Developing a Dead Fish Recognition Model Based on an Improved YOLOv5s Model
Abstract
:1. Introduction
2. Methods and Models
3. YOLO-DWM Model Algorithm
3.1. DWMConv Convolution Module
3.2. C3-EMA Module
3.3. C3-Light Module
4. Results and Analysis
4.1. Dataset and Experimental Platform
4.2. Model Training Results
4.3. Ablation Experiment
4.4. Visualization Result Analysis
4.5. Comparison of Different Models
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trehman, T.U.; Mahmud, M.S.; Chang, Y.K.; Jin, J.; Shin, J. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput. Electron. Agric. 2019, 156, 585–605. [Google Scholar]
- Liu, X.; Liu, M.; Li, N. Dual vision visual fusion improved YOLO-V7 intelligent elevator face recognition model. J. Opt. 2024, 1–13. [Google Scholar] [CrossRef]
- Anjeana, N.; Anusudha, K. Real time face recognition system based on YOLO and InsightFace. Multimed. Tools Appl. 2023, 83, 31893–31910. [Google Scholar]
- Li, N.; Bai, X.; Shen, X.; Xin, P.; Tian, J.; Chai, T.; Wang, Z. Dense Pedestrian Detection Based on GR-YOLO. Sensors 2024, 24, 4747. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, Y.; Huang, X.; Liang, J.; Fan, Y. An improved YOLO algorithm with multisensing for pedestrian detection. Signal Image Video Process. 2024, 18, 5893–5906. [Google Scholar]
- Issac, A.; Dutta, M.K.; Sarkar, B. Computer vision based method for quality and freshness check for fish from segmented gills. Comput. Electron. Agric. 2017, 139, 10–21. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Q.B.; He, X.L.; Zhang, X.; Li, D. An automatic method of fish length estimation using underwater stereo system based on LabVIEW. Comput. Electronics. Agric. 2020, 173, 105419. [Google Scholar]
- Tang, Z.; Wu, Y.; Xu, X. The study of recognizing ripe strawberries based on the improved YOLOv7-Tiny model. Vis. Comput. 2024, 41, 3155–3171. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, G.; Meng, Q.; Yao, T.; Zhang, B. DSE-YOLO: Detail semantics enhancement YOLO for multi-stage strawberry detection. Comput. Electron. Agric. 2022, 198, 107057. [Google Scholar] [CrossRef]
- Yu, G.; Luo, Y.; Wang, L. Recognition method of dead golden pomfrets based on improved YOLOv4. Fish. Mod. 2021, 48, 80–89. [Google Scholar]
- Yang, S.P.; Li, H.; Liu, J.J.; Fu, Z.M.; Zhang, R.; Jia, H.M. A Method for Detecting Dead Fish on Water Surfaces Based on Multi-scale Feature Fusion and Attention Mechanism. J. Zhengzhou Univ. Nat. Sci. Ed. 2024, 56, 32–38. [Google Scholar]
- Zhao, S.L.; Zhang, S.; Lu, J.; Wang, H.; Feng, Y.; Shi, C.; Li, D.; Zhao, R. A lightweight dead fish detection method based on deformable convolution and YOLOV4. Comput. Electron. Agric. 2022, 198, 107098. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, J.; Gao, L.; Li, P.; Long, H.; Liu, H.; Li, D. A novel detection model and platform for dead juvenile fish from the perspective of multi-task. Multimed. Tools Appl. 2024, 83, 24961–24981. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Z.; Liu, L.; Liang, H.; Feng, J.; Zeng, L. Real-time detection of dead fish for unmanned aquaculture by yolov8-based UAV. Aquaculture 2024, 595, 741551. [Google Scholar] [CrossRef]
- Fu, T.; Feng, D.; Ma, P.; Hu, W.; Yang, X.; Li, S.; Zhou, C. DF-DETR: Dead fish-detection transformer in recirculating aquaculture system. Aquac. Int. 2025, 33, 43. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, Y.; Zhao, R.; Lu, J.; Liu, S. Dead Fish Detection Model Based on DD-IYOLOv8. Fishes 2024, 9, 356. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Zhang, Y.; Liu, J.; Tu, W.; Yu, H. DDEYOLOv9: Network for Detecting and Counting Abnormal Fish Behaviors in Complex Water Environments. Fishes 2024, 9, 242. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, S.; Zhao, S.; Wang, Q.; Li, D.; Zhao, R. Real-time detection and tracking of fish abnormal behavior based on improved YOLOV5 and SiamRPN++. Comput. Electron. Agric. 2022, 192, 106512. [Google Scholar] [CrossRef]
