Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Novel Antiseptic Lotion from the Leaves of Betula pendula Roth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Obtaining of B. pendula Leaf Preparation
2.4. HPLC Analysis
2.5. GC-MS Analysis of the Preparation from Betula pendula Leaves
2.6. Assessment of Lipophilicity of the Preparation from Betula pendula Leaves
2.7. Antioxidant Activity and TPC of the Preparation from Betula pendula Leaves
2.8. Evaluation of Hand Disinfection by Means of Rubbing by EN 1500:2013 [28]
2.9. Evaluation of Surface Disinfection Assessments by EN 13697:2019 [31]
2.10. Evaluation of Surface Disinfection Assessments by EN 13697:2015 [34]
2.11. Statistical Analysis
3. Results
3.1. HPLC Analysis
3.2. GC-MS Analysis of the Preparation
3.3. Assessment of Lipophilicity
3.4. Antioxidant Activity and TPC
3.5. Evaluation of Hand Disinfection by Means of Rubbing
3.6. Tests for Surface Disinfection by EN 13697:2019
3.7. Tests for Surface Disinfection by EN 13697:2015
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses. In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 419–441. ISBN 978-0-12-822919-4. [Google Scholar]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Kuncewicz, J.; Dąbrowski, J.M.; Kyzioł, A.; Brindell, M.; Łabuz, P.; Mazuryk, O.; Macyk, W.; Stochel, G. Perspectives of Molecular and Nanostructured Systems with D- and f-Block Metals in Photogeneration of Reactive Oxygen Species for Medical Strategies. Coord. Chem. Rev. 2019, 398, 113012. [Google Scholar] [CrossRef]
- Irato, P.; Santovito, G. Enzymatic and Non-Enzymatic Molecules with Antioxidant Function. Antioxidants 2021, 10, 579. [Google Scholar] [CrossRef]
- Obrenovich, M.E.; Li, Y.; Parvathaneni, K.; Yendluri, B.B.; Palacios, H.H.; Leszek, J.; Aliev, G. Antioxidants in Health, Disease and Aging. CNS Neurol. Disord. Drug Targets 2011, 10, 192–207. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A Status Review on the Medicinal Properties of Essential Oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Rawat, A.K.S. Medicinal Plants of the Genus Betula—Traditional Uses and a Phytochemical–Pharmacological Review. J. Ethnopharmacol. 2015, 159, 62–83. [Google Scholar] [CrossRef]
- Tetiana, S.; Kateryna, G.; Jan, B.; Radovan, O. Morphological Characteristics and Antioxidant Activity of Pollen Silver Birch (Betula pendula Ehrh.). Pharmacogn. Commun. 2014, 4, 25–34. [Google Scholar] [CrossRef]
- Nagybákay, N.E.; Sarapinaitė, L.; Syrpas, M.; Venskutonis, P.R.; Kitrytė-Syrpa, V. Optimization of Pressurized Ethanol Extraction for Efficient Recovery of Hyperoside and Other Valuable Polar Antioxidant-Rich Extracts from Betula pendula Roth Leaves. Ind. Crops Prod. 2023, 205, 117565. [Google Scholar] [CrossRef]
- Ostapiuk, A.; Kurach, Ł.; Strzemski, M.; Kurzepa, J.; Hordyjewska, A. Evaluation of Antioxidative Mechanisms In Vitro and Triterpenes Composition of Extracts from Silver Birch (Betula pendula Roth) and Black Birch (Betula obscura Kotula) Barks by FT-IR and HPLC-PDA. Molecules 2021, 26, 4633. [Google Scholar] [CrossRef]
- Duric, K.; Kovac-Besovic, E.; Niksic, H.; Sofic, E. Antibacterial Activity of Methanolic Extracts, Decoction and Isolated Triterpene Products from Different Parts of Birch, Betula pendula, Roth. J. Plant Stud. 2013, 2, 61. [Google Scholar] [CrossRef]
