Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies
Abstract
:1. Introduction
2. Plant Protein Quality
3. Protein Digestibility
4. Protein Quality Evaluation Methods
4.1. In Vivo Models
4.1.1. Protein Digestibility-Corrected Amino Acid Score (PDCAAS)
4.1.2. Digestibility Indispensable Amino Acid Score (DIAAS)
4.2. Ex Vivo Models
4.3. In Vitro Models
4.3.1. Dynamic Methods
4.3.2. Static Methods
4.3.3. Semi-Dynamic Methods
5. Antinutritional Factors and Reduction Strategies
6. Strategies for Improving Protein Digestibility
6.1. Thermal Processing
6.2. Enzymatic Hydrolysis
6.3. Fermentation
6.4. Physical Treatments
6.5. Soaking and Germination
6.6. Combination Approaches
7. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, L.; Cakebread, J.A.; Loveday, S.M. Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends Food Sci. Technol. 2022, 119, 428–442. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining protein nutrition through plant-based foods. Front. Nutr. 2022, 8, 772573. [Google Scholar]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [PubMed]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A. Functional performance of plant proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Opazo-Navarrete, M.; Wandersleben, T.; Soto-Añual, M.; Barahona, T.; Bustamante, M. Chemical and nutritional evaluation of protein-rich ingredients obtained through a technological process from yellow lupin seeds (Lupinus luteus). Plant Foods Hum. Nutr. 2019, 74, 508–517. [Google Scholar]
- Akhrume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of plant proteins for improved functionality: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Pencharz, P.B.; Elango, R.; Wolfe, R.R. Recent developments in understanding protein needs—How much and what kind should we eat? Appl. Physiol. Nutr. Metab. 2016, 41, 577–580. [Google Scholar] [PubMed]
- Han, S.; Chee, K.; Cho, S. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chem. 2015, 172, 766–769. [Google Scholar]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kinabo, J.; Uebersax, M.A. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci. 2022, 5, e156. [Google Scholar] [CrossRef]
- Nath, H.; Samtiya, M.; Dhewa, T. Beneficial attributes and adverse effects of major plant-based foods anti-nutrients on health: A review. Nutr. Metab. 2022, 28, 200147. [Google Scholar]
- Aguilar, E.G.; Albarracín, G.J.; Uñates, M.A.; Piola, H.D.; Camiña, J.M.; Escudero, N.L. Evaluation of the nutritional quality of the grain protein of new amaranths varieties. Plant Foods Hum. Nutr. 2015, 70, 21–26. [Google Scholar] [PubMed]
- Arribas, C.; Cabellos, B.; Sánchez, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food Funct. 2017, 8, 3654–3663. [Google Scholar] [CrossRef]
- Avila Ruiz, G.; Opazo-Navarrete, M.; Meurs, M.; Minor, M.; Sala, G.; van Boekel, M.; Stieger, M.; Janssen, A.E.M. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophys. 2019, 11, 184–197. [Google Scholar]
- Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar]
- Mulet-Cabero, A.-I.; Mackie, A.R.; Brodkorb, A.; Wilde, P.J. Dairy structures and physiological responses: A matter of gastric digestion. Crit. Rev. Food Sci. Nutr. 2022, 60, 3737–3752. [Google Scholar]
- Wang, C.; Zhao, F.; Bai, Y.; Li, C.; Xu, X.; Kristiansen, K.; Zhou, G. Effect of gastrointestinal alterations mimicking elderly conditions on in vitro digestion of meat and soy proteins. Food Chem. 2022, 383, 132465. [Google Scholar]
- Goyal, R.K.; Guo, Y.; Mashimo, H. Advances in the physiology of gastric emptying. Neurogastroenterol. Motil. 2018, 31, e135446. [Google Scholar]
- McQuilken, S.A. The mouth, stomach and intestines. Anaesth. Intensive Care 2023, 22, 330–335. [Google Scholar]
- Verhoeckx, K.; Cotter, P.; López-Espósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. Dynamic gastric model (DGM). In The Impact of Food Bioactives on Health In Vitro and Ex Vivo Models; Verhoeckx, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; p. 338. [Google Scholar]
- Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci. 2015, 16, 646–654. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Sadiq, K. Protein digestion and bioavailability. Encycl. Hum. Nutr. 2013, 4, 116–122. [Google Scholar]
- Khavinson, V.; Linkova, N.; Kozhevnikova, E.; Dyatlova, A.; Petukhov, M. Transport of biologically active ultrashort peptides using POT and LAT carriers. Int. J. Mol. Sci. 2022, 23, 7733. [Google Scholar] [CrossRef]
- Lee, V.H.; Dodda-Kashi, S.; Grass, G.M.; Rubas, W. Oral route of peptide and protein drug delivery. In Peptide and Protein Drug Delivery; CRC Press: Boca Raton, FL, USA, 2024; pp. 691–738. [Google Scholar]
- De Bhowmick, G.; Hayes, M. In vitro digestibility of selected seaweeds. Foods 2022, 11, 289. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Algal proteins: Extraction, application, and challenges concerning production. Foods 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed]
