Mézières Method vs. Isostretching Postures on Countermovement Jump Performance in Elite Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions
2.3.1. Mezières Method Group
2.3.2. Isostretching Method Group
2.4. Outcomes
- Maximal speed: the sensor measures the peak velocity achieved during the jump, giving insight into the athlete’s explosive strength and ability to generate power quickly.
- Maximal height: Baiobit accurately measures the highest point of the jump, which is indicative of the athlete’s overall vertical leap and the efficiency of force production.
- Maximal Force: the sensor records the maximum force exerted by the athlete during the push-off phase of the jump, which is a measure of lower limb strength and muscular power.
- Concentric-Eccentric Exercise Performance: Baiobit distinguishes between the concentric (upward) and eccentric (downward) phases of the jump, assessing muscle function during both phases. This is important for understanding the balance between strength and flexibility in jump performance, which can impact recovery and injury prevention.
- Flight time: the sensor records the time the athlete spends in the air during the jump, which reflects the efficiency of force application and how well the athlete can utilize stored elastic energy during the jump.
- Contact time: the Baiobit sensor also measures the time the athlete spends in contact with the ground during the landing phase of the jump, providing insight into lower limb control and reaction time.
- The Visual Analog Scale (VAS): it is used for countermovement jump (CMJ) performance measured with the Baiobit sensor, and it is employed to assess subjective perceptions related to jump execution, such as effort, fatigue, or pain during the movement. VAS consisted of a 10 cm horizontal line, where 0 represents “no discomfort or effort”, and 10 indicates “maximum discomfort or effort.” [21,22].
2.5. Statistics
3. Results
3.1. CMJ Maximal Speed and Maximal Height Outcomes
3.2. CMJ Maximal Force, Concentric, and Eccentric Exercise Outcomes
3.3. CMJ Flight, Contact, and VAS Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- Legend:
- Mezieres Postures
- (a)
- Posture 1
- ○
- The patient is lying supine on a mat with arms relaxed by the sides.
- ○
- The therapist is stabilizing the head and neck, likely to ensure proper alignment and facilitate muscle elongation.
- ○
- This position helps assess tension in the posterior muscle chains and establish a starting point for postural correction.
- (b)
- Posture 2
- ○
- The therapist is gently positioning the patient’s arms above the head.
- ○
- This movement aims to stretch the upper body’s muscle chains while keeping the spine aligned.
- ○
- It is essential to maintain even breathing to avoid compensatory muscle contractions.
- (c)
- Posture 3
- ○
- The patient’s legs are elevated, and the therapist is supporting them while keeping the back flat.
- ○
- This posture elongates the posterior chain, particularly the hamstrings and spinal muscles.
- ○
- The therapist’s control ensures that compensatory movements, such as excessive lumbar curvature, are minimized.
- Isostretching Postures:
- (d)
- Posture 4: Seated forward Fold with Baton
- ○
- The patient sits on the floor with legs extended forward and feet flexed (toes pointing up). A rhythmic gymnastics baton is placed across the soles of the feet, and the person gently leans forward, holding the ends of the baton.
- (e)
- Posture 5: Seated Cross-Leg Position with Arms Raised
- ○
- The patient sits on the floor with legs crossed, arms bent at the elbows and raised in a gentle “flex” pose. The torso remains upright, indicating engagement of the upper body and core.
- (f)
- Posture 6: Supine Leg Raise (Legs at 90 Degrees)
- ○
- The patient lies on the back with arms by the sides and raises the legs together so they form a roughly 90-degree angle at the hips.
- (g)
- Posture 7: Standing Overhead Ball Hold
- ○
- The patient stands while holding a ball behind the head or upper back, with elbows bent. The arms and shoulders are lifted to engage the upper back and core.
- (h)
- Posture 8: Forward Hinge with Arms Extended Overhead
- ○
- Standing in a hip-width stance, the practitioner leans forward from the hips with arms extended overhead in line with the ears. The back remains relatively straight as the torso moves to a position roughly parallel to the floor.
- (i)
- Posture 9: Legs-Up Angle
- ○
- The patient lies on the back with arms extended out to the sides, forming a “T” shape. The legs are raised so that the hips and knees form about a 90-degree angle, or with the hips at 90 degrees and the knees extended upward.
