Knowledge Graph Construction: Extraction, Learning, and Evaluation
Abstract
:1. Introduction
1.1. Background
1.2. Survey Taxnomy
1.3. Semi-Automatic Paper Selection Process
2. KGs Extraction
2.1. Pre-Construction Preparation
2.1.1. Named Entity Recognition (NER)
2.1.2. Relation Extraction
2.2. Advanced Entity and Relation Extraction
2.2.1. Graph-Based Methods (GNN and Attention)
2.2.2. Multimodal and Domain-Specific Extraction
2.3. Advanced Knowledge Graph Construction
2.3.1. Intelligent Reasoning Methods
2.3.2. Rule-Based Approaches
2.3.3. Entity and Relationship Alignment
2.4. Final Summary
3. KGs Learning
3.1. TransE-Based Approaches
3.2. Graph Neural Network (GNN)-Based Learning
3.2.1. Key Features and Application Highlights How GNNs
3.2.2. Link Prediction and Node Classification
3.2.3. Heterogeneous, Biomedical, and Large-Scale Graphs
3.3. Dynamic and Task-Specific Learning
3.3.1. Temporal Knowledge Graphs (TKG)
3.3.2. Extensions: Recommendations, Reinforcement Learning, and Beyond
3.4. Transformer-Based Learning
3.4.1. Text Integration and Finetuning
3.4.2. Fusion of Topology and Logical Rules
3.4.3. Hyperbolic Space, IRL, and Other Extensions
3.5. Additional Learning Methods
3.5.1. Self-Supervised and Contrastive Learning
3.5.2. Generative Adversarial Network (GAN)-Based Learning
3.5.3. Integrating Supervised and Reinforcement Learning
3.5.4. Hyperbolic and Geometric Learning, and Meta-Learning
3.6. Final Summary
4. KGs Evaluation
4.1. Intrinsic Evaluation
4.1.1. What Is an Intrinsic Evaluation?
4.1.2. Intrinsic Evaluation: Metrics, Methods, and Case Studies
4.2. Extrinsic Evaluation
4.2.1. What Is an Extrinsic Evaluation?
4.2.2. Extrinsic Evaluation Across Diverse Knowledge Graph Applications
4.3. Qualitative Evaluation
4.4. Dataset and Domain-Specific Evaluation
4.5. Final Summary
5. Conclusions
6. Future Work
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge graph embedding: A survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Huang, H.; Chen, C.; He, C.; Li, Y.; Jiang, J.; Zhang, W. Can LLMs be Good Graph Judger for Knowledge Graph Construction? arXiv 2024, arXiv:2411.17388. [Google Scholar]
- Du, X.; Li, N. Academic Paper Knowledge Graph, the Construction and Application. In Proceedings of the ICBASE, Guangzhou, China, 21–23 October 2022. [Google Scholar]
- Hofer, M.; Obraczka, D.; Saeedi, A.; Köpcke, H.; Rahm, E. Construction of knowledge graphs: Current state and challenges. Information 2024, 15, 509. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Pan, H.; Ke, H.; Ou, J.; Fang, T.; Song, Y. ASER: Towards large-scale commonsense knowledge acquisition via higher-order selectional preference over eventualities. Artif. Intell. 2022, 309, 103740. [Google Scholar] [CrossRef]
- Du, K.; Yang, B.; Wang, S.; Chang, Y.; Li, S.; Yi, G. Relation extraction for manufacturing knowledge graphs based on feature fusion of attention mechanism and graph convolution network. Knowl.-Based Syst. 2022, 255, 109703. [Google Scholar] [CrossRef]
- Omran, P.G.; Taylor, K.; Mendez, S.R.; Haller, A. Active knowledge graph completion. Inf. Sci. 2022, 604, 267–279. [Google Scholar] [CrossRef]
- Schindler, D.; Bensmann, F.; Dietze, S.; Krüger, F. The role of software in science: A knowledge graph-based analysis of software mentions in PubMed Central. PeerJ Comput. Sci. 2022, 8, e835. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Jiang, H.; Feng, D.; Xie, Y.; Zhang, Z.; Wang, G. Random walk on node cliques for high-quality samples to estimate large graphs with high accuracies and low costs. Knowl. Inf. Syst. 2022, 64, 1909–1935. [Google Scholar] [CrossRef]
- Dai, G.; Wang, X.; Zou, X.; Liu, C.; Cen, S. MRGAT: Multi-relational graph attention network for knowledge graph completion. Neural Netw. 2022, 154, 234–245. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, S.; Liu, Y. Bidirectional relation-guided attention network with semantics and knowledge for relational triple extraction. Expert Syst. Appl. 2023, 224, 119905. [Google Scholar] [CrossRef]
