Volatile Sulphur Compounds in Wine Distillates by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Distillates
2.2. Chemicals and Reagents
2.3. Sample Preparation
2.4. Apparatus
2.5. Experimental Design
2.6. Validation SBSE Methodology
3. Results and Discussion
3.1. Optimization of the Extraction Conditions
3.2. Method Validation
3.3. Comparison with Other Analytical Methodologies
3.4. Application to Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABV | Alcohol by volume |
EMS | Ethyl methyl sulphide |
DES | Diethyl sulphide |
T | Thiophene |
P | 1-Pentanethiol |
DMDS | Dimethyl disulphide |
DPS | Dipropyl sulphide |
DEDS | Diethyl disulphide |
DBS | Dibutyl sulphide |
DMTS | Dimethyl trisulphide |
DPDS | Dipropyl disulphide |
DL | Detection limit |
QL | Quantification limit |
SPE | Solid Phase Extraction |
SPME | Solid Phase MicroExtraction |
HS-SPME | Headspace-Solid Phase MicroExtraction |
SBSE-GC-MS | Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry |
HS-GC-SCD | Headspace-Gas Chromatography-Sulphur Chemiluminescent Detection |
HS-SPME-GC-AED | Headspace-Solid Phase MicroExtraction-Gas Chromatography-Atomic Emission Detection |
HS-SPME-GC-pFPD | Headspace Solid-Phase Microextraction–Gas Chromatography–Pulsed Flame-Photometric Detection |
TDU | Thermal desorption unit |
EDTA | Ethylenediaminetetraacetic acid |
CA | Cluster Analysis |
PDMS | Polydimethylsiloxane |
VSCs | Volatile sulphur compounds |
Appendix A
Code | Distillation Fraction | Alcohol Content (ABV) | SO2Addition* | Distillation Type | Aging |
---|---|---|---|---|---|
1 | Head | 85% | High | Continuous column distillation | No |
2 | Heart | 77% | Very low | Continuous column distillation | No |
3 | Heart | 77% | Medium | Continuous column distillation | No |
4 | Head | 77% | High | Continuous column distillation | No |
5 | Head | 85% | High | Continuous column distillation | No |
6 | Head | 85% | - | Distillation in pot still | No |
7 | Head | 70% | - | Distillation in pot still | No |
8 | Heart | 70% | - | Continuous column distillation | No |
9 | Heart | 70% | Low | Continuous column distillation | Yes |
10 | Heart | 77% | - | Continuous column distillation | No |
11 | Head | 95% | - | Continuous column distillation | No |
12 | Heart | 65% | - | Continuous column distillation | No |
13 | Heart | 35% | - | Continuous column distillation | Yes |
14 | Heart | 35% | - | Continuous column distillation | Yes |
15 | Heart | 35% | - | Continuous column distillation | Yes |
16 | Heart | 35% | - | Continuous column distillation | Yes |
17 | Heart | 35% | - | Continuous column distillation | Yes |
18 | Heart | 35% | - | Continuous column distillation | Yes |
19 | Heart | 35% | - | Continuous column distillation | Yes |
20 | Heart | 35% | - | Continuous column distillation | Yes |
21 | Heart | 35% | - | Continuous column distillation | Yes |
22 | Heart | 35% | - | Continuous column distillation | Yes |
