Natural Health Products in the Prevention and Management of Alzheimer’s Disease: A Systematic Review of Randomized Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
- P (population): people living with AD;
- I (intervention): supplementation of NHPs (e.g., vitamins, minerals, herbal extracts, and micronutrients);
- C (comparison): placebo group or control group;
- O (outcomes): efficacy or safety of supplementation of NHPs in patients with diagnosis of AD;
- T (type of study): RCT.
2.1. Search Strategy
2.2. Study Selection, Data Extraction, and Quality Assessment
3. Results
3.1. Search Results
3.2. Vitamin Supplementation in AD
References | Study Design | Country | Patients (n) | Sex (F%) | Range Age (Years) | Mean Age (Years) | NHPs | Concomitant Drugs | Follow-Up | Outcomes | Main Results and Limitations | Jadad Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aisen et al. [26] (2008) | Multicenter, double-blind, placebo-controlled trial | USA | 409 -INT-g: 240 -PL-g: 169 | 56 -INT-g: 57.5 -PL-g: 53.9 | NA | 76.3 -INT-g: 75.7 -PL-g: 77.3 | Folic acid, vitamins B6, and B12 | Acetylcholine esterase inhibitors | 18 months | Efficacy and safety of B-vitamin supplementation | Reduced Hcy levels in the treated group compared to placebo (p < 0.001), without slowing AD progression. In addition, a higher incidence of depression was found (68% in the treated group vs. 18% in placebo, p = 0.024). Limitations: lack of measurement of basal Hcy levels. | 4 |
Sun et al. [27] (2007) | Double-blind, placebo-controlled trial | Asia | 89 -INT-g: 45 -PL-g: 44 | -INT-g: 53.3 -PL-g: 45.5 | NA | -INT-g: 74.9 -PL-g: 74.6 | Mecobalamin (B12) + pyridoxine (B6) 5 mg, folic acid 1 mg, and other vitamins and iron. | DPZ | 26 weeks | Effects of vitamins on cognitive function and serum Hcy levels in patients with mild-to-moderate AD | Reduced serum Hcy levels in the treated group compared to placebo (p = 0.008) was found. However, no improvement in cognitive function or activities of daily living was observed. Limitations: short follow-up and small final sample size due to adverse reactions from acetylcholinesterase inhibitors. | 5 |
Chen et al. [28] (2021) | Single-blind placebo-controlled trial | Asia | 120 -INT-g: 60 -PL-g: 60 | -INT-g: 50 -PL-g: 56.67 | NA | -INT-g: 68.58 -PL-g: 68.02 | Folic acid and vitamin B12 | NA | 6 months | Effects on cognitive function and inflammation in AD | Improvement in cognitive function, reduced Hcy levels, and increased SAM/SAH ratio was observed in the intervention group compared to placebo (p < 0.001). These effects were observed in patients who were not on a folate-rich diet. Limitations: short follow-up and lack of assessment of the methylation grade of the inflammatory biomarkers. | 3 |
Jia et al. [31] 2019) | Double-blind, placebo-controlled trial | Asia | 210 -INT-g: 105 -CTR-g: 105 | -INT-g: 55.24 -CTR-g: 58.10 | ≥ 65 | -INT-g: 68.02 -PL-g: 67.53 | Vitamin D3 | NA | 12 months | Effects on cognitive function and Aβ-related biomarkers | The supplementation induced an improvement in cognitive function and reduced Aβ-related biomarkers in the supplemented group compared to placebo (p < 0.001). Limitations: lack of assessment of confounding factors, affecting plasma Aβ, protein binding, and hydration. | 4 |
Stein et al. [32] (2011) | Pilot study + double-blind, placebo-controlled trial | Oceania | 31 | 53.1 | 69–80 | NA | Vitamin D2 | Nasal insulin, DPZ, Riv, galantamine, and memantine | 16 weeks | Effects on cognition, disability, and memory in mild–moderate AD patients | No cognitive or disability-related benefits were found in either mild or moderate AD. Limitations: lack of evaluation of patient therapeutic adherence. | 4 |
Galasko et al. [37] (2012) | Multicenter, double-blind, placebo-controlled trial | USA | 78 -G1 (E/C/ALA): 28 -G2 (CoQ): 25 -PL-g: 25 | -G1 (E/C/ALA): 46 -G2 (CoQ): 44 -PL-g: 48 | 50–85 | -G1 (E/C/ALA): 73.6 -G2 (CoQ): 71.4 -PL-g: 73.2 | E/C/ALA or CoQ | Acetyl cholinesterase inhibitor and memantine | 16 weeks | Effects on oxidative stress biomarkers and cognitive function | Reduction in CSF F2-isoprostane levels (p = 0.04) and an improvement in cognitive function (p = 0.02) was observed in the E/C/ALA group compared to control. Limitations: the vitamin E dose of 800 IU/d in the E/C/ALA combination is lower than that generally used in neurodegenerative disorders because the literature associates increased mortality with these high levels. | 4 |
Dysken et al. [38] (2014) | Double-blind, placebo-controlled, parallel-group clinical trial | USA | 613 -Vitamin E-g: 152 -Memantine-g: 155 -INT-g: 154 -PL-g: 152 | -Vitamin E-g: 4 -Memantine-g: 4 -INT-g: 3 -PL-g: 2 | -Vitamin E-g: 55–93 -Memantine-g: 53–92 -INT-g: 54–94 -PL-g: 61–96 | -Vitamin E-g: 78.6 -Memantine-g: 78.8 -INT-g: 78.3 -PL-g: 79.4 | Vitamin E | Memantine, DPZ, galantamine, and Riv | 4 years | Effects on slowing AD progression | Slowing in functional decline in treated patients compared to placebo (p = 0.03). No benefits in patients using memantine alone or combined with vitamin E. Limitations: several patients lost to follow-up, and a small number of women enrolled in the study. | 4 |
Thomas et al. [39] (2001) | Double-blind + open-controlled study | EU | 120 -CTR-g: 60 -G1 (DPZ): 20 -G2 (Riv): 20 -G3 (Vitamin E): 20 | -CTR-g: 58.33 -G1 (DPZ): 55 -G2 (Riv): 55 -G3 (Vitamin E): 50 | -CTR-g: 57–78 -G1 (DPZ): 60–73 -G2 (Riv): 59–71 -G3 (Vitamin E): 58–73 | -CTR-g: 67.5 -G1 (DPZ): 66.5 -G2 (Riv): 65.0 -G3 (Vitamin E): 65.5 | Vitamin E | DPZ and Riv | 6 months | Effects on P300 latency and cognitive function | DPZ and Riv reduced P300 latency and improved cognitive function in the treated group compared to the control, without reaching statistical significance. In contrast, vitamin E had no similar effect. Limitations: a short follow-up. | 4 |