- Tang, B.; Wang, J.; Qiu, H.; Yu, J.; Yu, Z.; Liu, S. Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence and Graph Convolutional Networks. Comput. Mater. Contin. 2023, 74, 235–252. [Google Scholar] [CrossRef]
- Siddharth, L.; Luo, J. Retrieval augmented generation using engineering design knowledge. Knowl.-Based Syst. 2024, 303, 112410. [Google Scholar] [CrossRef]
- Zhang, R.; Su, Y.; Trisedya, B.D.; Zhao, X.; Yang, M.; Cheng, H.; Qi, J. Autoalign: Fully automatic and effective knowledge graph alignment enabled by large language models. IEEE Trans. Knowl. Data Eng. 2023, 36, 2357–2371. [Google Scholar] [CrossRef]
- Liu, T.; Feenstra, K.A.; Huang, Z.; Heringa, J. Mining literature and pathway data to explore the relations of ketamine with neurotransmitters and gut microbiota using a knowledge-graph. Bioinformatics 2024, 40, btad771. [Google Scholar] [CrossRef]
- Sun, X.; Chen, Q.; Hao, M.; Li, Y.; Sun, B. Mconvkgc: A novel multi-channel convolutional model for knowledge graph completion. Computing 2024, 106, 915–937. [Google Scholar] [CrossRef]
- Guo, L.; Li, X.; Yan, F.; Lu, Y.; Shen, W. A method for constructing a machining knowledge graph using an improved transformer. Expert Syst. Appl. 2024, 237, 121448. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X. An radicals construction technique based on dual quaternions and hierarchical transformers. Neurocomputing 2024, 604, 128315. [Google Scholar] [CrossRef]
- Ottersen, S.G.; Pinheiro, F.; Bação, F. Triplet extraction leveraging sentence transformers and dependency parsing. Array 2024, 21, 100334. [Google Scholar] [CrossRef]
- Chang, C.; Tang, Y.; Long, Y.; Hu, K.; Li, Y.; Li, J.; Wang, C.-D. Multi-information preprocessing event extraction with BiLSTM-CRF attention for academic knowledge graph construction. IEEE Trans. Comput. Soc. Syst. 2022, 10, 2713–2724. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, K.; Huang, K.; Xu, T.; Li, X.; Liu, Y. Document-level relation extraction with two-stage dynamic graph attention networks. Knowl.-Based Syst. 2023, 267, 110428. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, J.; Kong, L.; Gu, Y.; Qu, W. Seq2EG: A novel and effective event graph parsing approach for event extraction. Knowl. Inf. Syst. 2023, 65, 4273–4294. [Google Scholar] [CrossRef]
- Zheng, Y.; Tuan, L.A. A novel, cognitively inspired, unified graph-based multi-task framework for information extraction. Cogn. Comput. 2023, 15, 2004–2013. [Google Scholar] [CrossRef]
- Liu, X.; Hong, H.; Wang, X.; Chen, Z.; Kharlamov, E.; Dong, Y.; Tang, J. Selfkg: Self-supervised entity alignment in knowledge graphs. In Proceedings of the ACM Web Conference 2022, Virtual, 25–29 April 2022. [Google Scholar]
- Gao, C.; Zhang, X.; Li, L.; Li, J.; Zhu, R.; Du, K.; Ma, Q. ERGM: A multi-stage joint entity and relation extraction with global entity match. Knowl.-Based Syst. 2023, 271, 110550. [Google Scholar] [CrossRef]
- Vassiliades, A.; Symeonidis, S.; Diplaris, S.; Tzanetis, G.; Vrochidis, S.; Bassiliades, N.; Kompatsiaris, I. XR4DRAMA Knowledge Graph: A Knowledge Graph for Disaster Management. In Proceedings of the 2023 IEEE 17th International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 1–3 February 2023; pp. 262–265. [Google Scholar] [CrossRef]
- Dessí, D.; Osborne, F.; Recupero, D.R.; Buscaldi, D.; Motta, E. SCICERO: A deep learning and NLP approach for generating scientific knowledge graphs in the computer science domain. Knowl.-Based Syst. 2022, 258, 109945. [Google Scholar] [CrossRef]
- Asada, M.; Miwa, M.; Sasaki, Y. Integrating heterogeneous knowledge graphs into drug–drug interaction extraction from the literature. Bioinformatics 2023, 39, btac754. [Google Scholar] [CrossRef]
- Luzuriaga, J.; Munoz, E.; Rosales-Mendez, H.; Hogan, A. Merging Web Tables for Relation Extraction with Knowledge Graphs. IEEE Trans. Knowl. Data Eng. 2023, 35, 1803–1816. [Google Scholar] [CrossRef]
- Lin, Y.; Lu, K.; Yu, S.; Cai, T.; Zitnik, M. Multimodal learning on graphs for disease relation extraction. J. Biomed. Inform. 2023, 143, 104415. [Google Scholar] [CrossRef]