23 | Heart | 55% | Medium | Distillation in pot still | No |
24 | Heart | 55% | - | Distillation in pot still | No |
25 | Heart | 55% | - | Distillation in pot still | Yes |
26 | Heart | 55% | Medium | Continuous column distillation | No |
27 | Heart | 55% | Medium | Continuous column distillation | Yes |
28 | Heart | 55% | Medium | Distillation in pot still | No |
29 | Heart | 55% | Medium | Distillation in pot still | Yes |
30 | Heart | 65% | Medium | Distillation in pot still | No |
31 | Heart | 65% | Medium | Distillation in pot still | Yes |
32 | Head | 96% | Medium | Continuous column distillation | No |
33 | Head | 96% | Medium | Continuous column distillation | No |
34 | Heart | 65% | Medium | Continuous column distillation | No |
Code | DES | DMDS | DPS | DEDS | DBS | DMTS | DPDS | TC |
---|---|---|---|---|---|---|---|---|
1 | nd | 404.7 ± 6.7 | <QL | <QL | nd | 42.25 ± 0.38 | nd | nd |
2 | nd | 9.60 ± 0.37 | nd | nd | 67.48 ± 12.74 | nd | 1.67 ± 0.16 | nd |
3 | nd | 16.47 ± 1.44 | nd | nd | 13.21 ± 4.36 | 13.68 ± 1.79 | 2.40 ± 0.40 | nd |
4 | nd | 95.42 ± 3.55 | <QL | nd | nd | nd | nd | nd |
5 | nd | 96.83 ± 10.48 | nd | nd | nd | nd | <QL | nd |
6 | nd | 1656 ± 56 | nd | nd | 2491 ± 663 | nd | 29.18 ± 4.76 | nd |
7 | nd | 1626 ± 27 | nd | nd | 1316 ± 188 | 92.07 ± 1.81 | 53.97 ± 9.35 | nd |
8 | nd | 15.10 ± 0.48 | 128.6 ± 28.0 | nd | 237.2 ± 11.4 | nd | 19.87 ± 2.23 | <QL |
9 | nd | 12.90 ± 8.23 | 136.6 ± 43.8 | nd | 267.5 ± 44.8 | nd | 23.16 ± 2.65 | <QL |
10 | nd | nd | 153.5 ± 10.8 | nd | 533.5 ± 44.2 | <DL | 37.63 ± 6.40 | 87.10 ± 28.68 |
11 | nd | nd | 132.7 ± 40.4 | nd | 1030 ± 6 | nd | 56.38 ± 12.56 | nd |
12 | nd | 1568 ± 31 | 265.2 ± 60.6 | nd | 1527 ± 456 | 69.79 ± 7.79 | 42.35 ± 4.77 | nd |
13 | nd | 130.2 ± 0.8 | 113.9 ± 13.6 | nd | 916.0 ± 4.3 | nd | 17.59 ± 1.90 | nd |
14 | nd | 211.1 ± 2.8 | 123.9 ± 11.2 | nd | 1068 ± 111 | 7.25 ± 0.55 | 21.70 ± 5.34 | nd |
15 | nd | 124.1 ± 1.1 | 122.0 ± 4.5 | nd | 810.6 ± 85.4 | 6.07 ± 0.41 | 17.26 ± 2.71 | nd |
16 | nd | 10.14 ± 1.74 | 87.9 ± 31.8 | nd | 210.5 ± 51.7 | nd | 18.92 ± 5.89 | 16.34 ± 2.51 |
17 | nd | 6.00 ± 0.95 | 65.5 ± 3.1 | nd | 101.1 ± 23.3 | nd | 10.11 ± 0.43 | <QL |
18 | nd | 6.40 ± 0.90 | 78.61 ± 7.40 | nd | 94.31 ± 3.85 | nd | 10.77 ± 1.26 | <QL |
19 | nd | 6.98 ± 0.75 | 64.70 ± 6.89 | nd | 157.7 ± 39.7 | nd | 16.54 ± 5.40 | nd |
20 | nd | 6.05 ± 0.81 | 53.45 ± 11.81 | nd | 140.3 ± 36.5 | nd | 11.26 ± 0.56 | nd |
21 | nd | 95.29 ± 1.16 | 127.9 ± 7.6 | <QL | 665.9 ± 136.1 | nd | 17.29 ± 3.07 | nd |
22 | nd | 32.57 ± 0.70 | 88.66 ± 1.62 | 22.61 ± 0.39 | 599.0 ± 2.8 | nd | 14.25 ± 0.34 | nd |
23 | nd | 61.10 ± 2.58 | 205.2 ± 15.9 | 10.37 ± 2.75 | 2299 ± 175 | nd | 67.66 ± 9.18 | nd |
24 | nd | 36.81 ± 1.21 | 153.5 ± 49.0 | nd | 1794 ± 299 | nd | 55.58 ± 18.65 | nd |
25 | nd | 14.77 ± 9.62 | 133.3 ± 25.3 | nd | 780.2 ± 125.3 | nd | 25.71 ± 7.42 | nd |
26 | nd | 15.16 ± 6.21 | 274.4 ± 78.4 | nd | 1652 ± 144 | nd | 114.6 ± 32.5 | nd |