- Vladimirov, M.S.; Nikolic, V.D.; Stanojevic, L.P.; Stanojevic, J.S.; Nikolic, L.B.; Danilovic, B.R.; Marinkovic, V.D. Chemical Composition, Antimicrobial and Antioxidant Activity of Birch (Betula pendula Roth.) Buds Essential Oil. J. Essent. Oil-Bear. Plants 2019, 22, 120–130. [Google Scholar] [CrossRef]
- Germanò, M.P.; Cacciola, F.; Donato, P.; Dugo, P.; Certo, G.; D’Angelo, V.; Mondello, L.; Rapisarda, A. Betula Pendula Leaves: Polyphenolic Characterization and Potential Innovative Use in Skin Whitening Products. Fitoterapia 2012, 83, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Azman, N.A.M.; Skowyra, M.; Muhammad, K.; Gallego, M.G.; Almajano, M.P. Evaluation of the Antioxidant Activity of Betula pendula Leaves Extract and Its Effects on Model Foods. Pharm. Biol. 2017, 55, 912–919. [Google Scholar] [CrossRef]
- Penkov, D.; Andonova, V.; Delev, D.; Kostadinov, I.; Kassarova, M. Antioxidant Activity of Dry Birch (Betula pendula) Leaves Extract. Folia Medica 2018, 60, 571–579. [Google Scholar] [CrossRef]
- Bljajić, K.; Šoštarić, N.; Petlevski, R.; Vujić, L.; Brajković, A.; Fumić, B.; De Carvalho, I.S.; Končić, M.Z. Effect of Betula Pendula Leaf Extract on α -Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress. Evid. Based Complement. Altern. Med. 2016, 2016, 8429398. [Google Scholar] [CrossRef]
- Nakurte, I.; Stankus, K.; Virsis, I.; Paze, A.; Rizhikovs, J. Characterization of antioxidant activity and total phenolic compound content of birch outer bark extracts using micro plate assay. Environ. Technol. Resour. 2017, 1, 197. [Google Scholar] [CrossRef]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef]
- Romani, M.; Warscheid, T.; Nicole, L.; Marcon, L.; Di Martino, P.; Suzuki, M.T.; Lebaron, P.; Lami, R. Current and Future Chemical Treatments to Fight Biodeterioration of Outdoor Building Materials and Associated Biofilms: Moving Away from Ecotoxic and towards Efficient, Sustainable Solutions. Sci. Total Environ. 2022, 802, 149846. [Google Scholar] [CrossRef]
- Vergun, O.M.; Rakhmetov, D.B.; Shymanska, O.V.; Fishchenko, V.V.; Ivanišová, E.; Brindza, J. Leaves Extracts of Selected Crops as Potential Source of Antioxidants. Plant Introd. 2019, 84, 82–88. [Google Scholar] [CrossRef]
- Kucharski, Ł.; Cybulska, K.; Kucharska, E.; Nowak, A.; Pełech, R.; Klimowicz, A. Biologically Active Preparations from the Leaves of Wild Plant Species of the Genus Rubus. Molecules 2022, 27, 5486. [Google Scholar] [CrossRef] [PubMed]
- Czerwinski, S.E.; Cozean, J.; Cozean, C. Novel Water-Based Antiseptic Lotion Demonstrates Rapid, Broad-Spectrum Kill Compared with Alcohol Antiseptic. J. Infect. Public Health 2014, 7, 199–204. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Kucharska, E.; Pełech, R.; Nowak, A.; Jakubczyk, K.; Kucharski, Ł. The Optimisation of Ultrasound-Assisted Extraction for the Polyphenols Content and Antioxidant Activity on Sanguisorba officinalis L. Aerial Parts Using Response Surface Methodology. Appl. Sci. 2024, 14, 9579. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Makuch, E.; Nowak, A.; Günther, A.; Pełech, R.; Kucharski, Ł.; Duchnik, W.; Klimowicz, A. Enhancement of the Antioxidant and Skin Permeation Properties of Eugenol by the Esterification of Eugenol to New Derivatives. AMB Express 2020, 10, 187. [Google Scholar] [CrossRef]
- BS EN 1500:2013; Chemical Disinfectants and Antiseptics—Hygienic Handrub—Test Method and Requirements (Phase 2/Step 2). British Standards Institution: Worldgate Drive, VA, USA, 2013.