- Iglesias, E.; Jozashoori, S.; Vidal, M.E. Scaling up knowledge graph creation to large and heterogeneous data sources. J. Web Semant. 2023, 75, 100755. [Google Scholar] [CrossRef]
- Jaradeh, M.Y.; Singh, K.; Stocker, M.; Both, A.; Auer, S. Information extraction pipelines for knowledge graphs. Knowl. Inf. Syst. 2023, 65, 1989–2016. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, K.; Lv, L.; Li, X.; Huang, K.; Zhang, T. Joint extraction of entities and overlapping relations by improved graph convolutional networks. Appl. Intell. 2022, 52, 5212–5224. [Google Scholar] [CrossRef]
- Huang, H.; Shang, Y.-M.; Sun, X.; Wei, W.; Mao, X. Three birds, one stone: A novel translation based framework for joint entity and relation extraction. Knowl.-Based Syst. 2022, 236, 107677. [Google Scholar] [CrossRef]
- Li, N.; Shen, Q.; Song, R.; Chi, Y.; Xu, H. MEduKG: A deep-learning-based approach for multi-modal educational knowledge graph construction. Information 2022, 13, 91. [Google Scholar] [CrossRef]
- Shetty, M.; Bansal, C.; Kumar, S.; Rao, N.; Nagappan, N. SoftNER: Mining knowledge graphs from cloud incidents. Empir. Softw. Eng. 2022, 27, 93. [Google Scholar] [CrossRef]
- Wu, J.; Wei, Z.; Jia, D.; Dou, X.; Tang, H.; Li, N. Constructing marine expert management knowledge graph based on Trellisnet-CRF. PeerJ Comput. Sci. 2022, 8, e1083. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xi, X.; He, J. AFGSL: Automatic feature generation based on graph structure learning. Knowl.-Based Syst. 2022, 238, 107835. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Xie, Z.; Qiu, Q.; Zhou, Y.; Ma, K.; Tao, L. Understanding geological reports based on knowledge graphs using a deep learning approach. Comput. Geosci. 2022, 168, 105229. [Google Scholar] [CrossRef]
- Gao, F.; Li, G.; Gu, J.; Zhang, L.; Wang, L. GridOnto: Knowledge representation and extraction for fault events in power grid. IEEE Access 2023, 11, 58863–58878. [Google Scholar] [CrossRef]
- Hu, Y.; Zou, F.; Han, J.; Sun, X.; Wang, Y. Llm-tikg: Threat intelligence knowledge graph construction utilizing large language model. Comput. Secur. 2024, 145, 103999. [Google Scholar] [CrossRef]
- Hershowitz, B.; Hodkiewicz, M.; Bikaun, T.; Stewart, M.; Liu, W. Causal knowledge extraction from long text maintenance documents. Comput. Ind. 2024, 161, 104110. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Lin, H.; Zhang, Y.; Yang, Z. Knowledge Guided Attention and Graph Convolutional Networks for Chemical-Disease Relation Extraction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 20, 489–499. [Google Scholar] [CrossRef]
- Gao, J.; Wan, H.; Lin, Y. Exploiting global context and external knowledge for distantly supervised relation extraction. Knowl.-Based Syst. 2023, 261, 110195. [Google Scholar] [CrossRef]
- Li, M.; Zhao, H.; Gu, T.; Ying, D. Experiencer-driven and knowledge-aware graph model for emotion–cause pair extraction. Knowl.-Based Syst. 2023, 278, 110703. [Google Scholar] [CrossRef]
- Tong, W.; Chu, X.; Jiang, W.; Li, Z. A multimodal dual-fusion entity extraction model for large and complex devices. Comput. Commun. 2023, 210, 1–9. [Google Scholar] [CrossRef]
- Alam, F.; Giglou, H.B.; Malik, K.M. Automated clinical knowledge graph generation framework for evidence based medicine. Expert Syst. Appl. 2023, 233, 120964. [Google Scholar] [CrossRef]
- Li, Z.; Huang, R.; Zhai, M.; Zhang, Z.; Hu, B. A performant and incremental algorithm for knowledge graph entity typing. World Wide Web 2023, 26, 2453–2470. [Google Scholar] [CrossRef]
- Acharya, V.; Choi, D.; Yener, B.; Beamer, G. Prediction of tuberculosis from lung tissue images of diversity outbred mice using jump knowledge based cell graph neural network. IEEE Access 2024, 12, 17164–17194. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Z.; Zhao, J.; Liu, L.; Xiao, F.; Han, Y. A Novel Rational Medicine Use System Based on Domain Knowledge Graph. Electronics 2024, 13, 3156. [Google Scholar] [CrossRef]