27 | nd | 9.70 ± 1.65 | 137.1 ± 4.9 | nd | 414.7 ± 29.7 | nd | 25.99 ± 3.05 | nd |
28 | nd | 14.20 ± 0.49 | 218.3 ± 36.4 | nd | 621.0 ± 64.7 | nd | 50.89 ± 16.46 | 120.5 ± 17.6 |
29 | nd | 13.87 ± 0.75 | 401.4 ± 133.1 | nd | 618.4 ± 109.0 | nd | 47.74 ± 23.32 | 183.8 ± 12.1 |
30 | nd | 18.13 ± 0.05 | 269.5 ± 11.9 | nd | 1403 ± 211 | <QL | 89.63 ± 12.51 | 132.0 ± 37.4 |
31 | nd | <DL | nd | nd | nd | nd | nd | 11.16 ± 0.49 |
32 | nd | nd | nd | nd | nd | nd | <QL | nd |
33 | nd | <QL | nd | nd | nd | nd | <QL | nd |
34 | nd | nd | nd | nd | nd | nd | <QL | nd |
Mean | nd | 185.8 ± 452.2 | 104.0 ± 101.4 | 1.06 ± 1 ± 4.17 | 642.1 ± 696.8 | 7.02 ± 20.14 | 26.6 ± 27.7 | 17.0 ± 43.9 |
References
- Campillo, N.; Peñalver, R.; López-García, I.; Hernández-Córdoba, M. Headspace solid-phase microextraction for the determination of volatile organic sulphur and selenium compounds in beers, wines and spirits using gas chromatography and atomic emission detection. J. Chromatogr. A 2009, 1216, 6735–6740. [Google Scholar] [CrossRef] [PubMed]
- Segurel, M.A.; Razungles, A.J.; Riou, C.; Salles, M.; Baumes, R.L. Contribution of dimethyl sulfide to the aroma of syrah and grenache noir wines and estimation of its potential in grapes of these varieties. J. Agric. Food Chem. 2004, 52, 7084–7093. [Google Scholar] [CrossRef]
- Mestres, M.; Busto, O.; Guasch, J. Analysis of organic sulfur compounds in wine aroma. J. Chromatogr. A 2000, 881, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luesma, E.; Ferreira, V. Reductive off-odors in wines: Formation and release of H2S and methanethiol during the accelerated anoxic storage of wines. Food Chem. 2016, 199, 42–50. [Google Scholar] [CrossRef]
- Xiang, X.F.; Lan, Y.B.; Gao, X.T.; Xie, H.; An, Z.Y.; Lv, Z.H.; Yin-Shi; Duan, C.Q.; Wu, G.F. Characterization of odor-active compounds in the head, heart, and tail fractions of freshly distilled spirit from Spine grape (Vitis davidii Foex) wine by gas chromatography-olfactometry and gas chromatography-mass spectrometry. Food Res. Int. 2020, 137, 109388. [Google Scholar] [CrossRef] [PubMed]
- Zanghelini, G.; Athès, V.; Vitu, S.; Giampaoli, P.; Esteban-Decloux, M. Charentaise distillation of cognac. Part II: Process simulation and impact of recycling practices on the aroma composition of freshly distilled spirit. Food Res. Int. 2024, 178, 113861. [Google Scholar] [CrossRef]
- Harrison, B.; Fagnen, O.; Jack, F.; Brosnan, J. The impact of copper in different parts of malt whisky pot stills on new make spirit composition and Aroma. J. Inst. Brew. 2011, 117, 106–112. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Ortega-Gavilán, F.; Bagur-González, M.G.; Valcárcel-Muñoz, M.J.; García-Moreno, M.d.V.; Guillén-Sánchez, D.A. Pattern Recognition of GC-FID Profiles of Volatile Compounds in Brandy de Jerez Using a Chemometric Approach Based on Their Instrumental Fingerprints. Food Bioprocess Technol. 2023, 16, 1963–1975. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D. Countercurrent supercritical fluid extraction of grape-spirit. J. Supercrit. Fluids 2010, 55, 128–131. [Google Scholar] [CrossRef]