3.3. Omega-3 Supplementation in AD
References | Study Design | Country | Patients (n) | Sex (F %) | Range Age (Years) | Mean Age (Years) | NHPs | Concomitant Drugs | Follow-Up | Outcomes | Main Results and Limitations | Jadad Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Faxèn-Irving et al. [44] (2009) | Double-blind, placebo-controlled trial | EU | 174 -INT-g: 89 -PL-g: 85 | -INT-g: 57 -PL-g: 46 | NA | -INT-g: 72.6 -PL-g: 72.9 | ω-3 FAs (DHA, EPA) | Acetylcholine esterase inhibitor | 12 months | Effects on weight and appetite | ω-3 FA supplements, especially DHA, increased weight gain and appetite compared to placebo (p < 0.01). No correlation between APOEε4 allele and the levels of ω-3 FAs was found. Limitations: lack of food intake data. | 4 |
Faxèn-Irving et al. [45] (2013) | Double-blind, placebo-controlled trial | EU | 174 -INT-g: 89 -PL-g: 85 | -INT-g: 57 -PL-g: 46 | NA | -INT-g: 72.6 -PL-g: 72.9 | ω-3 FAs (DHA, EPA) | Acetylcholine esterase inhibitor | 12 months | Impact on TTR levels | ω-3 FA supplementation increased plasma TTR levels in treated patients compared to placebo (p = 0.04). No changes in TTR levels were observed in CSF. Limitations: TTR analyses in CSF were performed only in a subgroup of patients and only at 6 months follow-up. | 3 |
Freund- Levi et al. [46] (2009) | Double-blind, placebo-controlled trial | EU | 35 -INT-g: 18 -PL-g: 17 | -INT-g: 44 -PL-g: 30 | NA | -INT-g: 72.2 -PL-g: 68.3 | ω-3 FAs (DHA, EPA) and vitamin E | Acetylcholine esterase inhibitor | 6 months | Impact on inflammatory markers in both CSF and plasma | ω-3 FAs did not influence inflammatory markers in CSF or plasma and the biomarkers of dementia. Limitations: a short treatment duration. | 4 |
Freund- Levi et al. [47] (2014) | Double-blind, placebo-controlled trial | EU | 37 -INT-g: 17 -PL-g: 20 | 40.5 | NA | 70 | ω-3 FAs (DHA, EPA) | Acetylcholine esterase inhibitor | 6 months | Impact on oxidative stress and systemic inflammatory biomarkers | ω-3 supplementation did not impact oxidative stress and COX-mediated inflammatory markers. Limitations: absence of a healthy control group and small sample size. | 4 |
Freund-Levi et al. [48] (2008) | Double-blind, placebo-controlled trial | EU | 174 -INT-g: 89 -PL-g: 85 | -INT-g: 57 -PL-g: 46 | NA | -INT-g: 72.6 -PL-g: 72.9 | ω-3 FAs (DHA, EPA) | Acetylcholine esterase inhibitor, antidepressants, neuroleptics, and herbal medication | 12 months | Impact on psychiatric and behavioural symptoms, functional ability, and possible association with APOE genotype | ω-3 FAs led to possible positive effects on depressive manifestation. In APOEε4 carriers, it appears to reduce agitation in treated patients compared to placebo (p = 0.006). Limitations: low dose of ω-3. | 4 |
Freund-Levi et al. [49] (2014) | Double-blind, placebo-controlled trial | EU USA | 33 -INT-g: 18 -PL-g: 15 | NA | NA | NA | ω-3 FAs (DHA, EPA) | Acetylcholine esterase inhibitor | 6 months | Evaluation of ω-3 levels on the CSF profile | Supplementation with ω-3 FAs, particularly DHA, altered plasma and CSF levels of NHPs in the INT-g compared to placebo (p < 0.01). Limitations: lack of determination of the DHA amount retroconverted to EPA in plasma or CSF. | 4 |
Quinn et al. [51] (2010) | Double-blind, placebo-controlled trial | USA | 402 -INT-g: 238 -PL-g: 164 | 52.2 -INT-g: 47.1 -PL-g: 59.8 | NA | 76 | DHA | Cholinesterase inhibitor and memantine | 18 months | Effectiveness on AD progression | DHA supplementation did not slow cognitive decline. Limitations: many participants did not finish the study. | 5 |
Tomaszewski et al. [52] (2020) | Placebo-controlled trial | USA | 275 -INT-g: 161 -PL-g: 114 | NA | NA | NA | DHA | NA | 18 months | Impact of APOE ε4/ε4 genotype on plasma DHA, EPA, and AA levels and hippocampal volume | The reduced DHA/AA and EPA/AA ratios in APOE ε4/ε4 carriers impaired the effectiveness of DHA supplementation in contrast with APOE ε4/ε4 non-carriers (p = 0.048). Limitations: small sample size. | 1 |
Nolan et al. [53] (2022) | Double-blind, placebo-controlled trial | EU | 57 -INT-g: 38 -PL-g: 19 | 63.2 -INT-g: 65.8 -PL-g: 57.9 | >65 | -INT-g: 78.63 -PL-g: 79.74 | Fish oil + carotenoids + vitamin E | NA | 12 months | Impact on AD progression | INT-g showed a lower decline in AD severity and progression than individuals taking placebo (p < 0.001). Limitations: small sample size. | 5 |
Lin et al. [54] (2022) | Multicenter, double-blind, placebo-controlled trial | Asia | 163 -G1 (DHA): 41 -G2 (EPA): 40 -G3 (DHA + EPA): 42 PL-g: 40 | -G1 (DHA): 12 -G2 (EPA): 13 -G3 (DHA + EPA): 15 PL-g: 15 | 65–94 | -G1 (DHA): 78.95 -G2 (EPA): 77.80 -G3 (DHA + EPA): 76.73 PL-g: 78.10 | DHA, EPA, DHA + EPA | NA | 24 months | Effects on cognitive, functional, depressive symptoms, and circulating inflammatory cytokines levels | ω-3 had no beneficial effects on patients with cognitive impairment. Limitations: small sample size. | 4 |
3.4. Micronutrient Supplementation in AD
References | Study Design | Country | Patients (n) | Sex (F %) | Range Age (Years) | Mean Age (Years) | NHPs | Concomitant Drugs | Follow-Up | Outcomes | Main Results and Limitations | Jadad Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Scheltens et al. [61] (2019) | Double-blind, single centre | EU | 50 -INT-g: 25 -CTR-g: 25 | 46 -INT-g: 48 -PL-g: 44 | 50–85 | -INT-g: 65 -PL-g: 66 | Fortasyn Connect (Souvenaid) | NA | 24 weeks | Impact on cognitive function | No differences were found between the INT-g and PL-g. Limitations: short duration of the study. | 3 |
