Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Silty Clay
2.1.2. Red Sandstone
2.1.3. Xanthan Gum
2.1.4. Calcium Lignosulfonate
2.2. Experimental Procedure
3. Test Results and Analysis
3.1. Unconfined Compressive Strength
3.2. Conventional Triaxial Compression Strength
3.2.1. Stress–Strain Curve Characteristics
3.2.2. Strength Parameter Analysis
3.2.3. The Nonlinear Characteristics of the Shear Strength of Gravel Soil
4. Microscopic Structural Features and Mechanistic Analysis
4.1. Analysis of Microscopic Structural Features
4.2. Microscopic Structural Mechanism Analysis
5. Conclusions
- (1)
- As the dosage of xanthan gum is increased, the unconfined compressive strength, peak deviator stress, and the cohesion and internal friction angle of the soil exhibit a nearly linear increase. In contrast, for calcium lignosulfonate-stabilized soil, these parameters initially increase and then decrease. The optimal compressive and shear strength effects are observed at a dosage of 4%.
- (2)
- At equivalent dosages, xanthan gum-stabilized gravelly soil displays enhanced performance in comparison to calcium lignosulfonate-stabilized soil. Moreover, at elevated confining pressures, the cementing impact of xanthan gum and calcium lignosulfonate on gravelly soil is comparatively diminished in relation to the strength imparted by the confining pressure, suggesting that the influence of dosage on the shear strength of gravelly soil is attenuated.
- (3)
- The formation of a binder in the gravelly soil by the hydration of xanthan gum can result in the creation of a “bridging” structure with soil particles, thereby enhancing the tensile strength of the soil. Furthermore, the binder fills the micropores between the soil particles, thereby reducing stress concentration and increasing the overall strength of the gravelly soil matrix.
- (4)
- Calcium lignosulfonate enhances the structural stability of gravelly soil and increases its strength through mechanisms such as ion exchange, adsorption and encapsulation of soil particles, filling of micropores between particles, and cementation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Liu, Y.X.; Tang, H.M.; Kang, J.T.; Wang, L.Q.; Li, C.D.; Wang, D.; Liu, Z. Experimental study of the influence of wetting and drying cycles on the strength of intact rock samples from a red stratum in the Three Gorges Reservoir area. Eng. Geol. 2023, 314, 107013. [Google Scholar] [CrossRef]
- Li, Q.B.; Wang, J.Z.; Wang, G.J.; Liu, Q.L.; Yan, C.B. Evaluation of Lithology Variations in Layered Red Beds with Depth: An Example of the Yellow River Guxian Dam, NW China. Lithosphere 2021, 2021, 14. [Google Scholar] [CrossRef]
- Guo, H.T.; Sun, Q.G.; Yuan, C.W.; Li, X.Q.; Zhao, Y.K. Experimental investigation on the physical and mechanical properties of silty clay enhanced by microencapsulated phase change materials. Case Stud. Constr. Mater. 2024, 20, e03151. [Google Scholar] [CrossRef]
- Gao, M.X.; Jin, X.W.; Zhao, T.; Li, H.T.; Zhou, L. Study on the strength mechanism of red clay improved by waste tire rubber powder. Case Stud. Constr. Mater. 2022, 17, e01416. [Google Scholar] [CrossRef]
- Hoang, T.; Do, H.; Alleman, J.; Cetin, B.; Dayioglu, A.Y. Comparative evaluation of freeze and thaw effect on strength of BEICP-stabilized silty sands and cement-and fly ash-stabilized soils. Acta Geotech. 2023, 18, 1073–1092. [Google Scholar] [CrossRef]
- Jin, L.X.; Song, W.M.; Shu, X.; Huang, B.S. Use of water reducer to enhance the mechanical and durability properties of cement-treated soil. Constr. Build. Mater. 2018, 159, 690–694. [Google Scholar] [CrossRef]
