 International Carnahan Conference on Security Technology (ICCST), Madrid, Spain, 23–26 October 2017; pp. 1–6. [Google Scholar]
- Goniewicz, K.; Burkle, F.M. Disaster Early Warning Systems: The Potential Role and Limitations of Emerging Text and Data Messaging Mitigation Capabilities. Disaster Med. Public Health Prep. 2019, 13, 709–712. [Google Scholar] [CrossRef]
- Directive (EU) 2018/1972 of the European Parliament and of the Council of 11 December 2018 Establishing the European Electronic Communications Code (Recast) (Text with EEA Relevance). Off. J. Eur. Union L 2018, 321, 36–214.
- Šimák, L. Krízový Manažment vo Verejnej Správe, 2nd ed.; Žilinská Univerzita v Žiline: Žilina, Slovakia, 2015; ISBN 978-80-554-1165-1. [Google Scholar]
- Chovanec, D.; Kollár, B.; Ristvej, J. Use of Information to Support Application Software and Simulations in Crisis Management. In Proceedings of the 38th Annual European Simulation and Modelling Conference, ESM 2024, San Sebastian, Spain, 23–25 October 2024; pp. 175–179. [Google Scholar]
- Nakanishi, R.; Takemura, S. Development of an Offshore Ground Motion Prediction Equation for Peak Ground Acceleration Considering Path Effects Based on S-Net Data. Earth Planets Space 2024, 76, 146. [Google Scholar] [CrossRef]
- Fujinawa, Y.; Noda, Y. Japan’s Earthquake Early Warning System on 11 March 2011: Performance, Shortcomings, and Changes. Earthq. Spectra 2013, 29, S341–S368. [Google Scholar] [CrossRef]
- Abegaz, R.; Wang, F.; Xu, J. History, Causes, and Trend of Floods in the U.S.: A Review. Nat. Hazards 2024, 120, 13715–13755. [Google Scholar] [CrossRef]
- Sholihah, Q.; Kuncoro, W.; Wahyuni, S.; Puni Suwandi, S.; Dwi Feditasari, E. The Analysis of the Causes of Flood Disasters and Their Impacts in the Perspective of Environmental Law. IOP Conf. Ser. Earth Environ. Sci. 2020, 437, 012056. [Google Scholar] [CrossRef]
- Almikaeel, W.; Šoltész, A.; Čubanová, L.; Baroková, D. Hydro-Informer: A Deep Learning Model for Accurate Water Level and Flood Predictions. Nat. Hazards 2024. [Google Scholar] [CrossRef]
- UNDP. Early Warning Systems for Natural Disasters. United Nations Development Programme (UNDP). 2021. Available online: https://www.adaptation-undp.org/sites/default/files/resources/undp_brochure_early_warning_systems.pdf (accessed on 29 January 2025).
- Sampson, C.C.; Smith, D.R.; Kumar, R.; Schwartz, J.S.; Haider, Z.; Kalin, L.; Bae, J.; Gagne, D. Implications of Using Global Digital Elevation Models for Flood Risk Assessment: A Case Study in the United States. Water Resour. Res. 2020, 56, e2020WR028241. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; A/RES/70/1; Available online: https://docs.un.org/en/A/RES/70/1 (accessed on 6 March 2025).
- Horng, G.-J.; Chang, T.-Y. The Adaptive Node-Selection Mechanism Scheme in Solar-Powered Wireless Sensor Networks. In Proceedings of the 2014 International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 23–25 April 2014; pp. 1–4. [Google Scholar]
- Singh, M.G.; Rithigaa, S.; Raj, D. Sharmila Forest Fire Detection and Prevention System Using IoT. In Proceedings of the Proceedings of 3rd International Conference on Machine Learning, Advances in Computing, Renewable Energy and Communication, Ghaziabad, India, 10–11 December 2021; Tomar, A., Malik, H., Kumar, P., Iqbal, A., Eds.; Springer Nature: Singapore, 2022; pp. 453–460. [Google Scholar]
- OTN ŽP 3112-1:03; Kvantita povrchových a podzemných vôd. The Ministry of the Environment of the Slovak Republic: Bratislava, Slovakia, 2003.