Scheltens et al. [65] (2010) | Multicenter, double-blind, controlled trial | EU USA UK | 212 -INT-g: 106 -CTR-g: 106 | -INT-g: 49 -CTR-g: 51 | -INT-g: 54–87 -CTR-g: 52–92 | -INT-g: 74.1 -CTR-g: 73.3 | Fortasyn Connect (Souvenaid) | NA | 12 weeks | Impact on cognitive performance | Patients with mild AD show improvements in memory, particularly in delayed verbal recall (p = 0.021). Limitations: short duration of the study. | 3 |
Scheltens et al. [66] (2012) | Multi-country, double-blind, parallel-group trial | EU | 259 -INT-g: 130 -CTR-g: 129 | 51 -INT-g: 47.7 -CTR-g: 50.4 | -INT-g: 55–89 -PL-g: 51–88 | -INT-g: 74.4 -CTR-g: 73.2 | Fortasyn Connect (Souvenaid) | NA | 24 weeks | Evaluation of efficacy and tolerability | Souvenaid is well tolerated and has a positive influence on cognitive function (p = 0.023). Limitations: small sample size, no AD biomarker evaluation. | 5 |
Soininen et al. [67] (2017) | Multicenter, double-blind, parallel-group trial | EU | 311 -INT-g: 153 -CTR-g: 158 | INT-g: 47 CTR-g: 54 | -INT-g: 50–86 -CTR-g: 52–84 | -INT-g: 71.3 -CTR-g: 70.7 | Fortasyn Connect (Souvenaid) | NA | 24 months | Impact on cognitive decline and related parameters | No significant effect on cognitive decline was shown. Limitations: small sample size and short duration of the study. | 4 |
Shah et al. [68] (2013) | Multicenter, double-blind | USA | 527 -INT-g: 265 -CTR-g: 262 | -INT-g: 52 -CTR-g: 52 | NA | -INT-g: 76.6 -CTR-g: 76.9 | Fortasyn Connect (Souvenaid) | Acetylch olinesterase inhibitors or memantine | 24 weeks | Evaluation of efficacy and tolerability | Souvenaid is safe and well tolerated. No changes in cognitive function and functional abilities were shown. | 5 |
Planas et al. [70] (2004) | EU | 44 -INT-g: 23 -CTR-g: 21 | -INT-g: 52.17 -CTR-g: 57.14 | NA | -INT-g: 72.52 -CTR-g: 76.71 | Nutritional supplements with micronutrient enhancement | NA | 6 months | Effects on weight and AD progression | No benefits on AD progression were shown. Limitations: short treatment period. | 1 | |
Lauque et al. [71] (2004) | EU | 91 -INT-g: 46 -CTR-g: 45 | NA | 65–92 | 79 -INT-g: 79.52 -CTR-g: 78.11 | Nutritional supplements containing proteins, vitamins, minerals, and nutrients | NA | -Follow-up 1: 3 months -Follow-up 2: 6 months | Impact on body composition and weight, nutritional status, and cognitive functions | An increase in body weight and fat mass was demonstrated in INT-g, but no effect on cognition or biological markers was shown. Limitations: short duration of the study, small sample size, and limited number of follow-ups. | 3 | |
Levak et al. [72] (2024) | Multicentre | EU | 93 -Lifestyle intervention-g: 32 -Lifestyle intervention + medical food: 31 -PL-g: 30 | -Lifestyle intervention-g: 21 -Lifestyle intervention + medical food: 15 -PL-g: 14 | 60–85 | -Lifestyle intervention-g: 72.4 -Lifestyle intervention + medical food: 72.7 -PL-g: 73.7 | Fortasyn Connect | NA | 6 months | Effectiveness and feasibility of a multimodal lifestyle intervention, with or without medical food | Dietary intervention improved HDI (p = 0.042) and MEDAS (p = 0.007). Limitations: Small sample size and use of questionnaires not validated in all EU countries. | 1 |
3.5. Other Supplementations for AD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
[(18F) FDG] | 18F-fluorodeoxyglucose |
[25 (OH)D] | 25-hydroxyvitamin D |
8-iso-PGF2α | 8-iso-prostaglandin F2 α |
AD | Alzheimer’s disease |
ADAS-Cog | Alzheimer’s Disease Assessment Scale–Cognitive Subscale |
ADCS-ADL | Alzheimer’s Disease Cooperative Study–Activities of Daily Living |
AEs | adverse events |
APOE | apolipoprotein |
Aβ | amyloid-β |
B. longum | Bifidobacterium longum |
BDNF | brain-derived neurotrophic factor |
BMI | body mass index |
CDRsob | Clinical Dementia Rating Scale Sum of Boxes |
ChE | cholinesterase |
CNS | central nervous system |
CoQ | coenzyme Q |
COX | cyclooxygenase |
CSF | cerebrospinal fluid |
CTs | clinical trials |
DAD | Disability Assessment for Dementia |
DDIs | drug–drug interactions |
DHA | docosahexaenoic acid |
DPZ | donepezil |
E/C/ALA | vitamin E, vitamin C, and α-acid lipoic |
ELND005 | scyllo-inositol |
EPA | eicosapentaenoic acid |
FDA | Food and Drug Administration |
Hcy | homocysteine |
IL | interleukin |
L. rhamnosus | Lacticaseibacillus rhamnosus |
LDL-R | low-density lipoprotein receptor |
MADRS | Montgomery Åsberg Depression Scale |
MDA | malondialdehyde |
MESH | Medical Subject Heading |
MMSE | Mini-Mental State Examination |
NFTs | neurofibrillary tangles |
NHPs | Natural Health Products |
NMDA | N-methyl-D-aspartate |
NPI | Neuropsychiatric Inventory |
NTB | Neuropsychological Test Battery |
PA | phosphatidic acid |
PCC | protein carbonyl |
PET | positron emission tomography |
PPAR-γ | peroxisome proliferator-activated receptor gamma |
PRISMA | Preferred Reporting Item for Systematic Review and Meta-Analyses |
PS | phosphatidylserine |
RCTs | randomized clinical trials |
RIV | rivastigmine |
SAH | S-adenosylhomocysteine |
SAM | S-Adenosyl methionine |
sIL-1RII | soluble interleukin-1 receptor type II |
SSRIs | selective serotonin reuptake inhibitors |
TGF-β | transforming growth factor beta |
TNF-α | tumor necrosis factor-α |
TTR | transthyretin |
vit | vitamin |
ω-3 | FAs omega-3 fatty acids |
References
- Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 18 February 2025).