- He, L.; Li, H.; Zhang, R. A Semantic-Spatial Aware Data Conflation Approach for Place Knowledge Graphs. ISPRS Int. J. Geo-Inf. 2024, 13, 106. [Google Scholar] [CrossRef]
- Chen, J.; Ma, L.; Li, X.; Xu, J.; Cho, J.H.D.; Nag, K.; Korpeoglu, E.; Kumar, S.; Achan, K. Relation labeling in product knowledge graphs with large language models for e-commerce. Int. J. Mach. Learn. Cybern. 2024, 15, 5725–5743. [Google Scholar] [CrossRef]
- Sukumar, S.T.; Lung, C.-H.; Zaman, M.; Panday, R. Knowledge Graph Generation and Application for Unstructured Data Using Data Processing Pipeline. IEEE Access 2024, 12, 136759–136770. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y. A task-centric knowledge graph construction method based on multi-modal representation learning for industrial maintenance automation. Eng. Rep. 2024, 6, e12952. [Google Scholar] [CrossRef]
- Chen, Y.; Tian, M.; Wu, Q.; Tao, L.; Jiang, T.; Qiu, Q.; Huang, H. A deep learning-based method for deep information extraction from multimodal data for geological reports to support geological knowledge graph construction. Earth Sci. Inform. 2024, 17, 1867–1887. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Zhao, B.; Yao, Y.; Zhao, H.; Zhu, X. Medical knowledge graph completion via fusion of entity description and type information. Artif. Intell. Med. 2024, 151, 102848. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Ma, K.; Wu, Q.; Qiu, Q.; Tao, L.; Xie, Z. Joint extraction of entity relations from geological reports based on a novel relation graph convolutional network. Comput. Geosci. 2024, 187, 105571. [Google Scholar] [CrossRef]
- Zeng, D.; Zhao, C.; Li, D.; Dai, J. Bdcore: Bidirectional decoding with co-graph representation for joint entity and relation extraction. Knowl.-Based Syst. 2024, 294, 111781. [Google Scholar] [CrossRef]
- Guo, B.; Meng, J.; Zhao, D.; Jia, X.; Chu, Y.; Lin, H. Integrating graph convolutional networks to enhance prompt learning for biomedical relation extraction. J. Biomed. Inform. 2024, 157, 104717. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, L.; Wang, W.; Zhang, B.; Liu, W.; Zhang, J.; Xie, L. Named Entity Recognition for Equipment Fault Diagnosis Based on RoBERTa-wwm-ext and Deep Learning Integration. Electronics 2024, 13, 3935. [Google Scholar] [CrossRef]
- Jofche, N.; Mishev, K.; Stojanov, R.; Jovanovik, M.; Zdravevski, E.; Trajanov, D. Pharmke: Knowledge extraction platform for pharmaceutical texts using transfer learning. Computers 2023, 12, 17. [Google Scholar] [CrossRef]
- Knez, T.; Žitnik, S. Event-centric temporal knowledge graph construction: A survey. Mathematics 2023, 11, 4852. [Google Scholar] [CrossRef]
- Deng, Y.; Deng, B.W.Y.; Wang, Z.H.B.; Hua, Y.X.Z.; Xiao, X.L.Y. A Knowledge Graph Construction Method for Software Project Based on CAJP. J. Internet Technol. 2023, 24, 1229–1239. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, J.; Zhou, G.; Xie, Z.; Yu, X.; Cui, X. Query path generation via bidirectional reasoning for multihop question answering from knowledge bases. IEEE Trans. Cogn. Dev. Syst. 2022, 15, 1183–1195. [Google Scholar] [CrossRef]
- Dang, X.; Deng, H.; Dong, X.; Zhu, Z.; Li, F.; Wang, L. MHlinker: Research on a Joint Extraction Method of Fault Entity Relationship for Mine Hoist. Electronics 2023, 12, 3430. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Liu, X.; Zhu, S. A Novel Joint Extraction Model for Entity Relations Using Interactive Encoding and Visual Attention. IEEE Access 2023, 11, 132567–132575. [Google Scholar] [CrossRef]
- Li, R.; Zhong, J.; Xue, Z.; Dai, Q.; Li, X. Heterogenous affinity graph inference network for document-level relation extraction. Knowl.-Based Syst. 2022, 250, 109146. [Google Scholar] [CrossRef]
- Pan, Z.; Su, C.; Deng, Y.; Cheng, J. Image2Triplets: A computer vision-based explicit relationship extraction framework for updating construction activity knowledge graphs. Comput. Ind. 2022, 137, 103610. [Google Scholar] [CrossRef]