- Changnon, S.A.; Kunkel, K.E.; Andsager, K. Causes for Record High Flood Losses in the Central United States. Water Int. 2001, 26, 223–230. [Google Scholar] [CrossRef]
- Chang, H.; Franczyk, J. Climate Change, Land-Use Change, and Floods: Toward an Integrated Assessment. Geogr. Compass 2008, 2, 1549–1579. [Google Scholar] [CrossRef]
- Shi, B.; Zhu, X.; Hu, Y.; Yang, Y. Drought Characteristics of Henan Province in 1961-2013 Based on Standardized Precipitation Evapotranspiration Index. J. Geogr. Sci. 2017, 27, 311–325. [Google Scholar] [CrossRef]
- Sun, B.; Zhao, H.; Wang, X. Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration. Chin. Geogr. Sci. 2016, 26, 270–282. [Google Scholar] [CrossRef]
- Gebremeskel Haile, G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, Impacts and Resilience. Earth-Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Price, O.F.; Bradstock, R.A. The Spatial Domain of Wildfire Risk and Response in the Wildland Urban Interface in Sydney, Australia. Nat. Hazards Earth Syst. Sci. 2013, 13, 3385–3393. [Google Scholar] [CrossRef]
- Collins, K.M.; Penman, T.D.; Price, O.F. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others. PLoS ONE 2016, 11, e0162083. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, J.; Fan, L.; Sun, L.; Zheng, C. High-Resolution Mapping of Wildfire Drivers in California Based on Machine Learning. Sci. Total Environ. 2022, 833, 155155. [Google Scholar] [CrossRef]
- Sari, P.T.K.; Mochtar, I.B. Causes of Landslides in Road Embankment with Retaining Wall and Pile Foundation: A Case Study of National Road Project in Porong-Sidoarjo, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 42–48. [Google Scholar] [CrossRef]
- Zhao, S.; Zeng, R.; Zhang, Z.; Meng, X.; Qi, T.; Long, Z.; Guo, W.; Si, G. Landslide Mapping and Causes of Landslides in the China–Nepal Transportation Corridor Based on Remote Sensing Technology. Remote Sens. 2024, 16, 356. [Google Scholar] [CrossRef]
- Korkmaz, K.A. Earthquake Disaster Risk Assessment and Evaluation for Turkey. Env. Geol 2009, 57, 307–320. [Google Scholar] [CrossRef]
- Thirugnanam, H.; Ramesh, M.V.; Rangan, V.P. Enhancing the Reliability of Landslide Early Warning Systems by Machine Learning. Landslides 2020, 17, 2231–2246. [Google Scholar] [CrossRef]
- Longo, R.; Lacanna, G.; Innocenti, L.; Ripepe, M. Artificial Intelligence and Machine Learning Tools for Improving Early Warning Systems of Volcanic Eruptions: The Case of Stromboli. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7973–7982. [Google Scholar] [CrossRef]
- Al-Rawas, G.; Nikoo, M.R.; Al-Wardy, M.; Etri, T. A Critical Review of Emerging Technologies for Flash Flood Prediction: Examining Artificial Intelligence, Machine Learning, Internet of Things, Cloud Computing, and Robotics Techniques. Water 2024, 16, 2069. [Google Scholar] [CrossRef]
- Sulistyowati, R.; Sujono, H.A.; Musthofa, A.K. A River Water Level Monitoring System Using Android-Based Wireless Sensor Networks for a Flood Early Warning System. In Proceedings of the Proceedings of Second International Conference on Electrical Systems, Technology and Information 2015 (ICESTI 2015), Bali, Indonesia, 9–12 September 2015; Pasila, F., Tanoto, Y., Lim, R., Santoso, M., Pah, N.D., Eds.; Springer: Singapore, 2016; pp. 401–408. [Google Scholar]
- Poovizhi, S.; Premalatha, M.; Nivetha, C. Automatic Water Level Monitoring and Seat Availability Details in Train Using Wireless Sensor Network. In Proceedings of the 2017 International Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017; pp. 321–324. [Google Scholar]