References
- Yang, C.; Shi, L.; Lu, Y.; Wu, H.; Yu, D. Post-Activation Performance Enhancement of Countermovement Jump after Drop Jump versus Squat Jump Exercises in Elite Rhythmic Gymnasts. J. Sports Sci. Med. 2024, 23, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Silva, R.M.; Xu, Q.; Wang, K.; Zhao, Z. Jumping Interval Training: An Effective Training Method for Enhancing Anaerobic, Aerobic, and Jumping Performances in Aerobic Gymnastics. J. Sports Sci. Med. 2024, 23, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Lena, O.; Todri, J.; Todri, A.; Gil, J.L.M.; Gallego, M.G. The Effectiveness of the Mézières Method in Elite Rhythmic Gymnastics Athletes with Low Back Pain: A Randomized Controlled Trial. J. Sport Rehabil. 2019, 29, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Lena, O.; Todri, J.; Todri, A.; Papajorgji, P.; Martínez-Fuentes, J. A Randomized Controlled Trial Concerning the Implementation of the Postural Mézières Treatment in Elite Athletes with Low Back Pain. Postgrad. Med. 2022, 134, 559–572. [Google Scholar] [CrossRef]
- Prado, É.R.A.; Meireles, S.M.; Carvalho, A.C.A.; Mazoca, M.F.; Motta, A.M.; Barboza Da Silva, R.; Trindade Filho, E.M.; Lombardi Júnior, I.; Natour, J. Influence of Isostretching on Patients with Chronic Low Back Pain: A Randomized Controlled Trial. Physiother. Theory Pract. 2021, 37, 287–294. [Google Scholar] [CrossRef]
- Lena, O.; Todri, J.; Todri, A.; Azorín, L.F.; Fuentes, J.M.; Papajorgji, P.; Sanchez, S.H.; Castejon Castejon, M.; Garzón, M.C.L.; Gil, J.L.M. The Mézières Method as a Novel Treatment for Elite Spanish Second-Division Soccer League Players with Low Back Pain: A Randomized Controlled Trial. J. Sport Rehabil. 2022, 31, 398–413. [Google Scholar] [CrossRef]
- Guastala, F.A.M.; Guerini, M.H.; Klein, P.F.; Leite, V.C.; Cappellazzo, R.; Facci, L.M. Effect of Global Postural Re-Education and Isostretching in Patients with Nonspecific Chronic Low Back Pain: A Randomized Clinical Trial. Fisioter. Mov. 2016, 29, 515–525. [Google Scholar] [CrossRef]
- Silva, P.H.B.D.; Inumaru, S.M.S.M. Assessment of Pain in Patients with Chronic Low Back Pain Before and After Application of the Isostretching Method. Fisioter. Mov. 2015, 28, 767–777. [Google Scholar] [CrossRef]
- Moreira, A.K.; Sene, J.L.; Dourado, S.B.; Costa, M.D.; Neto, J.C.; Teles, R.H.; Dutra, Y.M.; Freitas, L.F.; Brauna, I.D.; Oliveira, S.B.; et al. Effect of the isostretching method on lumbar pain and flexibility of the lumbar spine in elderly women. Int. Arch. Med. 2016, 9. [Google Scholar] [CrossRef]
- Melocchi, I.; Filipas, L.; Lovecchio, N.; De Nardi, M.; La Torre, A.; Codella, R. Effects of Different Stretching Methods on Vertical Jump Ability and Range of Motion in Young Female Artistic Gymnastics Athletes. J. Sports Med. Phys. Fit. 2021, 61, 527–533. [Google Scholar] [CrossRef]
- Yu, W.; Feng, D.; Zhong, Y.; Luo, X.; Xu, Q.; Yu, J. Examining the Influence of Warm-Up Static and Dynamic Stretching, as well as Post-Activation Potentiation Effects, on the Acute Enhancement of Gymnastic Performance: A Systematic Review with Meta-Analysis. J. Sports Sci. Med. 2024, 23, 156–176. [Google Scholar] [CrossRef] [PubMed]