- Ibrahim, F.M.; Shalaby, E.S.; El-Liethy, M.A.; Abd-Elmaksoud, S.; Mohammed, R.S.; Shalaby, S.I.; Rodrigues, C.V.; Pintado, M.; Habbasha, E.S.E. Formulation and Characterization of Non-Toxic, Antimicrobial, and Alcohol-Free Hand Sanitizer Nanoemulgel Based on Lemon Peel Extract. Cosmetics 2024, 11, 59. [Google Scholar] [CrossRef]
- Villa, C.; Russo, E. Hydrogels in Hand Sanitizers. Materials 2021, 14, 1577. [Google Scholar] [CrossRef]
- DIN EN 13697:2019; Chemical Disinfectants and Antiseptics. Deutsches Institut für Normung: Berlin, Germany, 2019.
- Klarczyk, B.R.; Ruffert, L.; Ulatowski, A.; Mogrovejo, D.C.; Steinmann, E.; Steinmann, J.; Brill, F.H.H. Evaluation of Temperature, Drying Time and Other Determinants for the Recovery of Gram-Negative Bacterial Pathogens in Disinfectant Efficacy Testing. J. Hosp. Infect. 2023, 141, 17–24. [Google Scholar] [CrossRef]
- Lee, H.H.; Hong, S.I.; Kim, D. Microbial Reduction Efficacy of Various Disinfection Treatments on Fresh-Cut Cabbage. Food Sci. Nutr. 2014, 2, 585–590. [Google Scholar] [CrossRef]
- CEN EN 13697:2015; Chemical disinfectants and antiseptics. European Committee for Standardization: Brussels, Belgium, 2015.
- Zeb, A.; Ullah, F.; Ayaz, M.; Ahmad, S.; Sadiq, A. Demonstration of Biological Activities of Extracts from Isodon Rugosus Wall. Ex Benth: Separation and Identification of Bioactive Phytoconstituents by GC-MS Analysis in the Ethyl Acetate Extract. BMC Complement. Altern. Med. 2017, 17, 284. [Google Scholar] [CrossRef]
- Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; et al. Phytol: A Review of Biomedical Activities. Food Chem. Toxicol. 2018, 121, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further In Vitro Evaluation of Antiradical and Antimicrobial Activities of Phytol. Nat. Prod. Res. 2014, 28, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Xu, Y. Anti-Cancer Activities of ω-6 Polyunsaturated Fatty Acids. Biomed. J. 2014, 37, 112. [Google Scholar] [CrossRef]
- Ribeiro, A.; Estanqueiro, M.; Oliveira, M.; Sousa Lobo, J. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Cosmetics 2015, 2, 48–65. [Google Scholar] [CrossRef]
- Peng, J.; Chen, Z.; Chen, X.; Zheng, R.; Lu, S.; Seyab, M.; Yang, F.; Li, Q.; Tang, Q. Insecticidal Potential of a Consolida Ajacis Extract and Its Major Compound (Ethyl Linoleate) against the Diamondback Moth, Plutella xylostella. Pestic. Biochem. Physiol. 2023, 195, 105557. [Google Scholar] [CrossRef]
- Romero-Martínez, N.; Ramos-Zambrano, E.; Osorio-Ruiz1, A.; Martínez-Ayala, A.L. Main Mechanisms of Action of Policosanol in Animal and Plant Cells. Int. J. Pharm. Res. Allied Sci. 2021, 10, 10–20. [Google Scholar] [CrossRef]
- Ambastha, S.; Sharan, L. In Vitro Antioxidant Activity and GC-MS Analysis of Sesbania grandiflora (L.) Pres. Leaves. South Asian J. Exp. Biol. 2023, 13, 297–306. [Google Scholar] [CrossRef]
- Kumari, A.; Sharan, L.; Patnaik, A.; Oraon, V. Profiling of phytochemicals in Annona reticulata L. leaf using gc-ms analysis. J. Adv. Sci. Res. 2022, 13, 198–205. [Google Scholar] [CrossRef]