- Son, Y.; Di Lorenzo, E.; Park, K.; Wipperfurth, S.; Luo, J. Data Assimilation of Hyper-Local Water Level Sensors for Real-Time Monitoring of Coastal Inundation. Coast. Eng. 2023, 186, 104398. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, M.; Wang, Y.; Wang, P.; Wang, A.; Wu, Y.; Xu, H.; Zhang, Y. Microwave-Photonic Sensor for Remote Water-Level Monitoring Based on Chaotic Laser. Int. J. Bifurc. Chaos 2014, 24, 1450032. [Google Scholar] [CrossRef]
- Dalai, C.; Singh, M.; Sunad Kumara, A.N.; Patel, W.; Patil, H.; Maranan, R. Monitoring Water Levels in Rivers with Optical Fiber Sensors. In Proceedings of the 2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT), Kottayam, India, 15–16 March 2024; pp. 1–6. [Google Scholar]
- Baek, S.; Lee, J.J.; Shin, J.; Kim, J.H.; Hong, S.; Kim, S. Resistive Water Level Sensors Based on AgNWs/PEDOT:PSS-g-PEGME Hybrid Film for Agricultural Monitoring Systems. ACS Omega 2022, 7, 15459–15466. [Google Scholar] [CrossRef]
- De Leon, A.F.; Cruz, F.R.G. Water Level Monitoring and Flood Warning System Using Light Detection and Ranging (LiDAR) Sensor with Hybrid Renewable Solar-Wind Power. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–5. [Google Scholar]
- Xu, C.; Pu, X.; Fang, J.; Yang, T.; Xin, M. Water Level Monitoring Sensor Based on Iontronic Piezo-Capacitance Effect. In Sustainable Development of Water and Environment; Jeon, H.-Y., Ed.; Environmental Science and Engineering; Springer Nature: Cham, Switzerland, 2023; pp. 279–291. ISBN 978-3-031-42587-5. [Google Scholar]
- Yang, Q.; Yu, A.J.; Simonton, J.; Yang, G.; Dohrmann, Y.; Kang, Z.; Li, Y.; Mo, J.; Zhang, F.-Y. An Inkjet-Printed Capacitive Sensor for Water Level or Quality Monitoring: Investigated Theoretically and Experimentally. J. Mater. Chem. A 2017, 5, 17841–17847. [Google Scholar] [CrossRef]
- Rocher, J.; Parra, L.; Lloret, J.; Mengual, J. An Inductive Sensor for Water Level Monitoring in Tubes for Water Grids. In Proceedings of the 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA), Aqaba, Jordan, 28 October–1 November 2018; pp. 1–7. [Google Scholar]
- Liu, G.; Sheng, Q.; Piassetta, G.R.L.; Hou, W.; Han, M. A Fiber-Optic Water Flow Sensor Based on Laser-Heated Silicon Fabry-Pérot Cavity. In Proceedings of the Fiber Optic Sensors and Applications XIII, Baltimore, MD, USA, 18–21 April 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9852, pp. 288–294. [Google Scholar]
- Pillai, A.N.; Abhiram, B.; Arun, R.; Harin, B.; Nisha, K.L.; Sathayadevan, S.; Vyshak, K. Cost-Effective Solutions for Underwater Ultrasonic Flow Rate Sensors in Renewable Energy Applications—An Appraisal. In Proceedings of the 2024 Second International Conference on Smart Technologies for Power and Renewable Energy (SPECon), Ernakulam, India, 2–4 April 2024; pp. 1–6. [Google Scholar]
- Wan, Y. Design and Application of a New Low and Lower Limit Differential Pressure Flow Rate Sensor. In Proceedings of the 2023 3rd International Conference on Energy, Power and Electrical Engineering (EPEE), Wuhan, China, 15–17 September 2023; pp. 793–797. [Google Scholar]
- Bansode, P.M.; Kulkarni, V.B. IR and LASER Sensors for Newtonian Fluids for Flow-Rate Measurement Using FPGA. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control (ICIC), Pune, India, 28–30 May 2015; pp. 821–824. [Google Scholar]
- van Maanen, H.R.E. Measurement of the Liquid Water Flow Rate Using Microwave Sensors in Wet-Gas Meters: Not as Simple as You Might Think. In Proceedings of the 26th International North Sea Flow Measurement Workshop, Scotland, UK, 21–24 October 2008; pp. 345–354. [Google Scholar]