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Janoutová, J.; Kovalová, M.; Machaczka, O.; Ambroz, P.; Zatloukalová, A.; Němček, K.; Janout, V. Risk Factors for Alzheimer’s Disease: An Epidemiological Study. Curr. Alzheimer Res. 2021, 18, 372–379. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news/item/07-12-2017-dementia-number-of-people-affected-to-triple-in-next-30-years (accessed on 19 February 2025).
- Serrano-Pozo, A.; Growdon, J.H. Is Alzheimer’s Disease Risk Modifiable? J. Alzheimer’s Dis. JAD 2019, 67, 795–819. [Google Scholar] [PubMed]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of genes and environments for explaining Alzheimer disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L.; et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef]
- Guzman-Martinez, L.; Calfío, C.; Farias, G.A.; Vilches, C.; Prieto, R.; Maccioni, R.B. New Frontiers in the Prevention, Diagnosis, and Treatment of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2021, 82 (Suppl. 1), S51–S63. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Yiannopoulou, K.G.; Anastasiou, A.I.; Zachariou, V.; Pelidou, S.H. Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and Their Contribution in Recent Research. Biomedicines 2019, 7, 97. [Google Scholar] [CrossRef]
- Conti, V.; Polcaro, G.; De Bellis, E.; Donnarumma, D.; De Rosa, F.; Stefanelli, B.; Corbi, G.; Sabbatino, F.; Filippelli, A. Natural Health Products for Anti-Cancer Treatment: Evidence and Controversy. J. Pers. Med. 2024, 14, 685. [Google Scholar] [CrossRef]
- Song, C.; Shieh, C.H.; Wu, Y.S.; Kalueff, A.; Gaikwad, S.; Su, K.P. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: Acting separately or synergistically? Prog. Lipid Res. 2016, 62, 41–54. [Google Scholar]
- Evans, D.A.; Morris, M.C.; Rajan, K.B. Vitamin E, memantine, and Alzheimer disease. JAMA 2014, 311, 29–30. [Google Scholar] [CrossRef]
- Hashiguchi, M.; Ohta, Y.; Shimizu, M.; Maruyama, J.; Mochizuki, M. Meta-analysis of the efficacy and safety of Ginkgo biloba extract for the treatment of dementia. J. Pharm. Health Care Sci. 2015, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.M.; Sturtz, S.; Skipka, G.; Zentner, A.; Velasco Garrido, M.; Busse, R. Ginkgo biloba in Alzheimer’s disease: A systematic review. Wien Med. Wochenschr. 2010, 160, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–5901. [Google Scholar] [CrossRef]
- Jernerén, F.; Elshorbagy, A.K.; Oulhaj, A.; Smith, S.M.; Refsum, H.; Smith, A.D. Brain atrophy in cognitively impaired elderly: The importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am. J. Clin. Nutr. 2015, 102, 215–221. [Google Scholar] [PubMed]
- De Bellis, E.; Donnarumma, D.; Zarrella, A.; Mazzeo, S.M.; Pagano, A.; Manzo, V.; Mazza, I.; Sabbatino, F.; Corbi, G.; Pagliano, P.; et al. Drug-Drug Interactions Between HIV Antivirals and Concomitant Drugs in HIV Patients: What We Know and What We Need to Know. Pharmaceutics 2025, 17, 31. [Google Scholar]
- Durga, J.; van Boxtel, M.P.; Schouten, E.G.; Kok, F.J.; Jolles, J.; Katan, M.B.; Verhoef, P. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: A randomised, double blind, controlled trial. Lancet 2007, 369, 208–216. [Google Scholar]
- Available online: https://www.prisma-statement.org/prisma-2020-flow-diagram (accessed on 18 February 2025).
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin. Trials 1996, 17, 1–12. [Google Scholar]
- Mielech, A.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Socha, K. Vitamins in Alzheimer’s Disease-Review of the Latest Reports. Nutrients 2020, 12, 3458. [Google Scholar] [CrossRef]
- Shah, H.; Dehghani, F.; Ramezan, M.; Gannaban, R.B.; Haque, Z.F.; Rahimi, F.; Abbasi, S.; Shin, A.C. Revisiting the Role of Vitamins and Minerals in Alzheimer’s Disease. Antioxidants 2023, 12, 415. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H.; Bottiglieri, T.; Fenech, M.; Hooshmand, B.; McCaddon, A.; Miller, J.W.; Rosenberg, I.H.; Obeid, R. Homocysteine and Dementia: An International Consensus Statement. J. Alzheimer’s Dis. JAD 2018, 62, 561–570. [Google Scholar] [PubMed]
- Available online: https://www.micuro.it/enciclopedia/anatomia/omocisteina?utm_source (accessed on 18 February 2025).
- Aisen, P.S.; Schneider, L.S.; Sano, M.; Diaz-Arrastia, R.; van Dyck, C.H.; Weiner, M.F.; Bottiglieri, T.; Jin, S.; Stokes, K.T.; Thomas, R.G.; et al. Alzheimer Disease Cooperative Study. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: A randomized controlled trial. JAMA 2008, 300, 1774–1783. [Google Scholar] [PubMed]
- Sun, Y.; Lu, C.J.; Chien, K.L.; Chen, S.T.; Chen, R.C. Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with a cholinesterase inhibitor in Alzheimer’s disease: A 26-week, randomized, double-blind, placebo-controlled study in Taiwanese patients. Clin. Ther. 2007, 29, 2204–2214. [Google Scholar] [CrossRef]
- Chen, H.; Liu, S.; Ge, B.; Zhou, D.; Li, M.; Li, W.; Ma, F.; Liu, Z.; Ji, Y.; Huang, G. Effects of Folic Acid and Vitamin B12 Supplementation on Cognitive Impairment and Inflammation in Patients with Alzheimer’s Disease: A Randomized, Single-Blinded, Placebo-Controlled Trial. J. Prev. Alzheimer’s Dis. 2021, 8, 249–256. [Google Scholar]
- Remington, R.; Chan, A.; Paskavitz, J.; Shea, T.B. Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer’s disease: A placebo-controlled pilot study. Am. J. Alzheimer’s Dis. Other Dement. 2009, 24, 27–33. [Google Scholar]
- Moretti, R.; Morelli, M.E.; Caruso, P. Vitamin D in Neurological Diseases: A Rationale for a Pathogenic Impact. Int. J. Mol. Sci. 2018, 19, 2245. [Google Scholar] [CrossRef]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar]
- Stein, M.S.; Scherer, S.C.; Ladd, K.S.; Harrison, L.C. A randomized controlled trial of high-dose vitamin D2 followed by intranasal insulin in Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2011, 26, 477–484. [Google Scholar]
- Available online: https://www.centroalzheimer.org/la-somministrazione-di-insulina-intranasale-come-terapia-per-la-malattia-di-alzheimer (accessed on 18 February 2025).