- El-Allaly, E.-D.; Sarrouti, M.; En-Nahnahi, N.; El Alaoui, S.O. An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation. J. Biomed. Inform. 2022, 125, 103968. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; Yu, X.; Feng, R. Qlogice: Quantum logic empowered embedding for knowledge graph completion. Knowl.-Based Syst. 2022, 239, 107963. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, C.; Li, J.; Yu, P.S.; Jing, N. KGGen: A Generative Approach for Incipient Knowledge Graph Population. IEEE Trans. Knowl. Data Eng. 2022, 34, 2254–2267. [Google Scholar] [CrossRef]
- Ren, H.; Yang, M.; Jiang, P. Improving attention network to realize joint extraction for the construction of equipment knowledge graph. Eng. Appl. Artif. Intell. 2023, 125, 106723. [Google Scholar] [CrossRef]
- Tang, M.; Li, T.; Gao, W.; Xia, Y. AttenSy-SNER: Software knowledge entity extraction with syntactic features and semantic augmentation information. Complex Intell. Syst. 2023, 9, 25–39. [Google Scholar] [CrossRef]
- Liu, P.; Qian, L.; Zhao, X.; Tao, B. The construction of knowledge graphs in the aviation assembly domain based on a joint knowledge extraction model. IEEE Access 2023, 11, 26483–26495. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Z.; Jia, W.; Wu, F.; Liu, H.; Tan, J. Dual attention graph convolutional network for relation extraction. IEEE Trans. Knowl. Data Eng. 2023, 36, 530–543. [Google Scholar] [CrossRef]
- Liao, J.; Du, Y.; Hu, J.; Li, H.; Li, X.; Chen, X. A contextual dependency-aware graph convolutional network for extracting entity relations. Expert Syst. Appl. 2024, 239, 122366. [Google Scholar] [CrossRef]
- Vassiliades, A.; Patkos, T.; Efthymiou, V.; Bikakis, A.; Bassiliades, N.; Plexousakis, D. Extraction of object-action and object-state associations from Knowledge Graphs. J. Web Semant. 2024, 81, 100816. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Zhang, Y.; Yu, R.; Zhang, Z.; Meng, Y.; Zhou, Z. Interactive optimization of relation extraction via knowledge graph representation learning. J. Vis. 2024, 27, 197–213. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. Adv. Neural Inf. Process. Syst. 2013, 26. Available online: https://papers.nips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf (accessed on 24 March 2025).
- Liu, H.; Wu, H.; Zhang, L.; Yu, R.; Liu, Y.; Liu, C.; Li, M.; Liu, Q.; Chen, E. A hierarchical interactive multi-channel graph neural network for technological knowledge flow forecasting. Knowl. Inf. Syst. 2022, 64, 1723–1757. [Google Scholar] [CrossRef]
- Liu, J.; Zu, L.; Yan, Y.; Zuo, J.; Sang, B. Multi-filter soft shrinkage network for knowledge graph embedding. Expert Syst. Appl. 2024, 250, 123875. [Google Scholar] [CrossRef]
- Xia, Y.; Lan, M.; Luo, J.; Chen, X.; Zhou, G. Iterative rule-guided reasoning over sparse knowledge graphs with deep reinforcement learning. Inf. Process. Manag. 2022, 59, 103040. [Google Scholar] [CrossRef]
- Wang, T.; Shen, B.; Zhong, Y. SSKGE: A time-saving knowledge graph embedding framework based on structure enhancement and semantic guidance. Appl. Intell. 2023, 53, 25171–25183. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, B.; Yang, H.; Tan, Z.; Sun, Z.; Li, C.; Waaler, A.; Kharlamov, E.; Soylu, A. Knowledge graph embedding closed under composition. Data Min. Knowl. Discov. 2024, 38, 3531–3562. [Google Scholar] [CrossRef]
- Zhu, A.; Ouyang, D.; Liang, S.; Shao, J. Step by step: A hierarchical framework for multi-hop knowledge graph reasoning with reinforcement learning. Knowl.-Based Syst. 2022, 248, 108843. [Google Scholar] [CrossRef]
- Oh, B.; Seo, S.; Hwang, J.; Lee, D.; Lee, K.-H. Open-world knowledge graph completion for unseen entities and relations via attentive feature aggregation. Inf. Sci. 2022, 586, 468–484. [Google Scholar] [CrossRef]
- Xie, R.; Ruan, K.; Huang, B.; Yu, W.; Xiao, J.; Huang, J. TSA-Net: A temporal knowledge graph completion method with temporal-structural adaptation. Appl. Intell. 2024, 54, 10320–10332. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, C.T.; Pang, J. Multi-grained semantics-aware graph neural networks. IEEE Trans. Knowl. Data Eng. 2022, 35, 7251–7262. [Google Scholar] [CrossRef]