- Höög, S.; Andersson, E.P. Sex and Age-Group Differences in Strength, Jump, Speed, Flexibility, and Endurance Performances of Swedish Elite Gymnasts Competing in TeamGym. Front. Sports Act. Living 2021, 3, 653503. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.E.; Thomas, B.C. A Systematic Review of Injuries in Gymnastics. Physician Sportsmed. 2019, 47, 96–121. [Google Scholar] [CrossRef]
- Butcher, N.J.; Monsour, A.; Mew, E.J.; Chan, A.W.; Moher, D.; Mayo-Wilson, E.; Terwee, C.B.; Chee-A-Tow, A.; Baba, A.; Gavin, F.; et al. Guidelines for Reporting Outcomes in Trial Reports: The CONSORT-Outcomes 2022 Extension. JAMA 2022, 328, 2252–2264. [Google Scholar] [CrossRef]
- Alfonso-Mora, M.L.; Guerra-Balic, M.; Sánchez-Martín, R.; Pedraza-Gómez, Z.; Ramírez-Moreno, J.; Castellanos-Garrido, A.L.; Zambrano-Cristancho, L.K.; Rengifo Varona, M.L. Mézières Method as a Practice of Embodiment in Patients with Low Back Pain: A Mixed Study. Ann. Med. 2023, 55, 2265379. [Google Scholar] [CrossRef]
- Alfonso-Mora, M.L.; Ramírez-Moreno, J.; Guerra-Balic, M.; Sánchez-Martín, R.; Castellanos, A.L.; Rengifo, M.L. Effects and Experience with the Mézières Method in People with Low Back Pain: A Mixed Methods Study. J. Back Musculoskelet. Rehabil. 2022, 35, 485–493. [Google Scholar] [CrossRef]
- Ramirez-Moreno, J.; Revilla-Gutierrez, J.R. Nouvelle Définition Académique de la Méthode Mézières. Scient. Kinésithér. 2018, 0598, 35–45. [Google Scholar]
- Camuncoli, F.; Barni, L.; Nutarelli, S.; Rocchi, J.E.; Barcillesi, M.; Di Dio, I.; Sambruni, A.; Galli, M. Validity of the Baiobit Inertial Measurements Unit for the Assessment of Vertical Double- and Single-Leg Countermovement Jumps in Athletes. Int. J. Environ. Res. Public Health 2022, 19, 14720. [Google Scholar] [CrossRef]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement Jump Performance Assessment Using a Wearable 3D Inertial Measurement Unit. J. Sports Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef]
- Yazici, G.; Yazici, M.V.; Çobanoğlu, G.; Küpeli, B.; Özkul, Ç.; Oskay, D.; Güzel, N.A. The Reliability of a Wearable Movement Analysis System (G-Walk) on Gait and Jump Assessment in Healthy Adults. J. Exerc. Ther. Rehabil. 2020, 7, 159–167. [Google Scholar]
- Cervera-Garvi, P.; Galan-Hurtado, M.H.; Marchena-Rodriguez, A.; Chicharro-Luna, E.; Guerra-Marmolejo, C.; Diaz-Miguel, S.; Ortega-Avila, A.B. Transcultural Adaptation and Validation of the Spanish Version of the Visual Analogue Scale for the Foot and Ankle (VASFA). J. Clin. Med. 2023, 13, 213. [Google Scholar] [CrossRef] [PubMed]
- Byrom, B.; Elash, C.A.; Eremenco, S.; Bodart, S.; Muehlhausen, W.; Platko, J.V.; Watson, C.; Howry, C. Measurement Comparability of Electronic and Paper Administration of Visual Analogue Scales: A Review of Published Studies. Ther. Innov. Regul. Sci. 2022, 56, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Cabrejas, C.; Solana-Tramunt, M.; Morales, J.; Nieto, A.; Bofill, A.; Carballeira, E.; Pierantozzi, E. The Effects of an Eight-Week Integrated Functional Core and Plyometric Training Program on Young Rhythmic Gymnasts’ Explosive Strength. Int. J. Environ. Res. Public Health 2023, 20, 1041. [Google Scholar] [CrossRef]