- Sousa, R.; Portmann, R.; Dubois, S.; Recio, I.; Egger, L. Protein digestion of different protein sources using the INFOGEST static digestion model. Int. Food Res. 2020, 130, 108996. [Google Scholar] [CrossRef]
- Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can dynamic in vitro digestion system mimic the physiological reality? Crit. Rev. Food Sci. Nutr. 2019, 59, 1546–1562. [Google Scholar] [CrossRef]
- Sitovs, A.; Mohylyuk, V. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: Acceptor compartment media composition. Drug Discov. Today 2024, 29, 104214. [Google Scholar] [CrossRef] [PubMed]
- Antal, O.; Dalmadi, I.; Takács, K. Upgrading in vitro digestion protocols with absorption models. Appl. Sci. 2024, 14, 8320. [Google Scholar] [CrossRef]
- Rehman, A.; Heinsen, F.-A.; Koenen, M.E.; Venema, K.; Knecht, H.; Hellmig, S.; Schreiber, S.; Ott, S.J. Effects of probiotics and antibiotics on the intestinal homeostasis in a computer controlled model of the large intestine. BMC Microbiol. 2012, 12, 47. [Google Scholar] [CrossRef]
- Chalvon-Demersay, T.; Blachier, F.; Tomé, D.; Blais, A. Animal models for the study of the relationships between diet and obesity: A focus on dietary protein and strogen deficiency. Front. Nutr. 2017, 4, 5. [Google Scholar] [CrossRef]
- Giromini, C.; Cheli, C.; Rebucci, R.; Baldi, A. Dairy proteins and bioactive peptides: Modeling digestion and the intestinal barrier. JDS 2019, 102, 929–942. [Google Scholar]
- Guillin, F.M.; Gaudichon, C.; Guérin-Deremaux, L.; Lefranc-Millot, C.; Khodorova, N.; Besançon, S.; Calvez, J. Caecal digestibility as an approximation of ileal protein digestibility evaluation in rats. J. Nutr. Sci. 2023, 12, e18. [Google Scholar] [CrossRef] [PubMed]
- Teng, P.-Y.; Yadav, S.; Shi, H.; Kim, W.K. Evaluating endogenous loss and standard ileal digestibility of amino acids in response to the graded severity levels of E. maxima infection. Poult. Sci. 2021, 100, 101426. [Google Scholar] [PubMed]
- Gaudichon, C.; Calvez, J. Determinants of amino acid bioavailability from ingested protein in relation to gut health. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 55–61. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; Berrue, F.; McGinn, P.J.; MacQuarrie, S.P.; Puttaswamy, A.; Patelakis, S.; Schmidt, D.; Melanson, R.; MacKenzie, S.E. A rat study to evaluate the protein quality of three green microalgal species and the impact of mechanical cell wall disruption. Foods 2020, 9, 1531. [Google Scholar] [CrossRef] [PubMed]
- Bartolí, R.; Boix, J.; Ódena, G.; De la Ossa, N.D.; Moreno, V.; Lorenzo-Zúñiga, V. Colonoscopy in rats: An endoscopic, histological and tomography study. World J. Gastrointest. Endosc. 2013, 5, 226–230. [Google Scholar]
- Moughan, P.J.; Wolfe, R.R. Determination of dietary amino acid digestibility in humans. J. Nutr. 2019, 149, 2101–2109. [Google Scholar] [CrossRef]
- Hodgkinson, S.M.; Stein, H.H.; de Vries, S.; Hendriks, W.H.; Moughan, P.J. Determination of true ileal amino acid digestibility in the growing pig for calculation of digestible indispensable amino acid score (DIAAS). J. Nutr. 2020, 150, 2621–2623. [Google Scholar]
- Bailey, H.M.; Stein, H.H. Can the digestible indispensable amino acid score methodology decrease protein malnutrition. Anim. Front. 2019, 9, 18–23. [Google Scholar]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Abelilla, J.J.; Liu, Y.; Stein, H.H. Digestible indispensable amino acid score (DIAAS) and protein digestibility corrected amino acid score (PDCAAS) in oat protein concentrate measured in 20- to 30-kilogram pigs. J. Sci. Food Agric. 2017, 98, 410–414. [Google Scholar] [CrossRef]
- Sousa, R.; Recio, I.; Heimo, D.; Dubois, S.; Moughan, P.J.; Hodgkinson, S.M.; Portmann, R.; Egger, L. In vitro digestibility of dietary proteins and in vitro DIAAS analytical workflow based on the INFOGEST static protocol and its validation with in vivo data. Food Chem. 2023, 404, 134720. [Google Scholar] [PubMed]
- Hodgkinson, S.M.; Stroebinger, N.; van der Wielen, N.; Mensink, M.; Montoya, C.; Hendriks, W.H.; de Vries, S.; Stein, H.H.; Moughan, P.J. Comparison of true ileal amino acid digestibility between adult humans and growing pigs. J. Nutr. 2022, 152, 1635–1646. [Google Scholar] [CrossRef]
- Loveday, S.M. Food Proteins: Technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annu. Rev. Food Sci. 2019, 10, 311–339. [Google Scholar] [CrossRef]
- Herreman, L.; Nommensen, P.; Pennings, B.; Laus, M.C. Comprehensive overview of the quality of plant- And animal sourced proteins based on the digestible indispensable amino acid score. Food Sci. Nutr. 2020, 8, 5379–5391. [Google Scholar] [CrossRef]
- Speak, J.W.; Van Wesemael, D. CVB Feed Table 2021. Chemical Composition and Nutritional Values of Feedstuffs. Central Bureau for Livestock Feeding (CVB): Lelystad, The Netherlands, 2018. [Google Scholar]
- Jaeger, A.; Zanini, E.; Sahin, A.W.; Arendt, E.K. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods 2021, 10, 1389. [Google Scholar] [CrossRef]