- Ambavade, S.D.; Misar, A.V.; Ambavade, P.D. Pharmacological, Nutritional, and Analytical Aspects of β-Sitosterol: A Review. Orient. Pharm. Exp. Med. 2014, 14, 193–211. [Google Scholar] [CrossRef]
- Moridi Farimani, M.; Nazarianpoor, E.; Rustaie, A.; Akhbari, M. Phytochemical Constituents and Biological Activities of Cleome iberica DC. Nat. Prod. Res. 2017, 31, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Diamante, C.; Zondlo Fiume, M.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Final Safety Assessment of Thiodipropionic Acid and Its Dialkyl Esters as Used in Cosmetics. Int. J. Toxicol. 2010, 29, 137S–150S. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, S.A.; Skvortsova, G.P.; Maliar, I.N.; Skurydina, E.S.; Veselova, O.F. Extraction of Betulin from Birch Bark and Study of Its Physico-Chemical and Pharmacological Properties. Russ. J. Bioorganic Chem. 2014, 40, 742–747. [Google Scholar] [CrossRef]
- Saha, S.; Kumar, Y.; Gupta, J.K.; Kumar, S.; Singh, K.; Singh, T.; Vij, D.; Garg, K. An Overview of the Pharmacological and Phytochemical Characteristics of Betula Utilis. Anti-Infect. Agents 2025, 23, e22113525298942. [Google Scholar] [CrossRef]
- Felföldi-Gáva, A.; Simándi, B.; Plánder, S.; Szarka, S.; Szőke, É.; Kéry, Á. Betulaceae and Platanaceae Plants as Alternative Sources of Selected Lupane-Type Triterpenes. Their Composition Profile and Betulin Content. Acta Chromatogr. 2009, 21, 671–681. [Google Scholar] [CrossRef]
- Isidorov, V.; Szoka, Ł.; Nazaruk, J. Cytotoxicity of White Birch Bud Extracts: Perspectives for Therapy of Tumours. PLoS ONE 2018, 13, e0201949. [Google Scholar] [CrossRef]
- Muzykiewicz-Szymańska, A.; Nowak, A.; Kucharska, E.; Cybulska, K.; Klimowicz, A.; Kucharski, Ł. Sanguisorba officinalis L. Ethanolic Extracts and Essential Oil—Chemical Composition, Antioxidant Potential, Antibacterial Activity, and Ex Vivo Skin Permeation Study. Front. Pharmacol. 2024, 15, 1390551. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Rapak, A.; Ochmian, I. Profile and Content of Phenolic Compounds in Leaves, Flowers, Roots, and Stalks of Sanguisorba officinalis L. Determined with the LC-DAD-ESI-QTOF-MS/MS Analysis and Their In Vitro Antioxidant, Antidiabetic, Antiproliferative Potency. Pharmaceuticals 2020, 13, 191. [Google Scholar] [CrossRef]
- Tocai, A.-C.; Ranga, F.; Teodorescu, A.G.; Pallag, A.; Vlad, A.M.; Bandici, L.; Vicas, S.I. Evaluation of Polyphenolic Composition and Antimicrobial Properties of Sanguisorba officinalis L. and Sanguisorba Minor Scop. Plants 2022, 11, 3561. [Google Scholar] [CrossRef]
- Yang, C.-H.; Li, R.-X.; Chuang, L.-Y. Antioxidant Activity of Various Parts of Cinnamomum cassia Extracted with Different Extraction Methods. Molecules 2012, 17, 7294–7304. [Google Scholar] [CrossRef]