- Feng, D.; Yang, W.; Li, L. Countermovement Jump and Reactive Strength Index of Artistic Gymnasts Improve More with Cluster-Based Plyometric Training than with Traditional Methods. Sci. Rep. 2024, 14, 24700. [Google Scholar] [CrossRef]
- Souza, A.A.; Bottaro, M.; Rocha, V.A.; Lage, V.; Tufano, J.J.; Vieira, A. Reliability and Test-Retest Agreement of Mechanical Variables Obtained During Countermovement Jump. Int. J. Exerc. Sci. 2020, 13, 6–17. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Mora-Custodio, R.; Franco-Márquez, F.; Yáñez-García, J.M.; González-Badillo, J.J. Traditional vs. Sport-Specific Vertical Jump Tests: Reliability, Validity, and Relationship with the Legs Strength and Sprint Performance in Adult and Teen Soccer and Basketball Players. J. Strength Cond. Res. 2017, 31, 196–206. [Google Scholar] [CrossRef]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Leong, C.-H.; Bohling, Z.; Forsythe, C. Posterior Chain and Core Training Improves Pelvic Posture. J. Sports Med. Phys. Fit. 2023, 64, 55–64. [Google Scholar]
- Nambi, G.; Abdelbasset, W.K.; Elsayed, S.H.; Alrawaili, S.M.; Abodonya, A.M.; Saleh, A.K.; Elnegamy, T.E. Comparative Effects of Isokinetic Training and Virtual Reality Training on Sports Performances in University Football Players with Chronic Low Back Pain-Randomized Controlled Study. Evid.-Based Complement. Altern. Med. 2020, 2020, 2981273. [Google Scholar] [CrossRef]
- Jay, K.; Jakobsen, M.D.; Sundstrup, E.; Skotte, J.H.; Jørgensen, M.B.; Andersen, C.H.; Pedersen, M.T.; Andersen, L.L. Effects of Kettlebell Training on Postural Coordination and Jump Performance: A Randomized Controlled Trial. J. Strength Cond. Res. 2013, 27, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- DiFiori, J.P.; Puffer, J.C.; Aish, B.; Dorey, F. Wrist Pain in Young Gymnasts: The “Gymnast Wrist”. Am. J. Sports Med. 2014, 30, 789–793. [Google Scholar]
- Kirkendall, D.T.; Calabrese, G. Physiological Aspects of Gymnastics. Sports Med. 1983, 1, 315–326. [Google Scholar]
- Caine, D.; Goodwin, B.J.; Caine, C.; Bergeron, M.F. Epidemiology of Injury in Olympic Sports. Br. J. Sports Med. 2013, 47, 464–468. [Google Scholar]
- Harringe, M.L.; Renstrom, P.; Werner, S. Injury Incidence, Mechanism, and Diagnosis in Top-Level Competitive Gymnastics. Scand. J. Med. Sci. Sports 2007, 17, 389–395. [Google Scholar]
- Roussel, N.A.; Nijs, J.; Mottram, S.; Van Moorsel, A.; Truijen, S.; Stassijns, G. Altered Lumbopelvic Movement Control but Not Generalized Joint Hypermobility Is Associated with Increased Injury in Dancers. J. Orthop. Sports Phys. Ther. 2009, 39, 265–276. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Spiezia, F.; Denaro, V. Sports Injuries in Young Athletes: Long-Term Outcome and Prevention Strategies. Physician Sportsmed. 2010, 38, 29–34. [Google Scholar] [CrossRef]
- Sanchis-Moysi, J.; Idoate, F.; Dorado, C.; Calbet, J.A.L. The Core Musculature in Male and Female Professional Rhythmic Gymnasts: Relationship with Sport Practice. Scand. J. Med. Sci. Sports 2017, 27, 33–43. [Google Scholar]