- Walter, S.; Zehring, J.; Mink, K.; Quendt, U.; Zocher, K.; Rohn, S. Protein content of peas (Pisum sativum) and beans (Vicia faba)—Influence of cultivation conditions. J. Food Compos. Anal. 2022, 105, 104257. [Google Scholar] [CrossRef]
- Punzalan, J.K.M.; Rosentrater, K.A. Copra meal: A review of its production, properties, and prospects. Animals 2024, 14, 1689. [Google Scholar] [CrossRef] [PubMed]
- Rangel, A.; Saraiva, K.; Schwengber, P.; Narciso, M.S.; Domont, G.B.; Ferreira, S.T.; Pedrosa, C. Biological evaluation of a protein isolate from cowpea (Vigna unguiculata) seeds. Food Chem. 2004, 87, 491–499. [Google Scholar] [CrossRef]
- Abebe, B.K.; Alemayehu, M.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets. J. Agric. Food Res. 2022, 10, 100383. [Google Scholar] [CrossRef]
- Bletner, J.K.; Chalhoub, N.E.; Goff, O.E. The horsebean (Vicia faba L.) as a vegetable protein concentrate in chick diets. Poult. Sci. 1963, 42, 562–568. [Google Scholar]
- Guterres, L.L.; Pinton, M.B.; dos Santos, B.A.; Correa, L.P.; Cordeiro, M.W.S.; Wagner, R.; Cichoski, A.J.; Lorenzo, J.M.; Campagnol, P.C.B. Hydrogelled emulsion from linseed oil and pea protein as a strategy to produce healthier pork burgers with high technological and sensory quality. Meat Sci. 2023, 195, 109028. [Google Scholar] [CrossRef]
- Lima, L.S.; Palin, M.F.; Santos, G.T.; Benchaar, C.; Lima, L.C.R.; Chouinard, P.Y.; Petit, H.B. Effect of flax meal on the production performance and oxidative status of dairy cows infused with flax oil in the abomasum. Livest. Sci. 2014, 170, 53–62. [Google Scholar]
- Panasiewicz, K. Chemical composition of lupin (Lupinus spp.) as influenced by variety and tillage system. Agriculture 2022, 12, 263. [Google Scholar] [CrossRef]
- Ochieng’, I.O.; Gitari, H.I.; Mochoge, B.; Rezaei-Chiyaneh, E.; Gweyi-Onyango, J. Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. J. Soil Sci. Plant Nutr. 2021, 21, 1867–1880. [Google Scholar] [CrossRef]
- Speak, J.W.; Blok, M.C. CVB Feed Table 2018. Chemical Composition and Nutritional Values of Feedstuff. Central Bureau for Livestock Feeding (CVB): Lelystad, The Netherlands, 2018. [Google Scholar]
- Zhang, Y.; He, H.; Xu, M.; Zhang, X.; Cao, S.; Hu, Y.; Luan, G. Physicochemical properties and protein structure of extruded corn gluten meal: Implication of temperature. Food Chem. 2023, 399, 133985. [Google Scholar]
- Hou, S.; Men, Y.; Wei, M.; Zhang, Y.; Li, H.; Sun, Z.; Han, Y. Total protein content, amino acid composition and eating-quality evaluation of foxtail millet (Setaria italica (L.) P. Beauv. Foods 2023, 12, 31. [Google Scholar] [CrossRef]
- Byadagi, S.S.; Geetha, K. Nutritional profile of selected Niger seed varieties. Mysore J. Agric. Sci. 2013, 47, 603–608. [Google Scholar]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat properties: A perspective on functional properties. LWT—Food Sci. Technol. 2021, 152, 112307. [Google Scholar]
- Bhutto, R.A.; Bhutto, N.H.; Khanal, S.; Wang, M.; Iqbal, S.; Fan, Y.; Yi, J. Potato protein as an emerging high-quality: Source, extraction, purification, properties (functional, nutritional, physicochemical, and processing), applications, and challenges using potato protein. Food Hydrocoll. 2024, 157, 110415. [Google Scholar] [CrossRef]
- Rajkovic, D.; Jeromela, A.M.; Pezo, L.; Loncar, B.; Zanetti, F.; Monti, A.; Spika, A.K. Yield and quality prediction of winter rapeseed—Artificial neural network and random forest models. Agronomy 2022, 12, 58. [Google Scholar]
- Jia, W.; Rodriguez-Alonso, E.; Bianeis, M.; Keppler, J.K.; van de Goot, A.J. Assessing functional properties of rapeseed protein concentrate versus isolate for food applications. Innov. Food Sci. Emerg. Technol. 2021, 68, 102636. [Google Scholar] [CrossRef]
- Siaw, M.; Wang, Y.-J.; McClung, A.M.; Mauromoustakos, A. Effect of protein denaturation and lipid removal on rice physicochemical properties. LWT—Food Sci. Technol. 2021, 150, 112015. [Google Scholar] [CrossRef]
- Ma, C.; Ren, Z.; Zhang, Z.; Du, J.; Jin, C.; Yin, X. Development of simplified models for nondestructive testing of rice (with husk) protein content using hyperspectral imaging technology. Vib. Spectrosc. 2021, 114, 103230. [Google Scholar] [CrossRef]
- Xhaferaj, M.; Muskovics, G.; Schall, E.; Bugyi, Z.; Tömösközi, S.; Scherf, K.A. Characterization of rye flours and their potential as reference material for gluten analysis. Food Chem. 2023, 408, 135148. [Google Scholar] [CrossRef]
- Li, X.; Yi, J.; Wu, T.; Wang, J.; Li, L.; Liu, P. Steam explosion modification on phytate, protein, and lignan in sesame cake. Ind. Crops Prod. 2023, 206, 117697. [Google Scholar] [CrossRef]
- Zarei, M.; Amirkolaei, A.K.; Trushenski, J.T.; Sealey, W.M.; Schwarz, M.H.; Ovissipour, R. Sorghum as a potential valuable aquafeed ingredient: Nutritional quality and digestibility. Agriculture 2022, 12, 669. [Google Scholar] [CrossRef]
- Xiao, R.; Lou, H.; Hu, R.; Li, S.; Zheng, Y.; Wang, D.; Xu, Y.; Xu, Y.; Li, Y. Enzymatic production and physicochemical and functional properties of sorghum protein isolates. Int. J. Biol. Macromol. 2024, 283, 137421. [Google Scholar] [CrossRef]