- Wu, Y.K.; Qiao, X.L.; Yu, X.B.; Yu, J.L.; Deng, Y.F. Study on Properties of Expansive Soil Improved by Steel Slag Powder and Cement under Freeze-Thaw Cycles. KSCE J. Civ. Eng. 2021, 25, 417–428. [Google Scholar] [CrossRef]
- Golovkina, D.A.; Zhurishkina, E.V.; Saitova, A.T.; Bezruchko, M.V.; Lapina, I.M.; Kulminskaya, A.A. From Waste to Strength: Applying Wastepaper, Fungi and Bacteria for Soil Stabilization. Appl. Sci. 2024, 14, 11678. [Google Scholar] [CrossRef]
- Yang, W.R.; Zhou, F.; Zhu, R.; Song, Z.; Hua, S.D.; Ma, Y. Strength performance of mucky silty clay modified using early-age fly ash-based curing agent. Case Stud. Constr. Mater. 2022, 17, e01595. [Google Scholar] [CrossRef]
- Tang, H.; Yang, Z.Q.; Zhu, H.T.; Dong, H.Q. Experimental Study on the Mechanical Properties of Xinyang Red Clay Improved by Lime and Fly Ash. Appl. Sci. 2023, 13, 6217. [Google Scholar] [CrossRef]
- Ghosh, A.; Subbarao, C. Strength characteristics of class F fly ash modified with lime and gypsum. J. Geotech. Geoenviron. Eng. 2007, 133, 757–766. [Google Scholar] [CrossRef]
- Zhao, Y.R.; Chen, X.S.; Wen, T.D.; Wang, P.H.; Li, W.S. Experimental investigations of hydraulic and mechanical properties of granite residual soil improved with cement addition. Constr. Build. Mater. 2022, 318, 126016. [Google Scholar] [CrossRef]
- Hu, B.W.; Hu, Q.Z.; Liu, Y.M.; Tao, G.L. Research on the Improvement of Granite Residual Soil Caused by Fly Ash and Its Slope Stability under Rainfall Conditions. Appl. Sci. 2024, 14, 3734. [Google Scholar] [CrossRef]
- Kim, D.; Kim, T.; Jeon, J.; Son, Y. Development of soil conditioner for reclaimed land desalinization based on high-iron fly ash. Paddy Water Environ. 2022, 20, 277–286. [Google Scholar] [CrossRef]
- Ding, F.; Song, L.; Yue, F.T. Study on Mechanical Properties of Cement-Improved Frozen Soil under Uniaxial Compression Based on Discrete Element Method. Processes 2022, 10, 324. [Google Scholar] [CrossRef]
- Wang, F.Y.; Pang, W.C.; Li, Z.Q.; Wei, H.B.; Han, L.L. Experimental Study on Consolidation-Creep Behavior of Subgrade Modified Soil in Seasonally Frozen Areas. Materials 2021, 14, 5138. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, J.Y. Study on Strength Characteristics of Solidified Contaminated Soil under Freeze-Thaw Cycle Conditions. Adv. Civ. Eng. 2018, 2018, 8654368. [Google Scholar] [CrossRef]
- Asghari, S. Microbiological, Environmental and Compositional Factors in Efficacy of MICP Treatment in Clayey Soils. Ph.D. Thesis, Boise State University, Boise, ID, USA, 2022. [Google Scholar]
- Tang, C.S.; Yin, L.Y.; Jiang, N.J.; Zhu, C.; Zeng, H.; Li, H.; Shi, B. Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: A review. Environ. Earth Sci. 2020, 79, 1–23. [Google Scholar] [CrossRef]
- Tian, X.W.; Xiao, H.B.; Li, Z.X.; Li, Z.Y.; Su, H.Y.; Ouyang, Q.W. Experimental Study on the Strength Characteristics of Expansive Soils Improved by the MICP Method. Geofluids 2022, 2022, 3089820. [Google Scholar] [CrossRef]
- Teng, F.C.; Sie, Y.C.; Ouedraogo, C. Strength improvement in silty clay by microbial-induced calcite precipitation. Bull. Eng. Geol. Environ. 2021, 80, 6359–6371. [Google Scholar] [CrossRef]
- Li, S.; Huang, M.; Cui, M.J.; Lin, P.; Xu, L.D.; Xu, K. Stabilization of cement-soil utilizing microbially induced carbonate precipitation. Geomech. Eng. 2023, 35, 95–108. [Google Scholar]
- Chang, I.L.; Cho, G.C.; Tran, T.P.A. Water retention properties of xanthan gum biopolymer-treated soils. Environ. Geotech. 2023, 11, 152–163. [Google Scholar] [CrossRef]