- Huang, Z.; Li, K.; Jiang, Y.; Jia, Z.; Lv, L.; Ma, Y. Graph Relearn Network: Reducing performance variance and improving prediction accuracy of graph neural networks. Knowl.-Based Syst. 2024, 301, 112311. [Google Scholar] [CrossRef]
- Malawade, A.V.; Yu, S.-Y.; Hsu, B.; Muthirayan, D.; Khargonekar, P.P.; Al Faruque, M.A. Spatiotemporal scene-graph embedding for autonomous vehicle collision prediction. IEEE Internet Things J. 2022, 9, 9379–9388. [Google Scholar] [CrossRef]
- Wang, H.; Leskovec, J. Combining Graph Convolutional Neural Networks and Label Propagation. ACM Trans. Inf. Syst. 2022, 40, 1–27. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Y.; Chen, Y. A graph neural network-based node classification model on class-imbalanced graph data. Knowl.-Based Syst. 2022, 244, 108538. [Google Scholar] [CrossRef]
- Juan, X.; Zhou, F.; Wang, W.; Jin, W.; Tang, J.; Wang, X. INS-GNN: Improving graph imbalance learning with self-supervision. Inf. Sci. 2023, 637, 118935. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, T.; Hao, Q. HIRE: Distilling high-order relational knowledge from heterogeneous graph neural networks. Neurocomputing 2022, 507, 67–83. [Google Scholar] [CrossRef]
- Chen, K.-J.; Lu, H.; Liu, Z.; Zhang, J. Heterogeneous graph convolutional network with local influence. Knowl.-Based Syst. 2022, 236, 107699. [Google Scholar] [CrossRef]
- Liang, X.; Si, G.; Li, J.; An, Z.; Tian, P.; Zhou, F. Fully-inductive link prediction with path-based graph neural network: A comparative analysis. Neurocomputing 2024, 609, 128484. [Google Scholar]
- Zhang, X.; Zhang, C.; Guo, J.; Peng, C.; Niu, Z.; Wu, X. Graph attention network with dynamic representation of relations for knowledge graph completion. Expert Syst. Appl. 2023, 219, 119616. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, S.; Liu, W.; Zhou, P.; Tang, J.; Liang, X.; Xing, E.P. Iterative graph self-distillation. IEEE Trans. Knowl. Data Eng. 2023, 36, 1161–1169. [Google Scholar] [CrossRef]
- Tu, W.; Xiao, B.; Liu, X.; Zhou, S.; Cai, Z.; Cheng, J. Revisiting initializing then refining: An incomplete and missing graph imputation network. IEEE Trans. Neural Netw. Learn. Syst. 2024, 36, 3244–3257. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, D.; Wang, P.; Rosso, P.; Cudre-Mauroux, P. Schema-aware hyper-relational knowledge graph embeddings for link prediction. IEEE Trans. Knowl. Data Eng. 2023, 36, 2614–2628. [Google Scholar] [CrossRef]
- Yin, H.; Zhong, J.; Li, R.; Li, X. Disentangled Relational Graph Neural Network with Contrastive Learning for knowledge graph completion. Knowl.-Based Syst. 2024, 295, 111828. [Google Scholar]
- Chen, J.; Yang, L.; Wang, Z.; Gong, M. Higher-order GNN with Local Inflation for entity alignment. Knowl.-Based Syst. 2024, 293, 111634. [Google Scholar] [CrossRef]
- Dong, N.; Mücke, S.; Khosla, M. Mucomid: A multitask graph convolutional learning framework for miRNA-disease association prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 3081–3092. [Google Scholar]
- Yang, H.; Hu, S.; Geng, J.; Huang, T.; Hu, J.; Zhang, H.; Zhu, Q. Heterogeneous graph-based knowledge tracing with spatiotemporal evolution. Expert Syst. Appl. 2024, 238, 122249. [Google Scholar] [CrossRef]
- Wu, L.; Lin, H.; Zhao, G.; Tan, C.; Li, S.Z. Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting. IEEE Trans. Neural Netw. Learn. Syst. 2024. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yang, L. Graph-aware tensor factorization convolutional network for knowledge graph completion. Int. J. Mach. Learn. Cybern. 2024, 15, 1755–1766. [Google Scholar]
- ChandraUmakantham, O.; Srinivasan, S.; Pathak, V. Detecting Side Effects of Adverse Drug Reactions Through Drug-Drug Interactions Using Graph Neural Networks and Self-Supervised Learning. IEEE Access 2024, 12, 93823–93840. [Google Scholar] [CrossRef]
- Basaad, A.; Basurra, S.; Vakaj, E.; Aleskandarany, M.; Abdelsamea, M.M. GraphX-Net: A Graph Neural Networkbased Shapley Values for Predicting Breast Cancer Occurrence. IEEE Access 2024, 12, 93993–94007. [Google Scholar] [CrossRef]