- Cardoso, D.R.; Sobrinho, L.G.A.; Lima-Neto, B.S.; Franco, D.W. A rapid and sensitive method for dimethylsulphide analysis in brazilian sugar cane sugar spirits and oOther distilled beverages. J. Braz. Chem. Soc. 2004, 15, 277–281. [Google Scholar] [CrossRef]
- Dziekońska-Kubczak, U.; Pielech-Przybylska, K.; Patelski, P.; Balcerek, M. Development of the method for determination of volatile sulfur compounds (VSCs) in fruit brandy with the use of HS-SPME/GC-MS. Molecules 2020, 25, 1232. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Lapeña, A.C.; Cacho, J.; Ferreira, V. Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Critical study and optimization of a new procedure. J. Chromatogr. A 2007, 1143, 8–15. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Tonidandel, L.; Moser, S.; Román Villegas, T.; Larcher, R. Rapid Analysis of 27 Volatile Sulfur Compounds in Wine by Headspace Solid-Phase Microextraction Gas Chromatography Tandem Mass Spectrometry. Food Anal. Methods 2017, 10, 3706–3715. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Wang, L.; Chen, S.; Xu, Y. Optimization and validation of a head space solid-phase microextraction-arrow gas chromatography-mass spectrometry method using central composite design for determination of aroma compounds in Chinese liquor (Baijiu). J. Chromatogr. A 2020, 1610, 460584. [Google Scholar] [CrossRef] [PubMed]
- Elpa, D.; Durán-Guerrero, E.; Castro, R.; Natera, R.; Barroso, C.G. Development of a new stir bar sorptive extraction method for the determination of medium-level volatile thiols in wine. J. Sep. Sci. 2014, 37, 1867–1872. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, J.M.F. Stir-bar sorptive extraction: 15 years making sample preparation more environment-friendly. TrAC—Trends Anal. Chem. 2015, 71, 214–223. [Google Scholar] [CrossRef]
- Lukić, I.; Tomas, S.; Miličević, B.; Radeka, S.; Peršurić, D. Behaviour of volatile compounds during traditional alembic distillation of fermented Muscat blanc and Muškat ruža porežki grape marcs. J. Inst. Brew. 2011, 117, 440–450. [Google Scholar] [CrossRef]
- Plutowska, B.; Biernacka, P.; Wardencki, W. Identification of volatile compounds in raw spirits of different organoleptic quality. J. Inst. Brew. 2010, 116, 433–439. [Google Scholar] [CrossRef]
- Ontañón, I.; Vela, E.; Hernández-Orte, P.; Ferreira, V. Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. J. Chromatogr. A 2019, 1596, 152–160. [Google Scholar] [CrossRef]
- Lončarić, A.; Patljak, M.; Blažević, A.; Jozinović, A.; Babić, J.; Šubarić, D.; Pichler, A.; Flanjak, I.; Kujundžić, T.; Miličević, B. Changes in Volatile Compounds during Grape Brandy Production from ‘Cabernet Sauvignon’ and ‘Syrah’ Grape Varieties. Processes 2022, 10, 988. [Google Scholar] [CrossRef]