- Wan, J.; Ouyang, F.; Xiao, H.L.; Wang, L.X.; Tao, G.L. Experimental Study on the Physical and Mechanical Properties of Modified Clay Using Xanthan Gum and Guar Gum Composite Materials. Sustainability 2024, 16, 5432. [Google Scholar] [CrossRef]
- Bozyigit, I.; Javadi, A.; Altun, S. Strength properties of xanthan gum and guar gum treated kaolin at different water contents. J. Rock Mech. Geotech. Eng. 2021, 13, 1160–1172. [Google Scholar] [CrossRef]
- Banne, S.P.; Dhawale, A.W.; Patil, R.B.; Girase, M.; Kulkarni, C.; Dake, M.; Khan, S. Slope Stability Analysis of Xanthan Gum Biopolymer Treated Laterite Soil Using Plaxis Limit Equilibrium Method (PLAXIS LE). KSCE J. Civ. Eng. 2024, 28, 1205–1216. [Google Scholar] [CrossRef]
- Cai, Y.; Ou, M.X. Experimental Study on Expansive Soil Improved by Lignin and Its Derivatives. Sustainability 2023, 15, 8764. [Google Scholar] [CrossRef]
- Li, G.Y.; Hou, X.; Mu, Y.H.; Ma, W.; Wang, F.; Zhou, Y.; Mao, Y.C. Engineering properties of loess stabilized by a type of eco-material, calcium lignosulfonate. Arab. J. Geosci. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Zhou, E.Q.; Wang, M.; Liu, P.; Zuo, X.; Wang, L.; Ju, D.Y. Application of recycled lignin powder as a sustainable additive for soil improvement against water resistance. Road Mater. Pavement Des. 2024, 1–15. [Google Scholar] [CrossRef]
- Pei, X.J.; Luo, Y.C.J.; Yang, Q.W. Impact of water content and sand content on performance of improved gravel soil with dimeric materials. J. Chongqing Jiaotong Univ. Nat. Sci. 2018, 37, 48–52. [Google Scholar]
- Wang, X.G.; Hu, B.; Lian, B.Q.; Jiang, H.F.; Yu, H.M. Gravel-Soil slope with lime improved and numerical analysis on stability of gravel-soil slope with pile-anchors. Chin. J. Rock Mech. Eng. 2013, 32, 3852–3860. [Google Scholar]
- GB50007-2011; Code for Design of Building Foundation. National Standard of the People’s Republic of China: Beijing, China, 2011.
- Liu, T.Y.; Cai, W.B.; Sheng, Y.S.; Huang, J. Experimental Study on the Microfabrication and Mechanical Properties of Freeze-Thaw Fractured Sandstone under Cyclic Loading and Unloading Effects. Materials 2024, 17, 2451. [Google Scholar] [CrossRef] [PubMed]
- Yahaghi, J.; Liu, H.Y.; Chan, A.D.; Fukuda, D. Experimental, theoretical and numerical modelling of the deterioration and failure process of sandstones subject to freeze-thaw cycles. Eng. Fail. Anal. 2022, 141, 106686. [Google Scholar] [CrossRef]
- Liu, W.; Lian, J.S.; Zhao, J.X. Collapsibility test on the loess inhibited by lignin. China Earthq. Eng. J. 2024, 46, 557–565. [Google Scholar]
- Kim, S.; Gopalakrishnan, K.; Ceylan, H. Moisture Susceptibility of Subgrade Soils Stabilized by Lignin-Based Renewable Energy Coproduct. J. Transp. Eng. 2012, 138, 1283–1290. [Google Scholar] [CrossRef]
- Trancone, G.; Policastro, G.; Spasiano, D.; Race, M.; Parrino, F.; Fratino, U.; Fabbricino, M.; Pirozzi, F. Treatment of concrete waste from construction and demolition activities: Application of organic acids from continuous dark fermentation in moving bed biofilm reactors. Chem. Eng. J. 2025, 505, 159536. [Google Scholar] [CrossRef]
- Weng, Z.Y.; Yu, J.; Deng, Y.F.; Cai, Y.Y.; Wang, L.N. Mechanical behavior and strengthening mechanism of red clay solidified by xanthan gum biopolymer. J. Cent. South Univ. 2023, 30, 1948–1963. [Google Scholar] [CrossRef]
- Ji, S.G.; Wang, B.Z.; Yang, X.J.; Fan, H.H. Experimental study of dispersive clay modified by calcium lignosulfonate. Rock Soil Mech. 2021, 42, 2405–2415. [Google Scholar]