- Kaškoniene, V.; Stankevičius, M.; Drevinskas, T.; Akuneca, I.; Kaškonas, P.; Bimbiraite-Surviliene, K.; Maruška, A.; Ragažinskiene, O.; Kornyšova, O.; Briedis, V.; et al. Evaluation of Phytochemical Composition of Fresh and Dried Raw Material of Introduced Chamerion angustifolium L. Using Chromatographic, Spectrophotometric and Chemometric Techniques. Phytochemistry 2015, 115, 184–193. [Google Scholar] [CrossRef]
- Kucharska, E.; Grygorcewicz, B.; Spietelun, M.; Olszewska, P.; Bobkowska, A.; Ryglewicz, J.; Nowak, A.; Muzykiewicz-Szymańska, A.; Kucharski, Ł.; Pełech, R. Potential Role of Bioactive Compounds: In Vitro Evaluation of the Antioxidant and Antimicrobial Activity of Fermented Milk Thistle. Appl. Sci. 2024, 14, 4287. [Google Scholar] [CrossRef]
- Miklasińska, M.; Kępa, M.; Wojtyczka, R.; Idzik, D.; Zdebik, A.; Orlewska, K.; Wąsik, T. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules 2015, 20, 13536–13549. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Role of Algal Derived Compounds in Pharmaceuticals and Cosmetics. In Recent Advances in Micro and Macroalgal Processing; Rajauria, G., Yuan, Y.V., Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 537–603. ISBN 978-1-119-54258-2. [Google Scholar]
Birch Preparation | Escherichia coli K12 NCTC 10538 |
---|---|
N | 8.6 ± 0.1 |
Nvb | 84 × 104 |
B | 81 ± 1 |
Nv | 83 × 104 |
C | 76 ± 1 |
Phase II, Stage II | |||||||
---|---|---|---|---|---|---|---|
Birch Preparation | Contact Time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 | Escherichia coli ATCC 10536 | Enterococcus hirae ATCC 10541 | Candida albicans ATCC 10231 | Aspergillus brasiliensis ATCC 16404 |
N | 7.01 | 7.07 | 7.02 | 6.99 | 6.03 | 5.88 | |
NT | 6.96 | 6.98 | 6.92 | 6.87 | 5.93 | 5.79 | |
NC | 6.99 | 6.94 | 6.98 | 6.89 | 5.91 | 5.76 | |
NW | |||||||
ND CP = 60 g/100 mL | 60 ± 10 s | <2.15 | <2.15 | <2.15 | <2.15 | <2.15 | <2.15 |
ND CP = 0.6 g/100 mL | >5.52 | >5.52 | >5.52 | >5.52 | >5.52 | >5.52 | |
ND CP = 60 g/100 mL | 300 ± 10 s | <2.15 | <2.15 | <2.15 | <2.15 | <2.15 | <2.15 |
Phase II, Stage II | |||
---|---|---|---|
Preparation/Ethanol | Contact Time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 |
N | 6.75 | 6.74 | |
NT | 7.12 | 7.06 | |
NC | 7.14 | 7.10 | |
NW | 7.14 | 7.13 | |
ND CP = 20 g/100 mL | 60 ± 10 s | 4.20 | 4.31 |
ND CP = 30 g/100 mL | 4.09 | 4.25 | |
ND CP = 40 g/100 mL | 3.03 | 3.15 | |
ND CP = 50 g/100 mL | 2.82 | 2.89 | |
ND CP = 60 g/100 mL | <0.10 | <0.10 | |
ND CP = 70 g/100 mL | <0.10 | <0.10 | |
ND CP = 80 g/100 mL | <0.10 | <0.10 | |
ND CP = 90 g/100 mL | <0.10 | <0.10 | |
ND CP = 100 g/100 mL | <0.10 | <0.10 | |
ND CE = E 80 g/100 mL | 3.12 | 3.08 | |
ND CE = 90 g/100 mL | 2.54 | 2.49 | |
ND CE = 100 g/100 mL | <0.10 | <0.10 |
Chemical Compound | Chemical Class | RT (min) | Biological Activity |
---|---|---|---|
palmitic acid | saturated fatty acid | 15.62 | antifungal antibacterial activity [22] |
ethyl palmitate | ester of saturated fatty acid | 15.82 | larvicidal and insecticidal agents [35] |
phytol | unsaturated terpene ketone | 16.86 | antioxidant anti-inflammatory antimicrobial activity [36,37] |