- Raičević, D.; Popović, T.; Jančić, D.; Šuković, D.; Pajović-šćepanović, R. The Impact of Type of Brandy on the Volatile Aroma Compounds and Sensory Properties of Grape Brandy in Montenegro. Molecules 2022, 27, 2974. [Google Scholar] [CrossRef]
- McLafferty, F. Wiley Registry of Mass Spectral Data, 7th ed.; John Wiley & Sons Inc.: New York, NY, USA, 2024. [Google Scholar]
- Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.A.; Etxebarria, N.; Zuloaga, O. Stir-bar sorptive extraction: A view on method optimisation, novel applications, limitations and potential solutions. J. Chromatogr. A 2010, 1217, 2642–2666. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.; Durán, E.; Castro, R.; Natera, R.; Barroso, C.G. Development of a stir bar sorptive extraction method coupled to gas chromatography-mass spectrometry for the analysis of volatile compounds in Sherry brandy. Anal. Chim. Acta 2010, 672, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, E.D.; Marín, R.N.; Mejías, R.C.; Barroso, C.G. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A 2006, 1104, 47–53. [Google Scholar] [CrossRef]
- Mateo-Vivaracho, L.; Cacho, J.; Ferreira, V. Selective preconcentration of volatile mercaptans in small SPE cartridges: Quantitative determination of trace odor-active polyfunctional mercaptans in wine. J. Sep. Sci. 2009, 32, 3845–3853. [Google Scholar] [CrossRef] [PubMed]
- Davis, P.M.; Qian, M.C. Effect of ethanol on the adsorption of volatile Sulfur Compounds on solid phase micro-extraction fiber coatings and the implication for analysis in wine. Molecules 2019, 24, 3392. [Google Scholar] [CrossRef]
- Analytical Methods Committee Recommendations for the definition, estimation and use of the detection limit. Analyst 1987, 112, 199–204. [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE-Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Ledauphin, J.; Basset, B.; Cohen, S.; Payot, T.; Barillier, D. Identification of trace volatile compounds in freshly distilled Calvados and Cognac: Carbonyl and sulphur compounds. J. Food Compos. Anal. 2006, 19, 28–40. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Ortega-Gavilán, F.; Bagur-González, M.G.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Influence of the use of sulfur dioxide, the distillation method, the oak wood type and the aging time on the production of brandies. Curr. Res. Food Sci. 2023, 6, 100486. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, S.; Che, J.; Zhang, B.; Tang, K. Characteristics of aroma components in different years of base brandy by headspace solid-phase microextraction with comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Food Ferment. Ind. 2024, 50, 346–352. [Google Scholar]
- De La Burgade, R.; Nolleau, V.; Godet, T.; Galy, N.; Tixador, D.; Loisel, C.; Sommerer, N.; Roland, A. Wine Cork Closures Impacts on Dimethyl Sulfide (DMS) and Precursors (DMSP) Equilibrium of Different Shiraz Wines during Accelerated Bottle Ageing. Beverages 2023, 9, 15. [Google Scholar] [CrossRef]