- Janocha, A.; Milczarek, A.; Pietrusiak, D.; Laski, K.; Saleh, M. Efficiency of soybean products in broiler chicken nutrition. Animals 2022, 12, 294. [Google Scholar] [CrossRef]
- Liu, S.X.; Chen, D.; Plumier, B.; Berhow, M.; Xu, J.; Byars, J.A. Impact of particle size fractions on composition, antioxidant activities, and functional properties of soybean hulls. J. Food Meas. Charact. 2021, 15, 1547–1562. [Google Scholar] [CrossRef]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Xu, D.; et al. Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar]
- Banjac, V.; Vukmirovic, D.; Pezo, L.; Draganovic, V.; Duragic, O.; Coloviv, R. Impact of variability in protein content of sunflower meal on the extrusion process and physical quality of the extruded salmonid feed. J. Food Process Eng. 2021, 44, e13640. [Google Scholar]
- Camerlengo, F.; Kiszonas, A.M. Genetic factors influencing triticale quality for food. J. Cereal Sci. 2023, 11, 103744. [Google Scholar]
- Schopf, M.; Wehrli, M.C.; Becker, T.; Jekle, M.; Scherf, K.A. Fundamental characterization of wheat gluten. Eur. Food Res. Technol. 2021, 247, 985–997. [Google Scholar] [CrossRef]
- Jimenez-Pulido, I.J.; Rico, D.; Perez, J.; Martínez-Villaluenga, C.; De Luis, D.; Diana, A.B.M. Impact of protein content on the antioxidants, anti-inflammatory properties and glycemic index of wheat and wheat bran. Foods 2022, 11, 2049. [Google Scholar] [CrossRef]
- Gunnes, N.; Michiels, J.; De Smet, S.; Vanhaecke, L.; Kravchuk, O.; Gidley, M. Blood lipids—Soluble dietary fibres: Study of bile salts diffusion across intestinal mucosa using the Ussing chamber system. J. Nutr. Intermed. Metab. 2016, 4, 35. [Google Scholar]
- Kalungwana, N.; Marshall, L.; Mackie, A.; Boesch, C. An ex vivo intestinal absorption model is more effective than an in vitro cell model to characterise absorption of dietary carotenoids following simulated gastrointestinal digestion. Food Res. Int. 2023, 166, 112558. [Google Scholar] [PubMed]
- Nitride, C.; Vegarud, G.E.; Comi, I.; Devold, T.G.; Roset, A.; Marti, A.; Iametti, S.; Mamone, G.; Picariello, G.; Alfieri, F.; et al. Effect of sprouting on the proteome of chickpea flour and on its digestibility by ex vivo gastroduodenal digestion complemented with jejunal brush border membrane enzymes. Int. Food Res. 2022, 154, 111012. [Google Scholar]
- Assad-Bustillos, M.; Palier, J.; Rabesona, H.; Choiset, Y.; Valle, G.D.; Feron, G. Role of the bolus degree of structure on the protein digestibility during in vitro digestion of a pea protein-fortified sponge cake chewed by elderly. J. Texture Stud. 2020, 51, 134–143. [Google Scholar]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzynski, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Oliveira, F.D.; Cunha, R.L. Soy protein-based delivery systems as carriers of trans-resveratrol: Bioaccessibility using different in vitro digestion models. Food Res. Int. 2022, 161, 111837. [Google Scholar] [CrossRef]
- Havenaar, R.; Maathuis, A.; de Jong, A.; Mancinelli, D.; Berger, A.; Bellmann, S. Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutr. Res. 2016, 36, 798–807. [Google Scholar] [CrossRef]
- Souza Simões, L.; Madalena, D.A.; Pinheiro, A.C.; Teixeira, J.A.; Vicente, A.A.; Ramos, O.L. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. [Google Scholar]
- Thuenemann, E.C.; Mandalari, G.; Rich, G.T.; Faulks, R.M. Dynamic gastric model (DGM). In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2015; pp. 47–59. [Google Scholar]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Balance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [PubMed]
- Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [PubMed]
- Egger, L.; Ménard, O.; Delgado-Andrade, C.; Alvito, P.; Assunc¸ao, R.; Balance, S.; Barberá, R.; Brodkorb, A.; Cattenoz, T.; Clemente, A.; et al. The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Res. Int. 2015, 88, 217–225. [Google Scholar]
- Catalayud, M.; Xiong, C.; Laing, G.D.; Raber, G.; Francesconi, K.; van de Wiele, T. Salivary and gut microbiomes play a significant role in in vitro oral bioaccessibility, biotransformation, and intestinal absorption of arsenic from food. Environ. Sci. Technol. 2018, 52, 14422–14435. [Google Scholar]
- Calero, V.; Rodrigues, P.M.; Dias, T.; Ainla, A.; Villaca, A.; Pastrana, L.; Xavier, M.; Goncalves, C. A miniaturised semi-dynamic in-vitro model for human digestion. Sci. Rep. 2024, 14, 11923. [Google Scholar] [CrossRef]
- Alegria, A.; García-Llatas, G.; Cilla, A.; Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; et al. (Eds.) The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2015; Chapter 1. [Google Scholar]
- Mulet-Cabero, A.-I.; Torcello-Gómez, A.; Saha, S.; Mackie, A.R.; Wilde, P.J.; Brodkorb, A. Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chem. 2020, 319, 126514. [Google Scholar] [CrossRef] [PubMed]