- Mohammad, A. Contribution of Anthropometric Characteristics as Well as Skinfold Measurements to Performance Scores in Sub-Junior Female Gymnasts. World J. Sport Sci. 2015, 10, 34–38. [Google Scholar]
- Taboada-Iglesias, Y.; Vernetta Santana, M.; Gutiérrez-Sánchez, Á. Anthropometric Profile in Different Event Categories of Acrobatic Gymnastics. J. Hum. Kinet. 2017, 57, 169–179. [Google Scholar] [CrossRef]
Groups | Age | Height | Weight | Training Hours Per Day | Training Days Per Week | |
---|---|---|---|---|---|---|
Mezieres | N | 8 | 8 | 8 | 8 | 8 |
Mean | 13.375 | 157.250 | 42.000 | 14.875 | 4.380 | |
SD | 0.916 | 12.848 | 7.171 | 2.474 | 0.518 | |
Isostretching | N | 9 | 9 | 9 | 9 | 9 |
Mean | 14.333 | 155.111 | 45.055 | 15.777 | 4.440 | |
SD | 4.821 | 6.641 | 8.966 | 3.889 | 0.527 | |
Total | N | 17 | 17 | 17 | 17 | 17 |
Mean | 13.882 | 156.117 | 43.617 | 15.352 | 4.410 | |
SD | 3.497 | 9.771 | 8.072 | 3.234 | 0.507 | |
Sig. | 0.589 | 0.667 | 0.454 | 0.582 | 0.788 |
Outcomes Measured with Baiobit Sensor | Evaluation Period | Group | N | Mean | SD | t Test | Between Groups Differences | Between Groups Treatments Effects | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sig | t | Sig. (2-Tailed) | Mean Difference | 95% Confidence Interval of the Difference | F | Sig. | η2 | |||||||
CMJ Maximal Speed | Baseline | Mezieres | 8 | 1.974 | 0.261 | 0.086 | 0.799 | 0.437 | 0.087 | −0.145 | 0.320 | 10.603 | 0.006 | 0.431 |
Isostretching | 9 | 1.887 | 0.187 | |||||||||||
4 sessions | Mezieres | 8 | 1.965 | 0.267 | 0.476 | 2.153 | 0.048 | 0.335 | 0.003 | 0.667 | ||||
Isostretching | 9 | 1.630 | 0.360 | |||||||||||
8 sessions | Mezieres | 8 | 1.908 | 0.326 | 0.151 | 1.443 | 0.170 | 0.293 | −0.140 | 0.726 | ||||
Isostretching | 9 | 1.614 | 0.484 | |||||||||||
12 sessions | Mezieres | 8 | 2.099 | 0.265 | 0.450 | 1.039 | 0.315 | 0.165 | −0.174 | 0.505 | ||||
Isostretching | 9 | 1.933 | 0.374 | |||||||||||
24 sessions | Mezieres | 8 | 2.344 | 0.559 | 0.384 | 1.402 | 0.181 | 0.306 | −0.159 | 0.771 | ||||
Isostretching | 9 | 2.038 | 0.324 | |||||||||||
CMJ Maximal Hight | Baseline | Mezieres | 8 | 16.125 | 3.227 | 0.378 | 0.552 | 0.589 | 0.792 | −2.268 | 3.851 | 10.212 | 0.006 | 0.422 |
Isostretching | 9 | 15.333 | 2.693 | |||||||||||
4 sessions | Mezieres | 8 | 18.125 | 2.588 | 0.272 | 3.205 | 0.006 | 4.569 | 1.531 | 7.608 | ||||
Isostretching | 9 | 13.556 | 3.206 | |||||||||||
8 sessions | Mezieres | 8 | 18.125 | 2.588 | 0.341 | 2.154 | 0.048 | 3.792 | 0.039 | 7.544 | ||||
Isostretching | 9 | 14.333 | 4.330 | |||||||||||
12 sessions | Mezieres | 8 | 18.875 | 3.758 | 0.563 | 0.442 | 0.665 | 0.764 | −2.920 | 4.448 | ||||
Isostretching | 9 | 18.111 | 3.371 | |||||||||||
24 sessions | Mezieres | 8 | 21.000 | 3.117 | 0.947 | 1.957 | 0.069 | 2.667 | −0.238 | 5.572 | ||||
Isostretching | 9 | 18.333 | 2.500 |
Outcomes Measured with Baiobit Sensor | Evaluation Period | Group | N | Mean | Std. Deviation | t Test | Between Groups Differences | Between Groups Treatments Effects | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sig | t | Sig. (2-Tailed) | Mean Difference | 95% Confidence Interval of the Difference | F | Sig. | η2 | |||||||