- Chang, I.; Im, J.; Prasidhi, A.K.; Cho, G.C. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 2015, 74, 65–72. [Google Scholar] [CrossRef]
- Fu, H.Y.; Zha, H.Y.; Pan, H.Q.; Zeng, L.; Liu, J. Experimental study on water stability and scour resistance of biopolymer modified disintegrated carbonaceous mudstone. J. Cent. South Univ. Sci. Technol. 2022, 53, 2633–2644. [Google Scholar]
- Wei, S.J.; Zhao, H.Y.; Hao, S.F.; Mei, H.; Bu, F.; Liu, J.; Ge, L.Q.; Ren, J.H.; Liang, Y. Triaxial compression properties of calcium lignosulfonate-modified low liquid limit clay. Adv. Sci. Technol. Water Resour. 2023, 43, 100–106. [Google Scholar]
- Zhang, T.; Cai, T.J.; Liu, S.Y.; Li, J.H.; Jie, D.B. Research on stabilization microcosmic mechanism of lignin based industrial by-product treated subgrade silt. Rock Soil Mech. 2016, 37, 1665–1672. [Google Scholar]
Liquid Limit/% | Plastic Limit/% | Plasticity Index | Maximum Dry Density/(g.cm−3) | Optimum Moisture Content/% | Specific Gravity | PH |
---|---|---|---|---|---|---|
32.4 | 15.4 | 17 | 1.87 | 15.4 | 2.72 | 4–5 |
Particle size/mm | <0.005 | 0.005~0.075 | >0.075 |
Mass percentage/% | 10.21 | 73.77 | 16.02 |
Density/(g·cm−3) | Specific Gravity | Water Absorption Rate/% | Porosity/% |
---|---|---|---|
2.17 | 2.72 | 2.6 | 6.12 |
Curing Agent | Appearance | Xanthan Gum Content/% | Viscosity/cP | PH |
---|---|---|---|---|
Xanthan gum | White powder | >99 | >1500 | 7.6 |
Curing Agent | Appearance | Lignin Content/% | Insoluble Matter/% | PH |
---|---|---|---|---|
CLS | Yellowish-brown powder | >99 | <0.5 | 4–6.5 |
Sample | Confining Pressure/(kPa) | /(kPa) | /° | |||
---|---|---|---|---|---|---|
Natural soil | 100 | 0.495 | 0.300 | 0.999 | 34.97 | 29.68 |
200 | 0.500 | 0.402 | 47.05 | 30.07 | ||
300 | 0.520 | 0.541 | 64.14 | 31.32 | ||
2% Xanthan gum | 100 | 0.503 | 0.551 | 0.980 | 64.57 | 28.29 |
200 | 0.519 | 0.630 | 74.68 | 31.30 | ||
300 | 0.540 | 0.727 | 87.53 | 32.73 | ||
4% Xanthan gum | 100 | 0.529 | 0.577 | 0.992 | 68.90 | 31.97 |
200 | 0.540 | 0.660 | 79.49 | 32.76 | ||
300 | 0.557 | 0.770 | 93.95 | 33.90 | ||
6% Xanthan gum | 100 | 0.541 | 0.730 | 0.997 | 87.92 | 32.77 |
200 | 0.557 | 0.801 | 97.70 | 33.87 | ||
300 | 0.576 | 0.850 | 105.37 | 35.21 | ||
2% Lignin | 100 | 0.502 | 0.529 | 0.999 | 62.00 | 30.21 |
200 | 0.518 | 0.553 | 65.50 | 31.23 | ||
300 | 0.523 | 0.615 | 73.12 | 31.58 | ||
4% Lignin | 100 | 0.527 | 0.545 | 0.999 | 64.97 | 31.85 |
200 | 0.549 | 0.625 | 75.75 | 33.32 | ||
300 | 0.562 | 0.690 | 84.52 | 34.23 | ||
6% Lignin | 100 | 0.519 | 0.539 | 0.997 | 63.88 | 31.28 |
200 | 0.527 | 0.599 | 71.40 | 31.82 | ||
300 | 0.541 | 0.656 | 79.01 | 32.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Zhu, J.; Wang, D.; Zhou, H.; Bi, J. Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil. Appl. Sci. 2025, 15, 3339. https://doi.org/10.3390/app15063339
Peng C, Zhu J, Wang D, Zhou H, Bi J. Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil. Applied Sciences. 2025; 15(6):3339. https://doi.org/10.3390/app15063339
Chicago/Turabian StylePeng, Cheng, Jierong Zhu, Dongxing Wang, Haiyan Zhou, and Junjie Bi. 2025. "Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil" Applied Sciences 15, no. 6: 3339. https://doi.org/10.3390/app15063339
APA StylePeng, C., Zhu, J., Wang, D., Zhou, H., & Bi, J. (2025). Experimental and Mechanical Characteristics of Xanthan Gum and Calcium Lignosulfonate-Cured Gravel Soil. Applied Sciences, 15(6), 3339. https://doi.org/10.3390/app15063339