- Brown, C.U.; Vogl, G.W.; Tam, W.C. Measuring Water Flow Rate for a Fire Hose Using a Wireless Sensor Network for Smart Fire Fighting. Fire Technol. 2021, 57, 3125–3150. [Google Scholar] [CrossRef]
- Shaun, F.; Nefzaoui, E.; Regina, H.; Cesar, W.; Marty, F.; Capochichi-Gnambodoe, M.; Poulichet, P.; Basset, P.; Peressuti, F.; Sarkar, S.; et al. On the Co-Integration of a Thermo-Resistive Flow-Rate Sensor in a Multi-Parameter Sensing Chip for Water Network Monitoring. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1069–1072. [Google Scholar]
- Gong, Y.; Zhang, M.; Gong, C.; Wu, Y.; Rao, Y.; Fan, X. Sensitive Optofluidic Flow Rate Sensor Based on Laser Heating and Microring Resonator. Microfluid Nanofluid 2015, 19, 1497–1505. [Google Scholar] [CrossRef]
- Wrasse, A.d.N.; Bertoldi, D.; Morales, R.E.M.; Jose da Silva, M. Two-Phase Flow Rate Measurement Using a Capacitive Sensor and a Venturi Meter. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Mane, S.; Das, N.; Singh, G.; Cosh, M.; Dong, Y. Advancements in Dielectric Soil Moisture Sensor Calibration: A Comprehensive Review of Methods and Techniques. Comput. Electron. Agric. 2024, 218, 108686. [Google Scholar] [CrossRef]
- Chen, L.; Zhangzhong, L.; Zheng, W.; Yu, J.; Wang, Z.; Wang, L.; Huang, C. Data-Driven Calibration of Soil Moisture Sensor Considering Impacts of Temperature: A Case Study on FDR Sensors. Sensors 2019, 19, 4381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-D.; Bai, C.-X.; Kuang, Q.-M.; Zhang, J.; Wolfgang, P. Performance of Three Types of Soil Moisture Sensors: SWR, TDR and FD. Beijing Linye Daxue Xuebao/J. Beijing For. Univ. 2006, 28, 158–160. [Google Scholar]
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of Research Progress on Soil Moisture Sensor Technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Lim, G.R.; Herrera, S.X.O.; Cruz, F.R.G. Selection of Suitable Soil Moisture Sensor for Clay Soil. In Proceedings of the 2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 29 June 2024; pp. 308–313. [Google Scholar]
- Yan, K.; Liu, J.; Sun, N.; Zhong, W. Soil Moisture Sensor Design Based on Fiber Bragg Grating. In Proceedings of the Tenth International Symposium on Precision Engineering Measurements and Instrumentation, Kunming, China, 8–10 August 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11053, pp. 562–567. [Google Scholar]
- Meng, Z. A Comparative Analysis of Common Types of Temperature Sensors: Seeking Optimal Solutions for Diverse Industrial Environments. IET Conf. Proc. 2025, 2024, 27–31. [Google Scholar] [CrossRef]
- Mulayim, S.; Ozkan, E.; Erkorkmaz, T. A New Single Ended Calibration Approach of Fiber Optic Based Linear Type Temperature Sensor for Tunnels. In Proceedings of the 2023 14th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2023; pp. 1–4. [Google Scholar]
- Danh, L.V.Q.; Thao, L.H.; Danh, T.H.; Loc, C.V.; Viet, T.X.; Hoan, T.N.K.; Phieu, L.T.; Ngon, N.C. An IoT-Based Indoor Fire Early Warning System Using Far Infrared Thermal Sensors. In Achieving Sustainable Business Through AI, Technology Education and Computer Science: Volume 2: Teaching Technology and Business Sustainability; Hamdan, A., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 295–306. ISBN 978-3-031-71213-5. [Google Scholar]
- Kim, C.-E.; Ha, T.-J. Capacitive-Type Wearable Temperature Sensors Based on Yttria-Stabilized Zirconia Films Fabricated via Microwave-Assisted All-Solution-Process and Their Application for Detection of Touch Stimuli. J. Alloys Compd. 2025, 1011, 178334. [Google Scholar] [CrossRef]
- Zhousheng, Z.; Guoxing, R.; Aiqing, M.; Lu, Z.; Feng, L. Design of Passive Wireless Resonance Type SAW Temperature Sensor. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 1451–1456. [Google Scholar]