CMJ Maximal Force | Baseline | Mezieres | 8 | 0.748 | 0.248 | 0.203 | 0.689 | 0.501 | 0.067 | −0.141 | 0.276 | 8.194 | 0.003 | 0.672 |
Isostretching | 9 | 0.680 | 0.150 | |||||||||||
4 sessions | Mezieres | 8 | 0.700 | 0.124 | 0.426 | 2.309 | 0.036 | 0.134 | 0.010 | 0.259 | ||||
Isostretching | 9 | 0.566 | 0.116 | |||||||||||
8 sessions | Mezieres | 8 | 0.693 | 0.156 | 0.452 | 0.998 | 0.334 | 0.063 | −0.071 | 0.196 | ||||
Isostretching | 9 | 0.630 | 0.099 | |||||||||||
12 sessions | Mezieres | 8 | 0.866 | 0.210 | 0.928 | 1.779 | 0.095 | 0.171 | −0.034 | 0.375 | ||||
Isostretching | 9 | 0.696 | 0.185 | |||||||||||
24 sessions | Mezieres | 8 | 0.956 | 0.211 | 0.063 | 0.180 | 0.860 | 0.025 | −0.273 | 0.323 | ||||
Isostretching | 9 | 0.931 | 0.341 | |||||||||||
CMJ Concentric | Baseline | Mezieres | 8 | 0.230 | 0.146 | 0.228 | −0.802 | 0.435 | −0.073 | −0.268 | 0.122 | 2.865 | 0.048 | 0.170 |
Isostretching | 9 | 0.303 | 0.219 | |||||||||||
4 sessions | Mezieres | 8 | 0.501 | 0.208 | 0.259 | 2.024 | 0.061 | 0.175 | −0.009 | 0.358 | ||||
Isostretching | 9 | 0.327 | 0.146 | |||||||||||
8 sessions | Mezieres | 8 | 0.296 | 0.145 | 0.064 | −1.567 | 0.138 | −0.087 | −0.206 | 0.031 | ||||
Isostretching | 9 | 0.383 | 0.079 | |||||||||||
12 sessions | Mezieres | 8 | 0.426 | 0.228 | 0.081 | 1.457 | 0.166 | 0.133 | −0.062 | 0.327 | ||||
Isostretching | 9 | 0.293 | 0.144 | |||||||||||
24 sessions | Mezieres | 8 | 0.358 | 0.114 | 0.560 | 1.974 | 0.067 | 0.091 | −0.007 | 0.189 | ||||
Isostretching | 9 | 0.267 | 0.074 | |||||||||||
CMJ Eccentric | Baseline | Mezieres | 8 | 0.430 | 0.150 | 0.337 | 0.407 | 0.690 | 0.028 | −0.118 | 0.173 | 2.396 | 0.119 | 0.375 |
Isostretching | 9 | 0.402 | 0.131 | |||||||||||
4 sessions | Mezieres | 8 | 0.431 | 0.200 | 0.646 | −0.254 | 0.803 | −0.022 | −0.208 | 0.164 | ||||
Isostretching | 9 | 0.453 | 0.159 | |||||||||||
8 sessions | Mezieres | 8 | 0.403 | 0.136 | 0.142 | 0.400 | 0.695 | 0.044 | −0.189 | 0.276 | ||||
Isostretching | 9 | 0.359 | 0.280 | |||||||||||
12 sessions | Mezieres | 8 | 0.329 | 0.194 | 0.423 | −0.473 | 0.643 | −0.055 | −0.301 | 0.191 | ||||
Isostretching | 9 | 0.383 | 0.270 | |||||||||||
24 sessions | Mezieres | 8 | 0.350 | 0.290 | 0.039 | 1.825 | 0.088 | 0.177 | −0.030 | 0.383 | ||||
Isostretching | 9 | 0.173 | 0.028 |
Outcomes Measured with Baiobit Sensor | Evaluation Period | Group | N | Mean | Std. Deviation | t Test | Between Groups Differences | Between Groups Treatments Effects | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sig | t | Sig. (2-Tailed) | Mean Difference | 95% Confidence Interval of the Difference | F | Sig. | η2 | |||||||
CMJ Flight Time | Baseline | Mezieres | 8 | 0.356 | 0.032 | 0.548 | 0.753 | 0.463 | 0.011 | −0.020 | 0.041 | 10.987 | 0.005 | 0.440 |
Isostretching | 9 | 0.346 | 0.026 | |||||||||||
4 sessions | Mezieres | 8 | 0.371 | 0.033 | 0.237 | 2.373 | 0.031 | 0.047 | 0.005 | 0.089 | ||||
Isostretching | 9 | 0.324 | 0.046 | |||||||||||