linolenic acid | unsaturated fatty acid | 17.01 | anti-cancer activity [38] |
methyl linoleate | ester of unsaturated fatty acid | 17.15 | antibacterial antifungal activity [22,39] |
ethyl linoleate | ester of unsaturated fatty acid | 17.19 | insecticidal action [40] |
hexacosanol | fatty alcohol | 19.01 | anti-inflammatory activity [41] |
alpha-tocospiro B | alpha-tocopheroids | 20.97 | antioxidant antidiabetic anti-inflammatory cardioprotective activity [42,43] |
sitosterol | triterpenoid | 24.28 | anti-inflammatory antioxidant activity [44] |
cabraleadiol | triterpenoid | 26.65 | anti-inflammatory activity [45] |
dilauryl thiodipropionate | ester; thio compound | 26.76 | antioxidant activity [46] |
AA | TPC | ||
---|---|---|---|
Birch preparation | DPPH | FRAP | F-C |
(mg TE/g dry raw material) | (mg GAE/g dry raw material) | ||
32 ± 6 | 640 ± 10 | 52 ± 2 |
RP-PB | 0.31 | 0.26 | 0.08 | 0.03 | −0.04 | −0.14 | −0.17 | −0.18 | −0.18 | −0.29 |
0.31 | 0.31 | |||||||||
0.26 | 0.29 | 0.26 | ||||||||
0.08 | 0.19 | 0.17 | 0.08 | |||||||
0.03 | 0.17 | 0.15 | 0.05 | 0.03 | ||||||
−0.04 | 0.14 | 0.11 | 0.02 | 0.00 | −0.04 | |||||
−0.14 | 0.08 | 0.06 | −0.03 | −0.06 | −0.09 | −0.14 | ||||
−0.17 | 0.07 | 0.05 | −0.04 | −0.07 | −0.1 | −0.15 | −0.17 | |||
−0.18 | 0.06 | 0.04 | −0.05 | −0.08 | −0.11 | −0.16 | −0.17 | −0.18 | ||
−0.18 | 0.06 | 0.04 | −0.05 | −0.08 | −0.11 | −0.16 | −0.17 | −0.18 | −0.18 | |
−0.29 | 0.01 | −0.01 | −0.11 | −0.13 | −0.16 | −0.22 | −0.23 | −0.24 | −0.24 | −0.29 |
−0.29 | 0.01 | −0.01 | −0.11 | −0.13 | −0.17 | −0.22 | −0.23 | −0.24 | −0.24 | −0.29 |
−0.30 | 0.00 | −0.02 | −0.11 | −0.14 | −0.17 | −0.22 | −0.23 | −0.24 | −0.24 | |
−0.31 | 0.00 | −0.02 | −0.12 | −0.14 | −0.17 | −0.23 | −0.24 | −0.24 | −0.25 | |
−0.31 | 0.00 | −0.02 | −0.12 | −0.14 | −0.18 | −0.23 | −0.24 | −0.25 | −0.25 | |
−0.49 | −0.09 | −0.11 | −0.21 | −0.23 | −0.27 | |||||
−0.57 | −0.13 | −0.15 | −0.24 | −0.27 | ||||||
−0.58 | −0.14 | −0.16 | −0.25 | −0.28 | ||||||
−0.61 | −0.15 | −0.17 | −0.27 | −0.29 | ||||||
−0.61 | −0.15 | −0.18 | −0.27 | −0.29 | ||||||
−0.68 | −0.18 | −0.21 |
Number of Tests | LR | PR-PB | |
---|---|---|---|
PR | PB | ||
1 | 3.39 ± 0.01 | 4.31 ± 0.01 | −0.92 |
2 | 4.45 ± 0.09 | 4.76 ± 0.01 | −0.30 |
3 | 4.41 ± 0.08 | 4.52 ± 0.03 | −0.12 |
4 | 3.69 ± 0.02 | 3.83 ± 0.06 | −0.13 |
5 | 3.17 ± 0.02 | 3.68 ± 0.09 | −0.50 |
6 | 3.99 ± 0.08 | 4.07 ± 0.02 | −0.08 |
7 | 4.91 ± 0.02 | 4.09 ± 0.08 | 0.82 |
8 | 3.14 ± 0.02 | 3.26 ± 0.03 | −0.12 |
9 | 3.48 ± 0.02 | 4.06 ± 0.04 | −0.58 |
10 | 3.78 ± 0.04 | 4.09 ± 0.05 | −0.32 |
11 | 3.85 ± 0.09 | 4.22 ± 0.04 | −0.37 |
12 | 3.93 ± 0.01 | 3.98 ± 0.03 | −0.04 |
13 | 3.49 ± 0.02 | 3.99 ± 0.09 | −0.50 |
14 | 3.56 ± 0.01 | 3.94 ± 0.03 | −0.38 |
15 | 3.49 ± 0.02 | 3.91 ± 0.04 | −0.43 |
16 | 3.37 ± 0.02 | 3.51 ± 0.08 | −0.14 |
17 | 3.73 ± 0.02 | 4.74 ± 0.08 | −1.01 |
18 | 3.69 ± 0.02 | 4.01 ± 0.01 | −0.32 |
19 | 3.65 ± 0.01 | 4.07 ± 0.03 | −0.43 |