- Lopes da Silva, S.; Vellas, B.; Elemans, S.; Luchsinger, J.; Kamphuis, P.; Yaffe, K.; Sijben, J.; Groenendijk, M.; Stijnen, T. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 485–502. [Google Scholar]
- Dong, Y.; Chen, X.; Liu, Y.; Shu, Y.; Chen, T.; Xu, L.; Li, M.; Guan, X. Do low-serum vitamin E levels increase the risk of Alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int. J. Geriatr. Psychiatry 2018, 33, e257–e263. [Google Scholar]
- Ashley, S.; Bradburn, S.; Murgatroyd, C. A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutr. Neurosci. 2021, 24, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Galasko, D.R.; Peskind, E.; Clark, C.M.; Quinn, J.F.; Ringman, J.M.; Jicha, G.A.; Cotman, C.; Cottrell, B.; Montine, T.J.; Thomas, R.G.; et al. Alzheimer’s Disease Cooperative Study. Antioxidants for Alzheimer disease: A randomized clinical trial with cerebrospinal fluid biomarker measures. Arch. Neurol. 2012, 69, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014, 311, 33–44. [Google Scholar] [PubMed]
- Thomas, A.; Iacono, D.; Bonanni, L.; D’Andreamatteo, G.; Onofrj, M. Donepezil, rivastigmine, and vitamin E in Alzheimer disease: A combined P300 event-related potentials/neuropsychologic evaluation over 6 months. Clin. Neuropharmacol. 2001, 24, 31–42. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Holmes, C.; El-Okl, M.; Williams, A.L.; Cunningham, C.; Wilcockson, D.; Perry, V.H. Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 788–789. [Google Scholar] [CrossRef]
- Koyama, A.; O’Brien, J.; Weuve, J.; Blacker, D.; Metti, A.L.; Yaffe, K. The role of peripheral inflammatory markers in dementia and Alzheimer’s disease: A meta-analysis. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 433–440. [Google Scholar]
- Lauritzen, L.; Hansen, H.S.; Jørgensen, M.H.; Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 2001, 40, 1–94. [Google Scholar]
- Faxén-Irving, G.; Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Basun, H.; Brismar, K.; Hjorth, E.; Palmblad, J.; Vessby, B.; Vedin, I.; Wahlund, L.O.; et al. Omega-3 fatty acid supplementation effects on weight and appetite in patients with Alzheimer’s disease: The omega-3 Alzheimer’s disease study. J. Am. Geriatr. Soc. 2009, 57, 11–17. [Google Scholar] [CrossRef]
- Faxén-Irving, G.; Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Basun, H.; Hjorth, E.; Palmblad, J.; Vedin, I.; Cederholm, T.; Wahlund, L.O. Effects on transthyretin in plasma and cerebrospinal fluid by DHA-rich n—3 fatty acid supplementation in patients with Alzheimer’s disease: The OmegAD study. J. Alzheimer’s Dis. JAD 2013, 36, 1–6. [Google Scholar] [CrossRef]
- Freund-Levi, Y.; Hjorth, E.; Lindberg, C.; Cederholm, T.; Faxen-Irving, G.; Vedin, I.; Palmblad, J.; Wahlund, L.O.; Schultzberg, M.; Basun, H.; et al. Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer’s disease: The OmegAD study. Dement. Geriatr. Cogn. Disord. 2009, 27, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Freund-Levi, Y.; Vedin, I.; Hjorth, E.; Basun, H.; Faxén Irving, G.; Schultzberg, M.; Eriksdotter, M.; Palmblad, J.; Vessby, B.; Wahlund, L.O.; et al. Effects of supplementation with omega-3 fatty acids on oxidative stress and inflammation in patients with Alzheimer’s disease: The OmegAD study. J. Alzheimer’s Dis. JAD 2014, 42, 823–831. [Google Scholar] [CrossRef]
- Freund-Levi, Y.; Basun, H.; Cederholm, T.; Faxén-Irving, G.; Garlind, A.; Grut, M.; Vedin, I.; Palmblad, J.; Wahlund, L.O.; Eriksdotter-Jönhagen, M. Omega-3 supplementation in mild to moderate Alzheimer’s disease: Effects on neuropsychiatric symptoms. Int. J. Geriatr. Psychiatry 2008, 23, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Freund Levi, Y.; Vedin, I.; Cederholm, T.; Basun, H.; Faxén Irving, G.; Eriksdotter, M.; Hjorth, E.; Schultzberg, M.; Vessby, B.; Wahlund, L.O.; et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: The OmegAD study. J. Intern. Med. 2014, 275, 428–436. [Google Scholar] [CrossRef]
- Jernerén, F.; Cederholm, T.; Refsum, H.; Smith, A.D.; Turner, C.; Palmblad, J.; Eriksdotter, M.; Hjorth, E.; Faxen-Irving, G.; Wahlund, L.O.; et al. Homocysteine Status Modifies the Treatment Effect of Omega-3 Fatty Acids on Cognition in a Randomized Clinical Trial in Mild to Moderate Alzheimer’s Disease: The OmegAD Study. J. Alzheimer’s Dis. JAD 2019, 69, 189–197. [Google Scholar] [CrossRef]
- Quinn, J.F.; Raman, R.; Thomas, R.G.; Yurko-Mauro, K.; Nelson, E.B.; Van Dyck, C.; Galvin, J.E.; Emond, J.; Jack, C.R., Jr.; Weiner, M.; et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: A randomized trial. JAMA 2010, 304, 1903–1911. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, N.; He, X.; Solomon, V.; Lee, M.; Mack, W.J.; Quinn, J.F.; Braskie, M.N.; Yassine, H.N. Effect of APOE Genotype on Plasma Docosahexaenoic Acid (DHA), Eicosapentaenoic Acid, Arachidonic Acid, and Hippocampal Volume in the Alzheimer’s Disease Cooperative Study-Sponsored DHA Clinical Trial. J. Alzheimer’s Dis. JAD 2020, 74, 975–990. [Google Scholar] [CrossRef]
- Nolan, J.M.; Power, R.; Howard, A.N.; Bergin, P.; Roche, W.; Prado-Cabrero, A.; Pope, G.; Cooke, J.; Power, T.; Mulcahy, R. Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2022, 90, 233–249. [Google Scholar]