- Rang, Z.; Hao, Y.W.; Li, S.L.; Song, Z.; Qing, Y.D. Detection and positioning system of dead fish in factory farming. China Agric. Inform. 2024, 36, 31–46. [Google Scholar]
- Wang, H.; Zhang, S.; Zhao, S.; Lu, J.; Wang, Y.; Li, D.; Zhao, R. Fast detection of cannibalism behavior of juvenile fish based on deep learning. Comput. Electron. Agric. 2022, 198, 107033. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Su, Y.; Li, W.; Yin, X.; Li, Z.; Ying, Y.; Wang, J.; Wu, J.; Miao, F.; et al. Abnormal Behavior Monitoring Method of Larimichthys crocea in Recirculating Aquaculture System Based on Computer Vision. Sensors 2023, 23, 2835. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Xu, H.; Liu, Y.M. Robust small object detection on the water surface through fusion of camera and millimeter wave radar. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Online, 10–17 October 2021; IEEE Press: Piscataway, NJ, USA, 2021; pp. 15243–15252. [Google Scholar]
- Sun, D.; Wang, X. Fabric surface defect detection method based on multi-scale feature fusion neural network. J. Liaoning Norm. Univ. Nat. Sci. Ed. 2024, 47, 331–341. [Google Scholar]
- Peng, H.; Xie, H.; Liu, H.; Guan, X. LGFF-YOLO: Small object detection method of UAV images based on efficient local–global feature fusion. J. Real-Time Image Proc. 2024, 21, 167. [Google Scholar]
- Xie, Y.; Xiang, J.; Li, X.; Yang, C. An Intelligent Fishery Detection Method Based on Cross-Domain Image Feature Fusion. Fishes 2024, 9, 338. [Google Scholar] [CrossRef]
- Ouyang, D.L.; He, S.; Zhang, G.Z.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient Multi-scale Attention Module with Cross-spatial Learning. In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–5. [Google Scholar]
- Zhuang, L.; Jiang, G.L.; Zhi, G.S.; Gao, H.; Shou, M.Y.; Chang, S.Z. Learning Efficient Convolutional Networks through Network Slimming. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2755–2763. [Google Scholar]
DWMConv | C3-EMA | C3-Light | P/% | R/% | mAP0.5 | mAP0.5~0.9 | FLOPs/G | Params/106 |
---|---|---|---|---|---|---|---|---|
× | × | × | 89.7 | 75.9 | 83.0 | 44.5 | 15.9 | 7.02 |
√ | × | × | 89.2 | 77.9 | 85.2 | 47.4 | 17.7 | 7.73 |
√ | √ | × | 94.1 | 77.2 | 87.7 | 49.5 | 16.2 | 6.87 |
√ | √ | √ | 93.6 | 77.5 | 87.5 | 49.8 | 15.7 | 6.34 |
Module | P/% | R/% | mAP0.5/% | Params/106 | FLOPs/G | F1 Score/% |
---|---|---|---|---|---|---|
Faster RCNN | 57.1 | 81.9 | 79.37 | 136.75 | 369.7 | 67.3 |
SSD | 93.1 | 66.1 | 75.2 | 24.01 | 61.1 | 77.3 |
YOLOv3-tiny | 90.9 | 74.9 | 81.6 | 9.52 | 44.9 | 82.1 |
YOLOv5s | 89.7 | 75.9 | 83.0 | 7.02 | 15.9 | 82.2 |
YOLOv6n | 92.0 | 73.6 | 83.0 | 4.16 | 11.5 | 81.8 |
YOLOv8n | 93.2 | 77.2 | 84.7 | 2.68 | 6.8 | 84.4 |
YOLO-DWM | 93.6 | 77.5 | 87.5 | 6.34 | 15.7 | 84.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, C.; Li, B.; Wu, J.; Xu, X. Developing a Dead Fish Recognition Model Based on an Improved YOLOv5s Model. Appl. Sci. 2025, 15, 3463. https://doi.org/10.3390/app15073463
Tong C, Li B, Wu J, Xu X. Developing a Dead Fish Recognition Model Based on an Improved YOLOv5s Model. Applied Sciences. 2025; 15(7):3463. https://doi.org/10.3390/app15073463
Chicago/Turabian StyleTong, Chengbiao, Biyu Li, Jiting Wu, and Xinming Xu. 2025. "Developing a Dead Fish Recognition Model Based on an Improved YOLOv5s Model" Applied Sciences 15, no. 7: 3463. https://doi.org/10.3390/app15073463
APA StyleTong, C., Li, B., Wu, J., & Xu, X. (2025). Developing a Dead Fish Recognition Model Based on an Improved YOLOv5s Model. Applied Sciences, 15(7), 3463. https://doi.org/10.3390/app15073463