- Arman Kuzubasoglu, B.; Kursun Bahadir, S. Flexible Temperature Sensors: A Review. Sens. Actuators A Phys. 2020, 315, 112282. [Google Scholar] [CrossRef]
- Maskay, A.; Pereira Da Cunha, M. High-Temperature Microwave Acoustic Vibration Sensor. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–3. [Google Scholar]
- Hiraka, K.; Shinagawa, R.; Gogami, A.; Iuchi, T. Rapid-Response Hybrid-Type Surface-Temperature Sensor. Int. J. Thermophys. 2008, 29, 1166–1173. [Google Scholar] [CrossRef]
- Müller, A.; Giangu, I.; Stavrinidis, A.; Stefanescu, A.; Stavrinidis, G.; Dinescu, A.; Konstantinidis, G. Sezawa Propagation Mode in GaN on Si Surface Acoustic Wave Type Temperature Sensor Structures Operating at GHz Frequencies. IEEE Electron Device Lett. 2015, 36, 1299–1302. [Google Scholar] [CrossRef]
- Liu, Y.; Kahn, R.A.; Chaloulakou, A.; Koutrakis, P. Analysis of the Impact of the Forest Fires in August 2007 on Air Quality of Athens Using Multi-Sensor Aerosol Remote Sensing Data, Meteorology and Surface Observations. Atmos. Environ. 2009, 43, 3310–3318. [Google Scholar] [CrossRef]
- Lee, S.; chul-Jung, W.; Park, J. Design of IoT Based Fire-Watching and Atmospheric Environment Monitoring Systems Applied with Compound Sensors and Image Processing. IJSH 2016, 10, 155–168. [Google Scholar] [CrossRef]
- Lertsinsrubtavee, A.; Kanabkaew, T.; Raksakietisak, S. Detection of Forest Fires and Pollutant Plume Dispersion Using IoT Air Quality Sensors. Environ. Pollut. 2023, 338, 122701. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, Z.; Qin, M.; Huang, Q.-A.; Zhou, Z.-F. Linearity and Sensitivity Analysis of MEMS Thermal Wind Sensor via Analytical Model. IEEE Trans. Instrum. Meas. 2023, 72, 9502209. [Google Scholar] [CrossRef]
- Tariq, H.; Touati, F.; Crescini, D.; Ben Mnaouer, A. State-of-the-Art Low-Cost Air Quality Sensors, Assemblies, Calibration and Evaluation for Respiration-Associated Diseases: A Systematic Review. Atmosphere 2024, 15, 471. [Google Scholar] [CrossRef]
- Si, C.W.; Han, G.W.; Ning, J.; Zhong, W.W.; Yang, F.H. Design of a MEMS Resonant Wind Sensor on Airplane Wing. Key Eng. Mater. 2013, 562–565, 436–440. [Google Scholar] [CrossRef]
- Shang, Z.; Qi, S.; Ma, R.; Li, Y. Design of Wind Sensor Measurement and Control System for Extreme Cold Environment. In Proceedings of the Proceedings of the 2022 6th International Conference on Electronic Information Technology and Computer Engineering, Xiamen, China, 21–23 October 2022; Association for Computing Machinery: New York, NY, USA, 2023; pp. 406–410. [Google Scholar]
- Adkins, K.; Swinford, C.; Wambolt, P.; Bease, G. Development of a Sensor Suite for Atmospheric Boundary Layer Measurement with a Small Multirotor Unmanned Aerial System. Int. J. Aviat. Aeronaut. Aerosp. 2020, 7, 4. [Google Scholar] [CrossRef]
- Du, L.; Zhao, Z.; Pang, C.; Fang, Z. Drag Force Micro Solid State Silicon Plate Wind Velocity Sensor. Sens. Actuators A Phys. 2009, 151, 35–41. [Google Scholar] [CrossRef]
- Ye, Y.; Wan, S.; Li, S.; He, X. Full-Bridge Design for Error Reduction of 3-D Printed Mechanical Wind Sensor. IEEE Sens. J. 2022, 22, 21569–21574. [Google Scholar] [CrossRef]
- Su, L.; Wang, H.; Tian, Z.; Wang, H.; Cheng, Q.; Yu, W. Low Detection Limit and High Sensitivity Wind Speed Sensor Based on Triboelectrification-Induced Electroluminescence. Adv. Sci. 2019, 6, 1901980. [Google Scholar] [CrossRef] [PubMed]
- Moll, J.; Salman, R.; Pozdniakov, D.; Nuber, A.; Friedman, H.; Arnold, P.; Mälzer, M.; Krozer, V. Motion Sensing of a Wind Turbine Prototype Using a Bistatic FMCW Doppler Radar Sensor. In Proceedings of the 2018 11th German Microwave Conference (GeMiC), Freiburg, Germany, 12–14 March 2018; pp. 99–102. [Google Scholar]