- Verkempinck, S.H.E.; Duijsens, D.; Michels, D.; Guevara-Zambrano, J.M.; Infantes-García, M.R.; Pälchen, K.; Grauwet, T. Studying semi-dynamic digestion kinetics of food: Establishing a computer-controlled multireactor approach. Int. Food Res. 2022, 156, 111301. [Google Scholar] [CrossRef]
- Delfino, R.A.; Canniatti-Brazaca, S.G. Interação de polifenóis e proteínas e o efeito na digestibilidade proteica de feijão comum (Phaseolus vulgaris L.) cultivar Pérola. Ciênc. Tecnol. 2010, 30, 8–12. [Google Scholar]
- Mechi, R.; Caniatti-Brazaca, S.G.; Arthur, V. Avaliação química, nutricional e fatores antinutricionais do feijão preto (Phaseolus vulgaris L.) irradiado. Ciênc. Tecnol. Aliment. 2005, 25, 109–114. [Google Scholar] [CrossRef]
- Shimelis, E.A.; Rakshit, S. Effect of microwave heating on solubility and digestibility of proteins and reduction of antinutrients of selected common bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. Ital. J. Food Sci. 2005, 17, 407–418. [Google Scholar]
- Kalpanadevi, V.; Mohan, V.R. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. Unguiculata. LWT—Food Sci. Technol. 2013, 51, 455–461. [Google Scholar]
- Khttatab, R.Y.; Arntfield, S.D.; Nyachoti, C.M. Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT—Food Sci Technol. 2009, 42, 1107–1112. [Google Scholar] [CrossRef]
- Ravindran, G. Seed protein of millets: Amino acid composition, proteinase inhibitors and in-vitro protein digestibility. Food Chem. 1992, 44, 13–17. [Google Scholar] [CrossRef]
- Abioye, V.F.; Babarinde, G.O.; Ogunlakin, G.O.; Adejuyitan, J.A.; Olatunde, S.J.; Abioye, A.O. Varietal and processing influence on nutritional and phytochemical properties of finger millet: A review. Heliyon 2022, 8, e12310. [Google Scholar] [CrossRef]
- Oghbaei, M.; Prakash, J. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana). J. Sci. Food Agric. 2011, 92, 2281–2290. [Google Scholar]
- Shevkani, K.; Kaur, R.; Singh, N.; Hkanze, D.P. Colour, composition, digestibility, functionality and pasting properties of diverse kidney beans (Phaseolus vulgaris) flours. Curr. Res. Food Sci. 2022, 5, 619–628. [Google Scholar] [CrossRef]
- Berno, L.I.; Guimarães-Lopes, T.G.; Canniatti-Brazaca, S.G. Avaliação da composição centesimal, digestibilidade e atividade inibitoria de tripsina em produtos derivados de soja (Glycine max). Alim. Nutriç. 2007, 18, 277–282. [Google Scholar]
- Lee, J.Y.; Cho, Y.Y.; Ohh, S.J. Effect of gamma irradiation and autoclaving on sterilization and amino acids digestibility of diets for specific pathogen free mini-pigs containing either soybean meal or whey protein. Livest. Sci. 2012, 149, 201–207. [Google Scholar]
- Espinoza-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, G.; Ying, D.; Sanguansri, L.; Augustin, M.A. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal. Int. Food Res. 2017, 100, 658–664. [Google Scholar] [CrossRef]
- Annor, G.A.; Tyl, C.; Marcone, M.; Ragaee, S.; Marti, S. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci. Technol. 2017, 66, 73–83. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant food anti-nutritional factors and their reduction strategies: An overview. Food Prod. Process. Nutr. 2020, 2, 6. [Google Scholar] [CrossRef]
- Anaya, K.; Cruz, A.C.B.; Cunha, D.C.S.; Monteiro, S.M.N.; Santos, E.A. Growth impairment caused by raw linseed consumption: Can trypsin inhibitors be harmful for health? Plant Foods Hum. Nutr. 2015, 70, 338–343. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Adenekan, M.K.; Fadimu, G.J.; Odunmbaku, L.A.; Oke, E.K. Effect of isolation techniques on the characteristics of pigeon pea (Cajanus cajan) protein isolates. Food Sci. Nutr. 2018, 6, 146–152. [Google Scholar] [CrossRef]
- Tusnio, A.; Taciak, M.; Barszcz, M.; Swiceh, E.; Bachanek, I.; Skomiał, J. Effect of replacing soybean meal by raw or extruded pea seeds on growth performance and selected physiological parameters of the ileum and distal colon of pigs. PLoS ONE 2017, 12, e0169467-16. [Google Scholar] [CrossRef] [PubMed]
- Kamela, A.L.S.; Mouokeu, R.S.; Ashish, R.; Tazoho, G.M. Influence of processing methods on proximate composition and dieting of two amaranthus species from west Cameroon. Int. J. Food Sci. 2016, 2016, 6707313. [Google Scholar]
- Boye, J.; Wijesinha-Bettoni, R.; Burlingame, B. Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br. J. Nutr. 2012, 108, S183–S211. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.; Samman, S. Implications of a plant-based diet on zinc requirements and nutritional status. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 683–713. [Google Scholar]
- Kaushik, G.; Singhal, P.; Chaturvedi, S. Food processing for increasing consumption: The case of legumes. In Food Processing for Increased Quality and Consumption; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–28. [Google Scholar]
- de Camargo, A.C.; da Silva Lima, R. A perspective on phenolic compounds, their potential health benefits, and international regulations: The revised Brazilian normative on food supplements. J. Food Bioact. 2019, 7, 7–17. [Google Scholar]