- Zhu, J.; Oh, J.H.; Simhal, A.K.; Elkin, R.; Norton, L.; Deasy, J.O.; Tannenbaum, A. Geometric graph neural networks on multi-omics data to predict cancer survival outcomes. Comput. Biol. Med. 2023, 163, 107117. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Yin, Z.; Ding, W.; King, I. A survey on graph embedding techniques for biomedical data: Methods and applications. Inf. Fusion 2023, 100, 101909. [Google Scholar] [CrossRef]
- Bhattarai, M.; Kharat, N.; Boureima, I.; Skau, E.; Nebgen, B.; Djidjev, H.; Rajopadhye, S.; Smith, J.P.; Alexandrov, B. Distributed non-negative rescal with automatic model selection for exascale data. J. Parallel Distrib. Comput. 2023, 179, 104709. [Google Scholar] [CrossRef]
- Jia, W.; Ma, R.; Niu, W.; Yan, L.; Ma, Z. SFTe: Temporal knowledge graphs embedding for future interaction prediction. Inf. Syst. 2024, 125, 102423. [Google Scholar] [CrossRef]
- Yang, X.-H.; Wei, D.; Zhang, L.; Ma, G.-F.; Xu, X.-L.; Long, H.-X. Task-related network based on meta-learning for few-shot knowledge graph completion. Appl. Intell. 2024, 54, 5961–5975. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Sha, L.; Engelbrecht, J.; Hong, P. Knowledgebra: An Algebraic Learning Framework for Knowledge Graph. Mach. Learn. Knowl. Extr. 2022, 4, 432–445. [Google Scholar] [CrossRef]
- Zhou, X.; Hui, B.; Zeira, I.; Wu, H.; Tian, L. Dynamic relation learning for link prediction in knowledge hypergraphs. Appl. Intell. 2023, 53, 26580–26591. [Google Scholar] [CrossRef]
- Hou, X.; Ma, R.; Yan, L.; Ma, Z. T-GAE: A timespan-aware graph attention-based embedding model for temporal knowledge graph completion. Inf. Sci. 2023, 642, 119225. [Google Scholar] [CrossRef]
- Chen, D.; Xie, Z.; Liu, R.; Yu, W.; Hu, Q.; Li, X.; Ding, S.X. Bayesian hierarchical graph neural networks with uncertainty feedback for trustworthy fault diagnosis of industrial processes. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 18635–18648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Feng, W.; Wu, Z.; Li, G.; Ning, B. CDRGN-SDE: Cross-dimensional recurrent graph network with neural stochastic differential equation for temporal knowledge graph embedding. Expert Syst. Appl. 2024, 247, 123295. [Google Scholar] [CrossRef]
- Zhang, J.; Hui, B.; Mu, C.; Tian, L. Learning multi-graph structure for Temporal Knowledge Graph reasoning. Expert Syst. Appl. 2024, 255, 124561. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, J.-T. A neighborhood-aware graph self-attention mechanism-based pre-training model for Knowledge Graph Reasoning. Inf. Sci. 2023, 647, 119473. [Google Scholar] [CrossRef]
- Zhao, M.; Xun, Y.; Zhang, J.; Li, Y. Reinforcement negative sampling recommendation based on collaborative knowledge graph. J. Intell. Inf. Syst. 2024, 1–20. [Google Scholar] [CrossRef]
- Wei, S.; Meng, S.; Li, Q.; Zhou, X.; Qi, L.; Xu, X. Edge-enabled federated sequential recommendation with knowledge-aware Transformer. Future Gener. Comput. Syst. 2023, 148, 610–622. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.-Y.; Chen, C.-H.; Li, Y.; Zhang, J.; Zhan, Z.-H. Enhanced multi-task learning and knowledge graph-based recommender system. IEEE Trans. Knowl. Data Eng. 2023, 35, 10281–10294. [Google Scholar] [CrossRef]
- Spillo, G.; Musto, C.; de Gemmis, M.; Lops, P.; Semeraro, G. Recommender systems based on neuro-symbolic knowledge graph embeddings encoding first-order logic rules. User Model. User-Adapt. Interact. 2024, 34, 2039–2083. [Google Scholar] [CrossRef]
- Xing, P.; Lu, S.; Wu, L.; Yu, H. Big-fed: Bilevel optimization enhanced graph-aided federated learning. IEEE Trans. Big Data 2022, 10, 903–914. [Google Scholar] [CrossRef]
- Mohamed, H.A.; Pilutti, D.; James, S.; Del Bue, A.; Pelillo, M.; Vascon, S. Locality-aware subgraphs for inductive link prediction in knowledge graphs. Pattern Recognit. Lett. 2023, 167, 90–97. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Zaki, M.J. Toward subgraph-guided knowledge graph question generation with graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 35, 12706–12717. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Y.; Zhou, G.; Liu, J.; Tu, X.; Huang, J.X. One Subgraph for All: Efficient Reasoning on Opening Subgraphs for Inductive Knowledge Graph Completion. IEEE Trans. Knowl. Data Eng. 2024, 36, 8914–8927. [Google Scholar] [CrossRef]