- Lin, P.Y.; Cheng, C.; Satyanarayanan, S.K.; Chiu, L.T.; Chien, Y.C.; Chuu, C.P.; Lan, T.H.; Su, K.P. Omega-3 fatty acids and blood-based biomarkers in Alzheimer’s disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav. Immun. 2022, 99, 289–298. [Google Scholar] [CrossRef]
- van der Beek, E.M.; Kamphuis, P.J. The potential role of nutritional components in the management of Alzheimer’s Disease. Eur. J. Pharmacol. 2008, 585, 197–207. [Google Scholar] [CrossRef]
- Cremonini, A.L.; Caffa, I.; Cea, M.; Nencioni, A.; Odetti, P.; Monacelli, F. Nutrients in the Prevention of Alzheimer’s Disease. Oxidative Med. Cell Longev. 2019, 2019, 9874159. [Google Scholar] [CrossRef]
- Wurtman, R.J.; Ulus, I.H.; Cansev, M.; Watkins, C.J.; Wang, L.; Marzloff, G. Synaptic proteins and phospholipids are increased in gerbil brain by administering uridine plus docosahexaenoic acid orally. Brain Res. 2006, 1088, 83–92. [Google Scholar] [PubMed]
- Cansev, M.; Wurtman, R.J.; Sakamoto, T.; Ulus, I.H. Oral administration of circulating precursors for membrane phosphatides can promote the synthesis of new brain synapses. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2008, 4 (Suppl. 1), S153–S168. [Google Scholar]
- Burckhardt, M.; Watzke, S.; Wienke, A.; Langer, G.; Fink, A. Souvenaid for Alzheimer’s disease. Cochrane Database Syst. Rev. 2020, 12, CD011679. [Google Scholar] [PubMed]
- García-Alberca, J.M.; Gris, E.; de la Guía, P.; Mendoza, S.; de la Rica, M.L. Efficacy of Souvenaid® Combined with Acetylcholinesterase Inhibitors in the Treatment of Mild Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2023, 91, 1459–1469. [Google Scholar] [CrossRef]
- Scheltens, N.M.E.; Briels, C.T.; Yaqub, M.; Barkhof, F.; Boellaard, R.; van der Flier, W.M.; Schwarte, L.A.; Teunissen, C.E.; Attali, A.; Broersen, L.M.; et al. Exploring effects of Souvenaid on cerebral glucose metabolism in Alzheimer’s disease. Alzheimer’s Dement. 2019, 5, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Pardini, M.; Serrati, C.; Guida, S.; Mattei, C.; Abate, L.; Massucco, D.; Sassos, D.; Amore, M.; Krueger, F.; Cocito, L.; et al. Souvenaid reduces behavioral deficits and improves social cognition skills in frontotemporal dementia: A proof-of-concept study. Neuro-Degener. Dis. 2015, 15, 58–62. [Google Scholar]
- Rijpma, A.; Meulenbroek, O.; van Hees, A.M.; Sijben, J.W.; Vellas, B.; Shah, R.C.; Bennett, D.A.; Scheltens, P.; Olde Rikkert, M.G. Effects of Souvenaid on plasma micronutrient levels and fatty acid profiles in mild and mild-to-moderate Alzheimer’s disease. Alzheimer’s Res. Ther. 2015, 7, 51. [Google Scholar]
- Kamphuis, P.J.; Verhey, F.R.; Olde Rikkert, M.G.; Twisk, J.W.; Swinkels, S.H.; Scheltens, P. Effect of a medical food on body mass index and activities of daily living in patients with Alzheimer’s disease: Secondary analyses from a randomized, controlled trial. J. Nutr. Health Aging 2011, 15, 672–676. [Google Scholar]
- Scheltens, P.; Kamphuis, P.J.; Verhey, F.R.; Olde Rikkert, M.G.; Wurtman, R.J.; Wilkinson, D.; Twisk, J.W.; Kurz, A. Efficacy of a medical food in mild Alzheimer’s disease: A randomized, controlled trial. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2010, 6, 1–10.e1. [Google Scholar]
- Scheltens, P.; Twisk, J.W.; Blesa, R.; Scarpini, E.; von Arnim, C.A.; Bongers, A.; Harrison, J.; Swinkels, S.H.; Stam, C.J.; de Waal, H.; et al. Efficacy of Souvenaid in mild Alzheimer’s disease: Results from a randomized, controlled trial. J. Alzheimer’s Dis. JAD 2012, 31, 225–236. [Google Scholar] [PubMed]
- Soininen, H.; Solomon, A.; Visser, P.J.; Hendrix, S.B.; Blennow, K.; Kivipelto, M.; Hartmann, T.; LipiDiDiet clinical study group. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer’s disease (LipiDiDiet): A randomised, double-blind, controlled trial. Lancet. Neurol. 2017, 16, 965–975. [Google Scholar]
- Shah, R.C.; Kamphuis, P.J.; Leurgans, S.; Swinkels, S.H.; Sadowsky, C.H.; Bongers, A.; Rappaport, S.A.; Quinn, J.F.; Wieggers, R.L.; Scheltens, P.; et al. The S-Connect study: Results from a randomized, controlled trial of Souvenaid in mild-to-moderate Alzheimer’s disease. Alzheimer’s Res. Ther. 2013, 5, 59. [Google Scholar]
- Olde Rikkert, M.G.; Verhey, F.R.; Blesa, R.; von Arnim, C.A.; Bongers, A.; Harrison, J.; Sijben, J.; Scarpini, E.; Vandewoude, M.F.; Vellas, B.; et al. Tolerability and safety of Souvenaid in patients with mild Alzheimer’s disease: Results of multi-center, 24-week, open-label extension study. J. Alzheimer’s Dis. JAD 2015, 44, 471–480. [Google Scholar]
- Planas, M.; Conde, M.; Audivert, S.; Pérez-Portabella, C.; Burgos, R.; Chacón, P.; Rossello, J.; Boada, M.; Tàrraga, L.L. Micronutrient supplementation in mild Alzheimer disease patients. Clin. Nutr. 2004, 23, 265–272. [Google Scholar]
- Lauque, S.; Arnaud-Battandier, F.; Gillette, S.; Plaze, J.M.; Andrieu, S.; Cantet, C.; Vellas, B. Improvement of weight and fat-free mass with oral nutritional supplementation in patients with Alzheimer’s disease at risk of malnutrition: A prospective randomized study. J. Am. Geriatr. Soc. 2004, 52, 1702–1707. [Google Scholar] [PubMed]
- Levak, N.; Lehtisalo, J.; Thunborg, C.; Westman, E.; Andersen, P.; Andrieu, S.; Broersen, L.M.; Coley, N.; Hartmann, T.; Irving, G.F.; et al. Nutrition guidance within a multimodal intervention improves diet quality in prodromal Alzheimer’s disease: Multimodal Preventive Trial for Alzheimer’s Disease (MIND-ADmini). Alzheimer’s Res. Ther. 2024, 16, 147. [Google Scholar]