- Hung, J.-B.; Chang, P.-C.; Hsuan, C.-Y.; Lin, T.-H. Performance Comparison of the Buoy-Mounted and Land-Based Laser Wind Sensor in the Harbor. In Proceedings of the 24th International Ocean and Polar Engineering Conference, Busan, Korea, 15–20 June 2014; pp. 451–456. [Google Scholar]
- Sandra, K.R.; George, B.; Kumar, V.J. Combined Variable Reluctance-Hall Effect Displacement Sensor. IEEE Trans. Instrum. Meas. 2018, 67, 1169–1177. [Google Scholar] [CrossRef]
- Di Martire, D.; Iglesias, R.; Monells, D.; Centolanza, G.; Sica, S.; Ramondini, M.; Pagano, L.; Mallorquí, J.J.; Calcaterra, D. Comparison between Differential SAR Interferometry and Ground Measurements Data in the Displacement Monitoring of the Earth-Dam of Conza Della Campania (Italy). Remote Sens. Environ. 2014, 148, 58–69. [Google Scholar] [CrossRef]
- Yao, C.; Hong, C.; Su, D.; Zhang, Y.; Yin, Z. Design and Verification of a Wireless Sensing System for Monitoring Large-Range Ground Movement. Sens. Actuators A Phys. 2020, 303, 111745. [Google Scholar] [CrossRef]
- Abu_AL_Aish, A.; Salah, W.; Alrashdan, M.; Zneid, B. Design of Differential Cylindrical Capacitive Displacement Sensor. J. Electr. Electron. Eng. 2020, 13, 5–8. [Google Scholar]
- Djuric, S.M.; Nagy, L.F.; Damnjanovic, M.S. Detection of Ground Reaction Force Using a Miniaturized Inductive Displacement Sensor. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. T15-7–T15-12. [Google Scholar]
- Shin, J.; Kim, S.; Jung, Y.-H.; Min, H.; Kim, T.; Jung, J. Paving Block Displacement Detection and Measurement Using 3D Laser Sensors on Unmanned Ground Vehicles. Autom. Constr. 2024, 168, 105813. [Google Scholar] [CrossRef]
- Buchoud, E.; Vrabie, V.; Mars, J.I.; D’Urso, G.; Girard, A.; Blairon, S.; Hénault, J.-M. Quantification of Submillimeter Displacements by Distributed Optical Fiber Sensors. IEEE Trans. Instrum. Meas. 2016, 65, 413–422. [Google Scholar] [CrossRef]
- Rezaee, M.; Joodaki, M. Two-Dimensional Displacement Sensor Based on CPW Line Loaded by Defected Ground Structure With Two Separated Transmission Zeroes. IEEE Sens. J. 2017, 17, 994–999. [Google Scholar] [CrossRef]
- Anderson, S.; Cunningham, E.; Barford, P.; Fratta, D.; Nissen-Meyer, T.; Wang, H. Assessing the Expansion of Ground-Motion Sensing Capability in Smart Cities via Internet Fiber-Optic Infrastructure. Seismol. Res. Lett. 2024, 95, 3633–3651. [Google Scholar] [CrossRef]
- Brokešová, J.; Málek, J. New Portable Sensor System for Rotational Seismic Motion Measurements. Rev. Sci. Instrum. 2010, 81, 084501. [Google Scholar] [CrossRef]
- Chatzopoulos, G.; Papadopoulos, I.; Vallianatos, F.; Makris, J.P.; Kouli, M. Strong Ground Motion Sensor Network for Civil Protection Rapid Decision Support Systems. Sensors 2021, 21, 2833. [Google Scholar] [CrossRef]
- Macpherson, K.A.; Fee, D.; Colwell, J.R.; Witsil, A.J. Using Local Infrasound to Estimate Seismic Velocity and Earthquake Magnitudes. Bull. Seismol. Soc. Am. 2023, 113, 1434–1456. [Google Scholar] [CrossRef]
- Kelman, I.; Glantz, M.H. Early Warning Systems Defined. In Reducing Disaster: Early Warning Systems for Climate Change; Singh, A., Zommers, Z., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 89–108. ISBN 978-94-017-8598-3. [Google Scholar]
- Mileti, D. Disasters by Design: A Reassessment of Natural Hazards in the United States; Joseph Henry Press: Washington, DC, USA, 1999; ISBN 978-0-309-26173-9. [Google Scholar]
- JRC Science for Disaster Risk Management 2020. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC114026 (accessed on 30 January 2025).