- Joye, I. Protein digestibility of cereal products. Foods 2019, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, M.; Garcés-Rimón, M.; Miguel, M. Antinutrients: Lectins, goitrogens, phytates and oxalates, friends or foe? J. Funct. Foods 2022, 89, 104938. [Google Scholar]
- Muramoto, K. Lectins as bioactive proteins in foods and feeds. Food Sci. Technol. Res. 2017, 23, 487–494. [Google Scholar]
- Lo, D.; Wang, H.-I.; Wu, W.-J.; Yang, R.-Y. Anti-nutrient components and their concentrations in edible parts in vegetable families. CAB Rev. 2018, 13, 15. [Google Scholar]
- Dogra, D. Common buckwheat: Nutritional profiling of grains. Asian J. Dairy Food Res. 2019, 38, 333–340. [Google Scholar] [CrossRef]
- Delimont, N.M.; Rosenkranz, S.K.; Haub, M.D.; Lindshield, B.L. Salivary proline-rich protein may reduce tannin-iron chelation: A systematic narrative review. Nutr. Metab. 2017, 14, 47. [Google Scholar]
- Kaspchak, E.; Mafra, L.I.; Mafra, M.R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility. Food Chem. 2018, 252, 1–8. [Google Scholar] [PubMed]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Li, L.; Tsao, R. UF-LC-DAD-MSn for discovering enzyme inhibitors for nutraceuticals and functional foods. J. Food Bioact. 2019, 7, 27–35. [Google Scholar] [CrossRef]
- Abdulwaliyu, I.; Arekemase, S.O.; Adudu, J.A.; Batari, M.L.; Egbule, M.N.; Okoduwa, S.I.R. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clin. Nutr. Exp. 2019, 28, 42–61. [Google Scholar] [CrossRef]
- Gonzalez, A.A.L.; Grases, F.; Mari, B.; Tomas-Salva, M.; Rodriguez, A. Urinary phytate concentration and risk of fracture determined by the FRAX index in a group of postmenopausal women. Turk. J. Med. Sci. 2019, 49, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Palomeque, C.; Grau, A.; Perelló, J.; Sanchis, P.; Isern, B.; Prieto, R.M.; CostaBauzá, A.; Caldés, O.J.; Bonnin, O.; Garcia-Raja, A.; et al. Relationship between Urinary Level of Phytate and Valvular Calcification in an Elderly Population: A Cross-Sectional Study. PLoS ONE 2015, 10, e0136560. [Google Scholar] [CrossRef] [PubMed]
- Mukhar, K.; Nabi, B.G.; Ahmed, W.; Suleman, R.; Aadil, R.M. Effect of thermal processing on the digestion of plant proteins. Process. Technol. Food Protein Dig. 2023, 16, 407–428. [Google Scholar]
- Deng, X.; Huang, H.; Huang, S.; Yang, M.; Wu, J.; Ci, Z.; He, Y.; Wu, Z.; Han, L.; Zhang, D. Insight into the incredible effects of microwave heating: Driving changes in the structure, properties and functions of macromolecular nutrients in novel food. Front. Nutr. 2022, 9, 941527. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Liu, Y.; Wang, L.; Li, D.; Mao, Z. Effects of extrusion parameters on physicochemical properties of flaxseed snack and process optimization. Int. J. Agric. Biol. Eng. 2015, 8, 121–131. [Google Scholar]
- Fombang, E.N.; Taylor, J.R.N.; Mbofung, C.M.F.; Minnnar, A. Use of γ-irradiation to alleviate the poor protein digestibility of sorghum porridge. Food Chem. 2005, 91, 695–703. [Google Scholar] [CrossRef]
- Duodu, K.G.; Nunes, A.; Delgadillo, I.; Parker, M.L.; Mills, E.N.S.; Belton, P.S.; Taylor, J.R.N. Effect of grain structure and cooking on sorghum and maize in vitro protein digestibility. J. Cereal Sci. 2002, 35, 161–174. [Google Scholar] [CrossRef]
- Labuschagne, M.T. A review of cereal grain proteomics and its potential for sorghum improvement. J. Cereal Sci. 2018, 84, 151–158. [Google Scholar] [CrossRef]
- Batista, K.A.; Pereira, W.J.; Moreira, B.R.; Silva, C.N.S.; Fernandes, K.F. Effect of autoclaving on the nutritional quality of hard-to-cook common beans (Phaseolus vulgaris). Int. J. Environ. Agric. Biotechnol. 2020, 5, 22–30. [Google Scholar] [CrossRef]
- Sun, X.; Ohanenye, I.C.; Ahmed, T.; Udenigwe, C.C. Microwave treatment increased protein digestibility of pigeon pea (Cajanus cajan) flour: Elucidation of underlying mechanisms. Food Chem. 2020, 329, 127196. [Google Scholar] [PubMed]
- Habinshuti, I.; Mu, T.-H.; Zhang, M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason. Sonochem. 2020, 69, 105262. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Z.; Zhang, C.; Wu, C.; Tan, C.-P.; Liu, Y. Comparative structural, digestion and absorption characterization of three common extruded plant proteins. Food Res. Int. 2024, 177, 113852. [Google Scholar] [PubMed]
- de la Rosa-Millán, J.; Heredia-Olea, E.; Perez-Carrillo, E.; Guajardo-Flores, D.; Serna-Saldívar, S.R.O. Effect of decortication, germination and extrusion on physicochemical and in vitro protein and starch digestion characteristics of black beans (Phaseolus vulgaris L.). LWT—Food Sci. Technol. 2019, 102, 330–337. [Google Scholar] [CrossRef]
- Lin, Q.; Pan, L.; Deng, N.; Sang, M.; Cai, K.; Chen, C.; Han, J.; Ye, A. Protein digestibility of textured-wheat-protein (TWP)-based meat analogues: (I) Effects of fibrous structure. Food Hydrocoll. 2022, 130, 107694. [Google Scholar]
- Wu, D.; Wu, W.; Zhang, N.; Soladoye, O.P.; Aluko, R.E.; Zhang, Y.; Fu, Y. Tailoring soy protein/corn zein mixture by limited enzymatic hydrolysis to improve digestibility and functionality. Food Chem. 2024, 23, 101550. [Google Scholar]