- Naomi, R.; Embong, H.; Othman, F.; Ghazi, H.F.; Maruthey, N.; Bahari, H. Probiotics for Alzheimer’s Disease: A Systematic Review. Nutrients 2021, 14, 20. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Huang, Y.Y.; Tsai, S.Y.; Kuo, Y.W.; Lin, J.H.; Ho, H.H.; Chen, J.F.; Hsia, K.C.; Sun, Y. Efficacy of Probiotic Supplements on Brain-Derived Neurotrophic Factor, Inflammatory Biomarkers, Oxidative Stress and Cognitive Function in Patients with Alzheimer’s Dementia: A 12-Week Randomized, Double-Blind Active-Controlled Study. Nutrients 2023, 16, 16. [Google Scholar] [CrossRef]
- Akhgarjand, C.; Vahabi, Z.; Shab-Bidar, S.; Anoushirvani, A.; Djafarian, K. The effects of probiotic supplements on oxidative stress and inflammation in subjects with mild and moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled study. Inflammopharmacology 2024, 32, 1413–1420. [Google Scholar] [CrossRef]
- Tamtaji, O.R.; Heidari-Soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr. 2019, 38, 2569–2575. [Google Scholar] [CrossRef]
- Foroumandi, E.; Javan, R.; Moayed, L.; Fahimi, H.; Kheirabadi, F.; Neamatshahi, M.; Shogofteh, F.; Zarghi, A. The effects of fenugreek seed extract supplementation in patients with Alzheimer’s disease: A randomized, double-blind, placebo-controlled trial. Phytother. Res. PTR 2023, 37, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.R.; Roberts, B.R.; Malpas, C.B.; Vivash, L.; Genc, S.; Saling, M.M.; Desmond, P.; Steward, C.; Hicks, R.J.; Callahan, J.; et al. Supranutritional Sodium Selenate Supplementation Delivers Selenium to the Central Nervous System: Results from a Randomized Controlled Pilot Trial in Alzheimer’s Disease. Neurother. J. Am. Soc. Exp. NeuroTher. 2019, 16, 192–202. [Google Scholar] [CrossRef]
- Moré, M.I.; Freitas, U.; Rutenberg, D. Positive effects of soy lecithin-derived phosphatidylserine plus phosphatidic acid on memory, cognition, daily functioning, and mood in elderly patients with Alzheimer’s disease and dementia. Adv. Ther. 2014, 31, 1247–1262. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A.P.; van Dyck, C.H.; Tariot, P.N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011, 77, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wen, S.; Zhou, J.; Ding, S. Association between malnutrition and hyperhomocysteine in Alzheimer’s disease patients and diet intervention of betaine. J. Clin. Lab. Anal. 2017, 31, e22090. [Google Scholar] [CrossRef]
- Passeri, E.; Elkhoury, K.M.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s Disease: Treatment Strategies and Their Limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef]
- Den, H.; Dong, X.; Chen, M.; Zou, Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment—A meta-analysis of randomized controlled trials. Aging 2020, 12, 4010–4039. [Google Scholar] [CrossRef]
- Agahi, A.; Hamidi, G.A.; Daneshvar, R.; Hamdieh, M.; Soheili, M.; Alinaghipour, A.; Esmaeili Taba, S.M.; Salami, M. Does Severity of Alzheimer’s Disease Contribute to Its Responsiveness to Modifying Gut Microbiota? A Double Blind Clinical Trial. Front. Neurol. 2018, 9, 662. [Google Scholar] [CrossRef]
- Kumar, R.R.; Singh, L.; Thakur, A.; Singh, S.; Kumar, B. Role of Vitamins in Neurodegenerative Diseases: A Review. CNS Neurol. Disord. Drug Targets 2022, 21, 766–773. [Google Scholar] [CrossRef]
- Schweizer, U.; Bräuer, A.U.; Köhrle, J.; Nitsch, R.; Savaskan, N.E. Selenium and brain function: A poorly recognized liaison. Brain Res. Rev. 2004, 45, 164–178. [Google Scholar] [CrossRef] [PubMed]
Item | Description | Maximum Points |
---|---|---|
Randomization | 1 point if randomization is mentioned. 1 additional point if the method of randomization is appropriate. Deduct 1 point if the method of randomization is inappropriate (minimum 0). | 2 |
Blinding | 1 point if blinding is mentioned. 1 additional point if the method of blinding is appropriate. Deduct 1 point if the method of blinding is inappropriate (minimum 0). | 2 |
An account of all patients | The fate of all patients in the trial is known. If there are no data, the reason is stated. | 1 |
References | Study Design | Country | Patients (n) | Sex (F %) | Range Age (Years) | Mean Age (Years) | NHPs | Concomitant Drugs | Follow-Up | Outcomes | Main Results and Limitations | Jadad Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hsu et al. [74] (2023) | Double-blind, active-controlled trial | Asia | 32 -INT-g: 16 -PL-g: 16 | -INT-g: 75 -PL-g: 50 | 50–90 | -INT-g: 75.4 -PL-g: 75.8 | Bifidobacterium longum subspecies infantis BLI-02, Bifidobacterium breve Bv-889, Bifidobacterium animalis subspecies lactis CP-9, Bifidobacterium bifidum VDD088, and Lactobacillus plantarum PL-02 | DPZ or Riv and memantine | 12 weeks | Effect on BDNF levels, inflammatory and oxidative stress biomarkers, and cognitive performance | Probiotic supplementation increased BDNF (p = 0.049) and antioxidant levels (p = 0.043) and reduced levels of inflammatory biomarkers (p = 0.041). Limitations: lack of evaluation of all the biomarkers of AD required by updated guidelines. | 3 |