20 | 3.70 ± 0.01 | 4.12 ± 0.05 | −0.42 |
Phase II, Stage II | |||||||
---|---|---|---|---|---|---|---|
Birch Preparation | Contact time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 | Escherichia coli ATCC 10536 | Enterococcus hirae ATCC 10541 | Candida albicans ATCC 10231 | Aspergillus brasiliensis ATCC 16404 |
CP = 0.6 g/100 mL | 60 ± 10 s | 10−0: >330 | 10−0: >330 | 10−0: >330 | 10−0: >330 | 10−0: >330 | 10−0: >165 |
10−1: >330 | 10−1: >330 | 10−1: >330 | 10−1: >330 | 10−1: >330 | 10−1: >165 | ||
10−2: >330 | 10−2: >330 | 10−2: >330 | 10−2: >330 | 10−2: >330 | 10−2: >165 | ||
Nts: >330 | Nts: >330 | Nts: >330 | Nts: >330 | Nts: >330 | Nts: >165 | ||
R: <1.47 | R: <1.43 | R: <1.46 | R: <1.37 | R: <0.42 | R: <0.58 | ||
CP = 60 g/100 mL | 10−0: <14 | 10−0: <14 | 10−0: <14 | 10−0: 67 ± 0.07 | 10−0: <14 | 10−0: <14 | |
10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | ||
10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | ||
Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | ||
R: >4.84 | R: >4.80 | R: >4.83 | R: >4.75 | R: >3.79 | R: >3.65 | ||
CP = 60 g/100 mL | 300 ± 10 s | 10−0: <14 | 10−0: <14 | 10−0: <14 | 10−0: <14 | 10−0: <14 | 10−0: <14 |
10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | 10−1: <14 | ||
10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | 10−2: <14 | ||
Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | Nts: >0 | ||
R: >4.84 | R: >4.80 | R: >4.83 | R: >4.75 | R: >3.79 | R: >3.65 |
Phase II, Stage II | |||||||
---|---|---|---|---|---|---|---|
Birch Preparation | Contact Time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 | Escherichia coli ATCC 10536 | Enterococcus hirae ATCC 10541 | Candida albicans ATCC 10231 | Aspergillus brasiliensis ATCC 16404 |
LR/%R CP = 0.6 g/100 mL | 60 ± 10 s | 1.47/ 96.6 | 1.43/ 96.2 | 1.46/ 96.5 | 1.37/ 95.7 | <0.41/ <61.1 | <0.58/ <73.7 |
LR/%R CP = 60 g/100 mL | 300 ± 10 s | >4.84/ >99.9 | >4.80/ >99.9 | >4.83/ >9.99 | >4.75/ >99.9 | >3.79/ >99.9 | >3.65/ >99.9 |
Phase II, Stage II | |||
---|---|---|---|
Birch Preparation/Ethanol | Contact Time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 |
LR/%R CP = 20 g/100 mL | 60 ± 10 s | 2.94/>99.8 | 2.82/>99.8 |
LR/%R CP = 30 g/100 mL | 3.05/>99.9 | 2.88/>99.8 | |
LR/%R CP = 40 g/100 mL | 4.11/>99.9 | 3.98/>99.9 | |
LR/%R CP = 50 g/100 mL | 4.32/>99.9 | 4.24/>99.9 | |
LR/%R CP = 60 g/100 mL | >7.04/>99.9 | >7.03/>99.9 | |
LR/%R CP = 70 g/100 mL | >7.04/>99.9 | >7.03/>99.9 | |
LR/%R CP = 80 g/100 mL | >7.04/>99.9 | >7.03/>99.9 | |
LR/%R CP = 90 g/100 mL | >7.04/>99.9 | >7.03/>99.9 | |
LR/%R CP = 100 g/100 mL | >7.04/>99.9 | >7.03/>99.9 | |
LR/%R CE = 80 g/100 mL | 4.02/>99.9 | 4.05/>99.9 | |
LR/%R CE = 90 g/100 mL | 4.60/>99.9 | 4.64/>99.9 | |
LR/%R CE = 100 g/100 mL | >7.04/>99.9 | >7.03/>99.9 |
Phase II, Stage II | |||
---|---|---|---|
Birch Preparation/Ethanol | Contact Time | Staphylococcus aureus ATCC 6538 | Pseudomonas aeruginosa ATCC 15442 |
CP = 20 g/100 mL | 60 ± 10 s | 10−0: >330; >330 | 10−0: >330; >330 |