- Kamiloglu, S.; Tomas, M.; Ozkan, G.; Ozdal, T.; Capanoglu, E. In vitro digestibility of plant proteins: Strategies for improvement and health implications. Curr. Opin. Food Sci. 2024, 57, 101148. [Google Scholar]
- Amat, T.; Assifaoui, A.; Schmitt, C.; Saurel, R. Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium. Crit. Rev. Food Sci. Nutr. 2022, 63, 12036–12058. [Google Scholar]
- Beaubier, S.; Pineda-Vadillo, C.; Mesieres, O.; Framboisier, X.; Galet, O.; Kapel, R. Improving the in vitro digestibility of rapeseed albumins resistant to gastrointestinal proteolysis while preserving the functional properties using enzymatic hydrolysis. Food Chem. 2023, 407, 135132. [Google Scholar]
- Çabuk, B.; Nosworthy, M.G.; Stone, A.K.; Korber, D.R.; Tanaka, T.; House, J.D.; Nickerson, M.T. Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technol. Biotechnol. 2018, 56, 257–264. [Google Scholar] [PubMed]
- Chandra-Hioe, M.V.; Wong, C.H.M.; Arcot, J. The potential use of fermented chickpea and faba bean flour as food ingredients. Plant Foods Hum. Nutr. 2016, 7, 90–95. [Google Scholar]
- Ketnawa, S.; Ogawa, Y. In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. Sci. Rep. 2011, 11, 14257. [Google Scholar]
- Skalickova, S.; Ridoskova, A.; Slama, P.; Skladanka, J.; Skarpa, P.; Smykalova, I.; Horacek, J.; Dostalova, R.; Horky, P. Effect of lactic fermentation and cooking on nutrient and mineral digestibility of peas. Front. Nutr. 2022, 9, 838963. [Google Scholar]
- Wang, Y.; Ma, C.-M.; Yang, Y.; Wang, B.; Liu, X.-F.; Wang, Y.; Bian, X.; Chang, G.; Zhang, N. Effect of high hydrostatic pressure treatment on food composition and applications in food industry: A review. Food Res. Int. 2024, 195, 114991. [Google Scholar]
- Hall, A.E.; Moraru, C.I. Comparative effects of high pressure processing and heat treatment on in vitro digestibility of pea protein and starch. NPJ Sci. Food 2022, 6, 2. [Google Scholar] [PubMed]
- De Lamballerie-Anton, M.; Délepine, S.; Chapleau, N. High pressure effect on meat and lupin protein digestibility. High Press. Res. 2002, 22, 649–652. [Google Scholar]
- Aghababaei, F.; McClements, D.J.; Hadidi, M. Ultrasound processing for enhanced digestibility of plant proteins. Food Hydrocoll. 2024, 155, 110188. [Google Scholar]
- Pandita, G.; Sharma, S.; Oommen, I.E.; Madaan, N.; Bhosale, Y.; Nagy, V.; Shaikh, A.M.; Kovács, B. Comprehensive review on the potential of ultrasound for blue food protein extraction, modification and impact on bioactive properties. Ultrason. Sonochem. 2024, 111, 107087. [Google Scholar]
- Rojas, M.; Kubo, M.T.K.; Pastor, A.C.M.; Augusto, P.E.D. Ultrasound processing to enhance the functionality of plant-based beverages and proteins. Curr. Opin. Food Sci. 2022, 48, 100939. [Google Scholar]
- Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R. Modification approaches of plant-based proteins to improve their technofunctionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar]
- Kim, T.-K.; Hwang, K.-E.; Ham, Y.-K.; Kim, H.-W.; Paik, H.-D.; Kim, Y.-B.; Choi, Y.-S. Interactions between raw meat irradiated by various kinds of ionizing radiation and transglutaminase treatment in meat emulsion systems. Radiat. Phys. Chem. 2022, 166, 108452. [Google Scholar]
- Faizal, F.I.; Ahmad, N.H.; Yaacob, J.S.; Abdul Halim-Lim, S.; Abd Rahim, M.H. Food processing to reduce antinutrients in plant-based foods. Int. Food Res. J. 2023, 30, 25–45. [Google Scholar]
- Kohli, V.; Singha, S. Protein digestibility of soybean: How processing affects seed structure, protein and non-protein components. Discov. Food 2024, 4, 7. [Google Scholar]
- Ertas, N.; Bilgicli, N. Effect of different debittering processes on mineral and phytic acid content of lupin (Lupinus albus L.) seeds. J. Food Sci. Technol. 2012, 51, 3348–3354. [Google Scholar] [PubMed]
- Gu, J.; Bk, A.; Wu, H.; Lu, P.; Nawaz, M.A.; Barrow, C.J.; Suleria, H.A.R. Impact of processing and storage on protein digestibility and bioavailability of legumes. Food Rev. Int. 2023, 39, 4697–4724. [Google Scholar]
- Ohanenye, I.C.; Ekezie, F.-G.C.; Sarteshnizi, R.A.; Boachie, R.T.; Emenike, C.U.; Sun, X.; Nwachukwu, I.D.; Udenigwe, C.C. Legume seed protein digestibility as influenced by traditional and emerging physical processing technologies. Foods 2022, 11, 2299. [Google Scholar] [CrossRef]
- Bera, I.; O’Sullivan, M.; Flynn, D.; Shileds, D.C. Relationship between protein digestibility and the proteolysis of legume proteins during seed germination. Molecules 2023, 28, 3204. [Google Scholar] [CrossRef]
- Di, Y.; Chang, X.; Gu, R.; Duan, X.; Liu, F.; Liu, X.; Wang, Y. Impact of germination on structural, functional properties and in vitro protein digestibility of sesame (Sesamum indicum L.) protein. LWT—Food Sci. Technol. 2022, 154, 112651. [Google Scholar]
- Embaby, H. Effect of soaking, dehulling, and cooking methods on certain antinutrients and in vitro protein digestibility of bitter and sweet lupin seeds. Food Sci. Biotechnol. 2010, 19, 1055–1062. [Google Scholar]