- Ward, P.J.; Blauhut, V.; Bloemendaal, N.; Daniell, J.E.; de Ruiter, M.C.; Duncan, M.J.; Emberson, R.; Jenkins, S.F.; Kirschbaum, D.; Kunz, M.; et al. Review Article: Natural Hazard Risk Assessments at the Global Scale. Nat. Hazards Earth Syst. Sci. 2020, 20, 1069–1096. [Google Scholar] [CrossRef]
- Heinz-Peter, B.; Marina, R.; Heinz-Peter, B.; Marina, R. Natural Hazards: Systematic Assessment of Their Contribution to Risk and Their Consequences. In Probabilistic Modeling in System Engineering; IntechOpen: London, UK, 2018; ISBN 978-1-78984-409-2. [Google Scholar]
- Gill, J.C.; Malamud, B.D. Reviewing and Visualizing the Interactions of Natural Hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef]
- Yumang, A.N.; Paglinawan, C.C.; Paglinawan, A.C.; Avendaño, G.O.; Esteves, J.A.C.; Pagaduan, J.R.P.; Selda, J.D.S. Real-Time Flood Water Level Monitoring System with SMS Notification. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–3. [Google Scholar]
- Wu, Y.-M.; Mittal, H. A Review on the Development of Earthquake Warning System Using Low-Cost Sensors in Taiwan. Sensors 2021, 21, 7649. [Google Scholar] [CrossRef]
- Mittal, H.; Kumar, A.; Wu, Y.-M. Development of Earthquake Detection and Warning System Based on MEMS Sensors. Sens. Mater. 2021, 33, 3240. [Google Scholar] [CrossRef]
- Randhawa, R.H.; Mahmood, R.; Ahmad, T. AquaEye: A Low Cost Flood Early Warning System for Developing Countries. In Proceedings of the 2018 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 17–19 December 2018; pp. 345–349. [Google Scholar] [CrossRef]
- Chen, D.; Rojas, M.; Samset, B.H.; Cobb, K.; Diongue Niang, A.; Edwards, P.; Emori, S.; Faria, S.H.; Hawkins, E.; Hope, P.; et al. Framing, context, and methods. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 147–286. [Google Scholar] [CrossRef]
- National Disaster Risk Assessment. Available online: https://www.unisdr.org/files/52828_nationaldisasterriskassessmentpart1.pdf (accessed on 17 January 2025).
- Pan, Z.; Xu, Z.; Chen, L.; Peng, C.; Liu, E. Application of Artificial Intelligence Technology in Flood Early Warning System. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), Bristol, UK, 29–31 July 2024; pp. 438–442. [Google Scholar] [CrossRef]
- Faiella, A.; Menoni, S.; Boni, M.P.; Panoutsopoulou, M.; Thoma, T.; Salari, S.; Rueda, N. Enabling Knowledge through Structured Disaster Damage & Loss Data Management System. Sustainability 2022, 14, 6187. [Google Scholar] [CrossRef]
- Chandrakumar, C.; Prasanna, R.; Stephens, M.; Tan, M.L. Earthquake Early Warning Systems Based on Low-Cost Ground Motion Sensors: A Systematic Literature Review. Front. Sens. 2022, 3, 1020202. [Google Scholar] [CrossRef]
- Cui, P.; Peng, J.; Shi, P.; Tang, H.; Ouyang, C.; Zou, Q.; Liu, L.; Li, C.; Lei, Y. Scientific Challenges of Research on Natural Hazards and Disaster Risk. Geogr. Sustain. 2021, 2, 216–223. [Google Scholar] [CrossRef]
- Kubas, J.; Polorecka, M.; Holla, K.; Soltes, V.; Kelisek, A.; Strachota, S.; Maly, S. Use of Toxic Substance Release Modelling as a Tool for Prevention Planning in Border Areas. Atmosphere 2022, 13, 836. [Google Scholar] [CrossRef]
Disaster Group | Definition |
---|---|
Geophysical | Events originating from solid earth |
Meteorological | Events caused by short-lived/small to meso-scale atmospheric processes (in the spectrum from minutes to days) |
Hydrological | Events caused by deviations in the normal water cycle and/or overflow of bodies of water caused by wind set-up |
Climatological | Events caused by long-lived/meso- to macro-scale processes (in the spectrum from intraseasonal to multi-decadal climate variability) |
Natural Hazard | Primary Cause | Group | Secondary Cause | Group |