- Jiménez-Lorenzo, R.; Farines, V.; Sablayrolles, J.M.; Camarasa, C.; Bloem, A. New Insights into the Origin of Volatile Sulfur Compounds during Wine Fermentation and Their Evolution during Aging. Fermentation 2022, 8, 139. [Google Scholar] [CrossRef]
- Guerrini, L.; Maioli, F.; Picchi, M.; Zanoni, B.; Parenti, A.; Canuti, V. Kinetic modeling of a Sangiovese wine’s chemical and physical parameters during one-year aging in different tank materials. Eur. Food Res. Technol. 2022, 248, 1525–1539. [Google Scholar] [CrossRef]
Compounds | Molecular Weight (g/mol) | Boiling Temperature (°C) | Melting Temperature (°C) | Partition Coefficient (Log Kow) | Aromatic Descriptor |
---|---|---|---|---|---|
Ethyl methyl sulphide (EMS) | 76.16 | 65.0–67.0 | −104.8 | 1.54 | cabbage, garlic, sulphur |
Diethyl sulphide (DES) | 90.19 | 92.1 | −103.9 | 1.95 | garlic, ethereal |
Thiophene (T) | 84.14 | 84 | −39.4 | 1.81 | benzene |
1-Pentanethiol (P) | 104.22 | 126.6 | −75.69 | 2.74 | meaty, strong garlic |
Dimethyl disulphide (DMDS) | 94.20 | 109.72 | −84.67 | 1.77 | garlic, onion, sulphurous |
Dipropyl sulphide (DPS) | 118.24 | 142–143 | −102.5 | 2.84 | unpleasant |
Diethyl disulphide (DEDS) | 122.3 | 152 | −101.5 | 2.41 | cabbage, carbide, roasted onion, rubber, sulphur |
Dibutyl sulphide (DBS) | 146.3 | 182–189 | −80 | 4.50 | green, unpleasant |
Dimethyl trisulphide (DMTS) | 126.3 | 165–175 | −85 | 1.87 | cabbage, fish, onion, sulphur |
Dipropyl disulphide (DPDS) | 150.3 | 193–195 | −85.6 | 3.84 * | onion, garlic |
2-Thiophenecarboxaldehyde (TC) | 112.15 | 198 | <10 °C | 1.56 | sulphurous |
Compounds | CAS Number | Retention Time (min) | Quantifying Ion | Qualifier Ions |
---|---|---|---|---|
Ethyl methyl sulphide (EMS) | 624-89-5 | 6.899 | 76 | 61, 48, 47 |
Diethyl sulphide (DES) | 75-78-3 | 9.179 | 90 | 75, 47 |
Thiophene (T) | 110-02-1 | 14.477 | 84 | 58, 45 |
1-Pentanethiol (P) | 110-66-7 | 15.955 | 104 | 70, 55, 42 |
Dimethyl disulphide (DMDS) | 624-92-0 | 16.931 | 94 | 79, 45 |
Dipropyl sulphide (DPS) | 111-47-7 | 17.169 | 118 | 89, 43 |
Diethyl disulphide (DEDS) | 110-81-6 | 23.026 | 122 | 94, 66 |
Dibutyl sulphide (DBS) | 544-40-1 | 26.057 | 146 | 61, 56 |
Dimethyl trisulphide (DMTS) | 3658-80-8 | 28.779 | 126 | 110, 79, 45 |
Dipropyl disulphide (DPDS) | 629-19-6 | 29.711 | 150 | 108, 43 |
2-Thiophenecarboxaldehyde (TC) | 98-03-3 | 39.778 | 112 | 111, 39 |
First Experimental Design, 24 | |||||
---|---|---|---|---|---|
Factor | Low (−) | High (+) | Center | Axial (−α) | Axial (+α) |
Temperature (°C) | 25 | 35 | 30 | ||
Extraction time (min) | 30 | 100 | 65 | ||
Sample volume (mL) | 10 | 25 | 17.5 | ||
Alcoholic content (%, v/v) | 5 | 25 | 15 | ||
Second Experimental Design, rotatable CCD | |||||
Extraction time (min) | 15 | 45 | 30 | 8.8 | 51.2 |
Alcoholic content (%, v/v) | 2.5 | 10 | 6.25 | 0.95 | 11.6 |
Compound | Concentration Range (µg/L) | Calibration Curve (r2) | DL (µg/L) | QL (µg/L) | Repeatibility (%) | Recovery (%) | |