Akhgarjand et al. [75] (2024) | Double-blind, placebo-controlled trial | Asia | 90 -Lacticaseibacillus rhamnosus- g: 30 -Bifdobacterium longum-g: 30 -PL-g: 30 | -Lacticaseibacillus rhamnosus-g: 33.3 -Bifdobacterium longum-g: 33.3 -PL-g: 33.3 | NA | -Lacticaseibacillus rhamnosus-g: 67.93 -Bifdobacterium longum-g: 67.90 -PL-g: 67.77 | Lacticaseibacillus rhamnosus and Bifdobacterium longum | NA | 12 weeks | Impact on oxidative stress and inflammation markers | Probiotic supplementation leads to a decrease in serum LPS levels, inflammation, and oxidative stress (p < 0.0001). Furthermore, it has positive effects on quality of life and physical activity. | 4 |
Tamtaji et al. [76] (2019) | Double-blind, placebo-controlled trial | Asia North America | 79 -Selenium-g: 26 -INT-g: 27 -PL-g: 26 | NA | NA | -Selenium-g: 78.8 -INT-g: 76.2 -PL-g: 78.5 | Selenium, Lactobacillus acidophilus, Bifidobacterium bifidum, and Bifidobacterium longum | NA | 12 weeks | Impact on cognitive performance and metabolism | Co-supplementation improved cognitive function (p < 0.001). Limitations: patient compliance was not assessed. | 5 |
Foroumandi et al. [77] (2023) | Double-blind, placebo-controlled trial | Asia | 82 -INT-g: 41 -PL-g: 41 | -INT-g: 65.9 -PL-g: 65.9 | NA | -INT-g: 72.05 -PL-g: 71.12 | Fenugreek seed extract | DPZ and sertraline | 4 months | Impact on memory, depressive symptoms, quality of life, blood pressure, and serum levels of oxidative indices | Fenugreek seed extract supplementation reduced serum MDA levels, systolic and diastolic BP, and it increased serum TAC levels, memory status, and quality of life (p < 0.001). Limitations: small sample size, short duration of the study, and absence of patients with advanced AD. | 5 |
Cardoso et al. [78] (2019) | Double-blind, placebo-controlled trial | Oceania | 40 -Nutritional-g: 10 -Supranutritional-g: 20 -PL-g: 20 | 58.3 -Nutritional-g: 50 -Supranutritional-g: 75.9 -PL-g: 66.7 | NA | 70.2 -Nutritional-g: 73.4 -Supranutritional-g: 69.5 -PL-g: 68.7 | Sodium selenate | Acetylcholine esterase inhibitor | 24 weeks | Efficacy and tolerability of selenium CNS concentration | Supplementation with high-dose sodium selenate was well tolerated, and increased selenium levels in the central nervous system (p < 0.001) were associated with improved cognitive function (p< 0.001). Limitations: small sample size. | 3 |
Morè et al. [79] (2014) (study 2) | Double-blind, placebo-controlled trial | Asia | 96 | 63.5 | 50–90 | 75.3 years | Soy lecithin- derived PS + PA | NA | 2 months | Efficacy on memory, cognitive daily functioning, and mood | Supplementation reduced cognitive impairment and improved memory. Additionally, short-term supplementation showed benefits on emotional state, mood, and self-reported general condition. However, while promising, these results did not reach statistical significance. Limitations: small sample size. | 3 |
Salloway et al. [80] (2011) | Multicenter, double-blind, placebo-controlled, dose-ranging phase 2 study | USA | 351 -INT-g1: 88 -INT-g2: 89 -INT-g3: 91 -PL-g: 83 | -INT-g1: 58 -INT-g2: 53.9 -INT-g3: 56 -PL-g: 56.6 | NA | -INT-g1: 73.4 -INT-g2: 73.4 -INT-g3: 72.2 -PL-g: 73.4 | Scyllo-inositol (ELND005) | Acetylch olinesterase inhibitors or memantine | 78 weeks | Evaluation of safety, efficacy, and tolerability | The 250 mg dose of ELND005 is safe and well tolerated. No differences in NTB or ADCS-ADL were found between treated and placebo groups (p = 0.049). Limitations: small sample size and lack of statistical correction for multiple analyses. | 3 |
Sun J et al. [81] (2017) | Asia | 162 -INT-g: 97 -PL-g: 65 | -INT-g: 46.4 -PL-g: 46.2 | NA | -INT-g: 73.3 -PL-g: 74.8 | Betaine | NA | 6–48 months | Association between malnutrition and Hcy levels and impact on AD progression | Betaine administration restored Hcy levels and modulated factors that promote AD progression. Furthermore, betaine appeared to improve some ADAS-Cog parameters (p < 0.05). Limitations: small sample size. | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, V.; Zarrella, A.; Donnarumma, D.; Pagano, A.; Mazza, I.; De Stefano, A.; Gallo, F.; Di Landri, V.; De Pascale, D.; Manzo, V.; et al. Natural Health Products in the Prevention and Management of Alzheimer’s Disease: A Systematic Review of Randomized Clinical Trials. Appl. Sci. 2025, 15, 3513. https://doi.org/10.3390/app15073513
Conti V, Zarrella A, Donnarumma D, Pagano A, Mazza I, De Stefano A, Gallo F, Di Landri V, De Pascale D, Manzo V, et al. Natural Health Products in the Prevention and Management of Alzheimer’s Disease: A Systematic Review of Randomized Clinical Trials. Applied Sciences. 2025; 15(7):3513. https://doi.org/10.3390/app15073513
Chicago/Turabian StyleConti, Valeria, Adele Zarrella, Danilo Donnarumma, Annarita Pagano, Ines Mazza, Alessandra De Stefano, Francesca Gallo, Valeria Di Landri, Domenico De Pascale, Valentina Manzo, and et al. 2025. "Natural Health Products in the Prevention and Management of Alzheimer’s Disease: A Systematic Review of Randomized Clinical Trials" Applied Sciences 15, no. 7: 3513. https://doi.org/10.3390/app15073513
APA StyleConti, V., Zarrella, A., Donnarumma, D., Pagano, A., Mazza, I., De Stefano, A., Gallo, F., Di Landri, V., De Pascale, D., Manzo, V., Pagliano, P., Corbi, G., De Bellis, E., & Filippelli, A. (2025). Natural Health Products in the Prevention and Management of Alzheimer’s Disease: A Systematic Review of Randomized Clinical Trials. Applied Sciences, 15(7), 3513. https://doi.org/10.3390/app15073513