---|---|---|---|---|
Floods | Rainfall | Meteorological | Soil moisture | Hydrological |
Snowmelts | Hydrological | Temperature | Meteorological | |
Not applicable | Not applicable | Pressure | Meteorological | |
Not applicable | Not applicable | Humidity | Meteorological | |
Droughts | Temperature | Meteorological | Groundwater | Hydrological |
Evapotranspiration | Hydrological | Humidity | Meteorological | |
Rainfall | Meteorological | Not applicable | Not applicable | |
Extreme temperatures | Temperature | Meteorological | Humidity | Meteorological |
Wildfires | Temperature | Meteorological | Soil moisture | Hydrological |
Humidity | Meteorological | Wind | Meteorological | |
Wind | Wind | Meteorological | Pressure | Meteorological |
Landslides | Rainfall | Meteorological | Soil moisture | Hydrological |
Earthquakes | Geophysical | Not applicable | Not applicable | |
Earthquakes | Ground motion | Geophysical | Not applicable | Not applicable |
Natural Hazard | Manifestation | Group |
---|---|---|
Floods | Water level | Hydrological |
Flow rate | Hydrological | |
Droughts | Soil moisture (saturation) | Hydrological |
Water level | Hydrological | |
Extreme Temperatures | Temperature | Meteorological |
Wildfires | Temperature | Meteorological |
Air quality | Meteorological | |
Wind | Wind | Meteorological |
Landslides | Ground displacement | Geophysical |
Earthquakes | Ground motion | Geophysical |
Natural Hazard | Parameter | Types of Sensors |
---|---|---|
Floods | Water level | Pressure, ultrasonic, radar, optical fibre, microwave–photonic, inductive, LiDaR, infrared, capacitive, resistive |
Flow rate | Photoelectric, thermo-resistive, optofluidic, pressure, ultrasonic, piezoelectric, capacitive, microwave, infrared, fibre optic | |
Droughts | Soil moisture | Resistive, capacitive, dielectric, impedance, time domain reflectometry, frequency domain, standing wave ratio, neutron probe, weight, optical fibre |
Water level | - | |
Extreme temperatures | Temperature | Capacitive, fibre optic, optical (several types), resistive, semiconductive, thermistors, thermocouples, surface acoustic wave, infrared, microwave |
Wildfires | Temperature | - |
Air quality | Electrochemical, infrared, optical gas, capacitive gas, calorimetric gas, acoustic gas, spectroradiometer, resistive | |
Wind | Wind | Thermal anemometer, acoustic resonance, laser, pressure, strain gauge mechanical, ultrasonic, drag force, capacitive, triboelectric, triboelectric, Doppler radar |
Landslides | Ground displacement | Inductive, microwave, laser, fibre optic, radar, resistive, capacitive, Hall effect |
Earthquakes | Ground motion | Acoustic, strong ground motion, fibre optic, rotational frequency, infrasound |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chovanec, D.; Kollár, B.; Halúsková, B.; Kubás, J.; Pawęska, M.; Ristvej, J. A Component-Based Approach to Early Warning Systems: A Theoretical Model. Appl. Sci. 2025, 15, 3218. https://doi.org/10.3390/app15063218
Chovanec D, Kollár B, Halúsková B, Kubás J, Pawęska M, Ristvej J. A Component-Based Approach to Early Warning Systems: A Theoretical Model. Applied Sciences. 2025; 15(6):3218. https://doi.org/10.3390/app15063218
Chicago/Turabian StyleChovanec, Daniel, Boris Kollár, Bronislava Halúsková, Jozef Kubás, Marcin Pawęska, and Jozef Ristvej. 2025. "A Component-Based Approach to Early Warning Systems: A Theoretical Model" Applied Sciences 15, no. 6: 3218. https://doi.org/10.3390/app15063218
APA StyleChovanec, D., Kollár, B., Halúsková, B., Kubás, J., Pawęska, M., & Ristvej, J. (2025). A Component-Based Approach to Early Warning Systems: A Theoretical Model. Applied Sciences, 15(6), 3218. https://doi.org/10.3390/app15063218