10−1: 161; 153 | 10−1: 211; 193 | ||
10−2: 10; 9 | 10−2: 11; 13 | ||
Nd: 4.20 | Nd: 4.31 | ||
Nts: >100 | Nts: >100 | ||
R: 2.94 | R: 2.82 | ||
CP = 30 g/100 mL | 10−0: 245; 237 | 10−0: 254; 269 | |
10−1: 123; 122 | 10−1: 172; 181 | ||
10−2: 84; 91 | 10−2: 94; 61 | ||
Nd: 4.09 | Nd: 4.25 | ||
Nts: 100 | Nts: 90 | ||
R: 3.05 | R: >2.88 | ||
CP = 40 g/100 mL | 10−0: 115; 98 | 10−0: 138; 146 | |
10−1: 49; 58 | 10−1: 13; 11 | ||
10−2: 5; 7 | 10−2: 0; 0 | ||
Nd: 3.03 | Nd: 3.15 | ||
Nts: 90 | Nts: 0 | ||
R: 4.11 | R: 3.98 | ||
CP = 50 g/100 mL | 10−0: 74; 59 | 10−0: 72; 83 | |
10−1: 18; 23 | 10−1: 4; 6 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: 2.82 | Nd: 2.89 | ||
Nts: 0 | Nts: 0 | ||
R: 4.32 | R: >4.24 | ||
CP = 60 g/100 mL | 10−0: 8; 5 | 10−0: 1; 2 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 | ||
CP = 70 g/100 mL | 10−0: 0; 0 | 10−0: 0; 0 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 | ||
CP = 80 g/100 mL | 10−0: 0; 0 | 10−0: 0; 0 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 | ||
CP = 90 g/100 mL | 10−0: 0; 0 | 10−0: 0; 0 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 | ||
CP = 100 g/100 mL | 10−0: 0; 0 | 10−0: 0; 0 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 | ||
CE = 80 g/100 mL | 10−0: 129; 132 | 10−0: 107; 135 | |
10−1: 68; 83 | 10−1: 87; 95 | ||
10−2: 29; 22 | 10−2: 8; 9 | ||
Nc: 3.12 | Nc: 3.08 | ||
Nts: 20 | Nts: 100 | ||
R:4.02 | R:4.05 | ||
CE = 90 g/100 mL | 10−0: 33; 37 | 10−0: 28; 34 | |
10−1: 1; 7 | 10−1: 1; 1 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nc: 2.54 | Nc: 2.49 | ||
Nts: 20 | Nts: 20 | ||
R:4.60 | R:4.64 | ||
CE = 100 g/100 mL | 10−0: 0; 0 | 10−0: 0; 0 | |
10−1: 0; 0 | 10−1: 0; 0 | ||
10−2: 0; 0 | 10−2: 0; 0 | ||
Nd: <0.10 | Nd: <0.10 | ||
Nts: 0 | Nts: 0 | ||
R: >7.04 | R: >7.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharski, Ł.; Kucharska, E.; Muzykiewicz-Szymańska, A.; Nowak, A.; Pełech, R. Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Novel Antiseptic Lotion from the Leaves of Betula pendula Roth. Appl. Sci. 2025, 15, 3658. https://doi.org/10.3390/app15073658
Kucharski Ł, Kucharska E, Muzykiewicz-Szymańska A, Nowak A, Pełech R. Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Novel Antiseptic Lotion from the Leaves of Betula pendula Roth. Applied Sciences. 2025; 15(7):3658. https://doi.org/10.3390/app15073658
Chicago/Turabian StyleKucharski, Łukasz, Edyta Kucharska, Anna Muzykiewicz-Szymańska, Anna Nowak, and Robert Pełech. 2025. "Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Novel Antiseptic Lotion from the Leaves of Betula pendula Roth" Applied Sciences 15, no. 7: 3658. https://doi.org/10.3390/app15073658
APA StyleKucharski, Ł., Kucharska, E., Muzykiewicz-Szymańska, A., Nowak, A., & Pełech, R. (2025). Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Novel Antiseptic Lotion from the Leaves of Betula pendula Roth. Applied Sciences, 15(7), 3658. https://doi.org/10.3390/app15073658