---|---|---|---|---|---|---|---|
Inter-Twister | Inter-Day | ||||||
EMS | - | - | - | - | 15.4 | 14.5 | - |
DES | 1.00–25.0 | 0.0009x + 0.0058 (0.9961) | 0.9293 | 3.0977 | 8.1 | 12.1 | 116.4 |
P | - | - | - | - | 36.5 | 38.2 | - |
DMDS | 0.10–30.0 | 0.0027x + 0.0018 (0.9958) | 0.1830 | 0.6101 | 6.3 | 7.2 | 110.1 |
DPS | 0.10–1.00 | 0.0057x + 0.0011 (0.9963) | 0.0396 | 0.1321 | 14.4 | 22.1 | 116.8 |
DEDS | 0.10–1.00 | 0.0133x − 0.0007 (0.9909) | 0.0676 | 0.2254 | 5.9 | 13.8 | 119.4 |
DBS | 0.025–5.00 | 0.0055x + 0.0073 (0.9972) | 0.1678 | 0.5595 | 21.8 | 27.5 | 109.3 |
DMTS | 0.25–10.0 | 0.0089x + 0.0002 (0.9980) | 0.2376 | 0.7921 | 7.5 | 10.6 | 113.6 |
DPDS | 0.10–1.00 | 0.0167x − 0.0002 (0.9966) | 0.0382 | 0.1274 | 9.6 | 26.5 | 108.8 |
TC | 0.25–15.0 | 0.0006x + 0.0004 (0.9970) | 0.4893 | 1.6310 | 18.7 | 27.4 | 84.8 |
Methodology | Matrix | Analytes | Precision (%) | Recovery (%) | r2 | DL (µg/L) | QL (µg/L) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Repeat. | Reprod. | ||||||||
SBSE-GC-MS | Grape distillate | DES, DMDS, DPS, DEDS, DBS, DMTS, DPDS, TC | 5.9–21.8 | 7.2–27.5 | 84.76– 119.39 | >0.9955 | 0.0382– 0.9293 | 0.127–3.098 | Present study |
HS-SPME-GC-AED | Whisky | DES, DMDS, DPS, DMTS, DPDS | 4.2–8.8 | 0.045– 1.4 | [1] | ||||
HS-GC-pFPD | Wine | DES | <4 | 89–128 | >0.99 | 0.527 | [4] | ||
HS-SPME-GC-MS | Fruit brandy | DES, DMDS, P, DPS, DEDS, TC, DBS, DPDS | 78.02– 129.13 | >0.9640 | 0.003– 0.063 | 0.009– 0.208 | [11] | ||
HS-SPME-GC-pFPD | Wine | DES, DMDS | <10 | 10–20 | 97–114 | >0.9914 | 0.2–0.9 | [12] | |
HS-SPME-GC-MS | Wine | DES, P, DPS, DMDS, DEDS, DPDS, DMTS, TC | 2.0–15.8 | 9.9–33.0 | 90.2– 113.3 | >0.9933 | 0.023– 0.283 | 0.077– 0.942 | [13] |
HS-SPME arrow-GC-MS | Chinese liquor (Baijiu) | DMTS | 10.75 | 8.78 | 96.97 | 0.9946 | 0.0030 | [14] | |
HS-GC-SCD (with cryofocusing) | Wine | DES, DMDS, DEDS | >0.998 | 0.05–0.1 | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvosa, M.; García-Moreno, M.d.V.; Castro, R. Volatile Sulphur Compounds in Wine Distillates by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry. Appl. Sci. 2025, 15, 3680. https://doi.org/10.3390/app15073680
Silvosa M, García-Moreno MdV, Castro R. Volatile Sulphur Compounds in Wine Distillates by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry. Applied Sciences. 2025; 15(7):3680. https://doi.org/10.3390/app15073680
Chicago/Turabian StyleSilvosa, Marta, María de Valme García-Moreno, and Remedios Castro. 2025. "Volatile Sulphur Compounds in Wine Distillates by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry" Applied Sciences 15, no. 7: 3680. https://doi.org/10.3390/app15073680
APA StyleSilvosa, M., García-Moreno, M. d. V., & Castro, R. (2025). Volatile Sulphur Compounds in Wine Distillates by Stir Bar Sorptive Extraction-Gas Chromatography-Mass Spectrometry. Applied Sciences, 15(7), 3680. https://doi.org/10.3390/app15073680