8 sessions | Mezieres | 8 | 0.375 | 0.029 | 0.052 | 2.100 | 0.053 | 0.063 | −0.001 | 0.126 | ||||
Isostretching | 9 | 0.312 | 0.080 | |||||||||||
12 sessions | Mezieres | 8 | 0.390 | 0.033 | 0.901 | 0.730 | 0.477 | 0.013 | −0.026 | 0.052 | ||||
Isostretching | 9 | 0.377 | 0.041 | |||||||||||
24 sessions | Mezieres | 8 | 0.405 | 0.030 | 0.916 | 1.761 | 0.099 | 0.024 | −0.005 | 0.053 | ||||
Isostretching | 9 | 0.381 | 0.026 | |||||||||||
CJM Contact Time | Baseline | Mezieres | 8 | 0.661 | 0.164 | 0.114 | −0.366 | 0.719 | −0.049 | −0.332 | 0.235 | 4.352 | 0.027 | 0.521 |
Isostretching | 9 | 0.710 | 0.342 | |||||||||||
4 sessions | Mezieres | 8 | 0.935 | 0.288 | 0.812 | 1.262 | 0.226 | 0.154 | −0.106 | 0.414 | ||||
Isostretching | 9 | 0.781 | 0.213 | |||||||||||
8 sessions | Mezieres | 8 | 0.700 | 0.239 | 0.493 | −0.206 | 0.839 | −0.030 | −0.340 | 0.280 | ||||
Isostretching | 9 | 0.730 | 0.344 | |||||||||||
12 sessions | Mezieres | 8 | 0.665 | 0.281 | 0.916 | −0.083 | 0.935 | −0.012 | −0.310 | 0.287 | ||||
Isostretching | 9 | 0.677 | 0.294 | |||||||||||
24 sessions | Mezieres | 8 | 0.709 | 0.203 | 0.349 | 3.567 | 0.003 | 0.269 | 0.108 | 0.429 | ||||
Isostretching | 9 | 0.440 | 0.094 | |||||||||||
CJM VAS | Baseline | Mezieres | 8 | 5.750 | 0.886 | 0.785 | −0.067 | 0.948 | −0.028 | −0.917 | 0.861 | 34.392 | 0.000 | 0.896 |
Isostretching | 9 | 5.778 | 0.833 | |||||||||||
4 sessions | Mezieres | 8 | 4.125 | 1.458 | 0.292 | −0.347 | 0.733 | −0.208 | −1.487 | 1.071 | ||||
Isostretching | 9 | 4.333 | 1.000 | |||||||||||
8 sessions | Mezieres | 8 | 3.375 | 1.061 | 0.753 | 0.812 | 0.429 | 0.486 | −0.790 | 1.762 | ||||
Isostretching | 9 | 2.889 | 1.364 | |||||||||||
12 sessions | Mezieres | 8 | 2.750 | 0.886 | 0.269 | 1.077 | 0.298 | 0.417 | −0.408 | 1.241 | ||||
Isostretching | 9 | 2.333 | 0.707 | |||||||||||
24 sessions | Mezieres | 8 | 1.625 | 0.744 | 0.369 | 1.788 | 0.094 | 0.736 | −0.141 | 1.613 | ||||
Isostretching | 9 | 0.889 | 0.928 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lena, O.; Qorri, E.; Martínez-Fuentes, J.; Todri, J. Mézières Method vs. Isostretching Postures on Countermovement Jump Performance in Elite Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial. Appl. Sci. 2025, 15, 3477. https://doi.org/10.3390/app15073477
Lena O, Qorri E, Martínez-Fuentes J, Todri J. Mézières Method vs. Isostretching Postures on Countermovement Jump Performance in Elite Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial. Applied Sciences. 2025; 15(7):3477. https://doi.org/10.3390/app15073477
Chicago/Turabian StyleLena, Orges, Erda Qorri, Juan Martínez-Fuentes, and Jasemin Todri. 2025. "Mézières Method vs. Isostretching Postures on Countermovement Jump Performance in Elite Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial" Applied Sciences 15, no. 7: 3477. https://doi.org/10.3390/app15073477
APA StyleLena, O., Qorri, E., Martínez-Fuentes, J., & Todri, J. (2025). Mézières Method vs. Isostretching Postures on Countermovement Jump Performance in Elite Rhythmic Gymnasts with Low Back Pain: A Randomized Controlled Trial. Applied Sciences, 15(7), 3477. https://doi.org/10.3390/app15073477