- Yang, H.; Qu, Y.; Li, J.; Liu, X.; Wu, R.; Wu, J. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. LWT—Food Sci. Technol. 2020, 128, 109442. [Google Scholar]
Food | Process | Total Protein (%) | Protein Digestibility (%) | References |
---|---|---|---|---|
Barley | Raw | 10–12 | 80 | [48,49] |
Barley | Milled | 10–12 | 65 | [48,49] |
Bean | Heated | 23–25 | 53 | [48,50] |
Coconut | Cake | 20–24 | 57 | [48,51] |
Cowpea | Raw | 23–32 | 86.6 | [52,53] |
Horsebeans | Raw | 25–28 | 86 | [48,54] |
Lentils | Raw | 23–5 | 77 | [10,48] |
Linseed | Raw | 17–22 | 77 | [48,55] |
Linseed | Expeller | 34–35 | 75 | [48,56] |
Lupins | Raw | 32–44 | 87 | [48,57] |
Maize | Raw | 8–11 | 82 | [48,58] |
Maize | Chemical/Heated | 8–11 | 82 | [48,58] |
Maize | Brand | 9–11 | 74 | [58,59] |
Maize | Milled | 8–11 | 83 | [58,59] |
Maize gluten | Meal | 60–70 | 90 | [59,60] |
Millet | Raw | 11–19 | 85 | [59,61] |
Millet | Pearl milled | 11–19 | 85 | [59,61] |
Niger seeds | Raw | 20–24 | 63 | [59,62] |
Oats | Raw | 10–20 | 76 | [59,63] |
Oats | Milled | 9–20 | 60 | [59,63] |
Peas | Raw | 19–20 | 79 | [50,59] |
Potato protein | Concentrated | 79–80 | 90 | [59,64] |
Rape seed | Raw | 19–26 | 72 | [59,65] |
Rape seed | Expeller | 32–37 | 72 | [59,66] |
Rice | Dehulled | 4–18 | 95 | [59,67] |
Rice | With hulls | 4–18 | 76 | [59,67] |
Rice | Husk | 5–9 | 39 | [59,68] |
Rye | Raw | 5–13 | 77 | [59,69] |
Sesame seed | Expeller | 41–45 | 84 | [59,70] |
Sorghum | Raw | 6–9 | 84 | [59,71] |
Sorghum gluten | Meal | 43–58 | 86 | [59,72] |
Soybean | Expeller | 44–47 | 87 | [59,73] |
Soybean | Hulls | 13–22 | 54 | [59,74] |
Soybean | Heated | 36–40 | 82 | [59,75] |
Sunflower seed | Expeller | 33–37 | 80 | [59,76] |
Triticale | Raw | 9–16 | 85 | [59,77] |
Wheat | Raw | 11–14 | 89 | [59,77] |
Wheat | Flour | 11–14 | 91 | [59,77] |
Wheat gluten | Meal | 78–82 | 100 | [59,78] |
Wheat | Bran | 12–19 | 68 | [59,79] |
Food | Process | Total Protein (%) | Protein Digestibility (%) | References |
---|---|---|---|---|
Bean | Raw | 23–25. | 92.8 | [50,97] |
Bean | Raw | 23–27 | 84.0 | [50,98] |
Bean | Autoclaved | 23–26 | 92.3 | [50,97] |
Bean | Autoclaved | 23–25 | 84.2 | [50,98] |
Bean | Microwaved | 21–23 | 85.8 | [50,99] |
Cowpea | Raw | 22–32 | 71.3 | [53,100,101] |
Cowpea | Raw | 22–32 | 82.3 | [53,101] |
Cowpea | Soaked | 22–32 | 75.3 | [53,100,101] |
Cowpea | Soaked | 22–32 | 87.5 | [53,101] |
Cowpea | Boiled | 22–32 | 98.1 | [53,101] |
Cowpea | Germinated | 22–32 | 79.5 | [53,100,101] |
Cowpea | Roasted | 22–32 | 77.6 | [53,101] |
Cowpea | Autoclaved | 22–32 | 90.3 | [53,101] |
Cowpea | Microwaved | 22–32 | 92.8 | [53,101] |
Cowpea | Fermented | 22–32 | 85.1 | [53,101] |
Cowpea | Micronized | 22–32 | 80.0 | [53,101] |
Finger millet | Raw | 6–13 | 72.3 | [102,103] |
Finger millet | Milled | 6–13 | 44.9 | [103,104] |
Foxtail millet | Raw | 11–19 | 77.1 | [61,102] |
Kidney bean | Raw | 22–28 | 78.0 | [101,105] |
Kidney bean | Soaked | 22–28 | 83.2 | [101,105] |
Kidney bean | Boiled | 22–28 | 94.3 | [101,105] |
Kidney bean | Roasted | 22–28 | 73.0 | [101,105] |
Kidney bean | Autoclaved | 22–28 | 86.1 | [101,105] |
Kidney bean | Microwaved | 22–28 | 88.6 | [101,105] |
Kidney bean | Fermented | 22–28 | 80.9 | [101,105] |
Kidney bean | Micronized | 22–28 | 75.5 | [101,105] |
Pea | Raw | 19–23 | 80.1 | [50,101] |
Pea | Soaked | 19–23 | 85.5 | [50,101] |
Pea | Boiled | 19–23 | 95.8 | [50,101] |
Pea | Roasted | 19–23 | 75.0 | [50,101] |
Pea | Autoclaved | 19–23 | 88.3 | [50,101] |
Pea | Microwaved | 19–23 | 90.9 | [50,101] |
Pea | Fermented | 19–23 | 82.9 | [50,101] |
Pea | Micronized | 19–23 | 77.9 | [50,101] |
Soybean | Cooked | 40- 41 | 90.9 | [75,106] |
Soybean | Roasted | 35–40 | 87.9 | [75,106] |
Soybean | Texturized | 40–49 | 88.8 | [75,106,107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opazo-Navarrete, M.; Burgos-Díaz, C.; Bravo-Reyes, C.; Gajardo-Poblete, I.; Chacón-Fuentes, M.; Reyes, J.E.; Mojica, L. Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies. Appl. Sci. 2025, 15, 3538. https://doi.org/10.3390/app15073538
Opazo-Navarrete M, Burgos-Díaz C, Bravo-Reyes C, Gajardo-Poblete I, Chacón-Fuentes M, Reyes JE, Mojica L. Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies. Applied Sciences. 2025; 15(7):3538. https://doi.org/10.3390/app15073538
Chicago/Turabian StyleOpazo-Navarrete, Mauricio, César Burgos-Díaz, Cristina Bravo-Reyes, Ivo Gajardo-Poblete, Manuel Chacón-Fuentes, Juan E. Reyes, and Luis Mojica. 2025. "Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies" Applied Sciences 15, no. 7: 3538. https://doi.org/10.3390/app15073538
APA StyleOpazo-Navarrete, M., Burgos-Díaz, C., Bravo-Reyes, C., Gajardo-Poblete, I., Chacón-Fuentes, M., Reyes, J. E., & Mojica, L. (2025). Comprehensive Review of Plant Protein Digestibility: Challenges, Assessment Methods, and Improvement Strategies. Applied Sciences, 15(7), 3538. https://doi.org/10.3390/app15073538