- Xie, Q.; Tiwari, P.; Ananiadou, S. Knowledge-enhanced graph topic transformer for explainable biomedical text summarization. IEEE J. Biomed. Health Inform. 2023, 28, 1836–1847. [Google Scholar] [CrossRef]
- Zhang, J.; Lan, H.; Yang, X.; Zhang, S.; Song, W.; Peng, Z. Weakly supervised setting for learning concept prerequisite relations using multi-head attention variational graph auto-encoders. Knowl.-Based Syst. 2022, 247, 108689. [Google Scholar] [CrossRef]
- Fang, H.; Wang, Y.; Tian, Z.; Ye, Y. Learning knowledge graph embedding with a dual-attention embedding network. Expert Syst. Appl. 2023, 212, 118806. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Duan, C.; Zhao, T. Local-to-Global Structure-Aware Transformer for Question Answering over Structured Knowledge. IEICE Trans. Inf. Syst. 2023, 106, 1705–1714. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, Q.; Huang, X.; Li, B. Graph contrastive learning with personalized augmentation. IEEE Trans. Knowl. Data Eng. 2024, 36, 6305–6316. [Google Scholar] [CrossRef]
- Choi, B.; Ko, Y. Knowledge graph extension with a pre-trained language model via unified learning method. Knowl.-Based Syst. 2023, 262, 110245. [Google Scholar] [CrossRef]
- Lin, Q.; Mao, R.; Liu, J.; Xu, F.; Cambria, E. Fusing topology contexts and logical rules in language models for knowledge graph completion. Inf. Fusion 2023, 90, 253–264. [Google Scholar] [CrossRef]
- Querfurth, B.V.; Lohmoeller, J.; Pennekamp, J.; Bleckwehl, T.; Kramann, R.; Wehrle, K.; Hayat, S. mcBERT: Patient-Level Single-cell Transcriptomics Data Representation. bioRxiv 2024. bioRxiv:2024-11. [Google Scholar]
- Li, X.; Yang, H.; Yang, C.; Zhang, W. Efficient Medical Knowledge Graph Embedding: Leveraging Adaptive Hierarchical Transformers and Model Compression. Electronics 2023, 12, 2315. [Google Scholar] [CrossRef]
- Jin, B.; Liu, G.; Han, C.; Jiang, M.; Ji, H.; Han, J. Large language models on graphs: A comprehensive survey. IEEE Trans. Knowl. Data Eng. 2024, 36, 8622–8642. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, X.; Liu, X.; Wu, J. Deeply integrating unsupervised semantics and syntax into heterogeneous graphs for inductive text classification. Complex Intell. Syst. 2024, 10, 1565–1579. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Lu, W.; Yan, Y. HyGGE: Hyperbolic graph attention network for reasoning over knowledge graphs. Inf. Sci. 2023, 630, 190–205. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, K.; Chang KC, C.; Xiong, J.; Hwu, W.M. DEER: Descriptive Knowledge Graph for Explaining Entity Relationships. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Association for Computational Linguistics; pp. 6686–6698. [Google Scholar]
- Hu, J.; Hooi, B.; He, B. Efficient heterogeneous graph learning via random projection. IEEE Trans. Knowl. Data Eng. 2024, 36, 8093–8107. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, G.; Qin, K.; Du, K. AInvR: Adaptive learning rewards for knowledge graph reasoning using agent trajectories. Tsinghua Sci. Technol. 2023, 28, 1101–1114. [Google Scholar] [CrossRef]
- Lin, T.; Song, K.; Jiang, Z.; Kang, Y.; Yuan, W.; Li, X.; Sun, C.; Huang, C.; Liu, X. Towards human-like perception: Learning structural causal model in heterogeneous graph. Inf. Process. Manag. 2024, 61, 103600. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Chai, Z.; Wang, Y.; Cheng, Y.; Zhao, L. Toward quantized model parallelism for graph-augmented mlps based on gradient-free admm framework. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 4491–4501. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shu, L.; Chen, C.; Zheng, Z. Fine-Grained Semantics Enhanced Contrastive Learning for Graphs. IEEE Trans. Knowl. Data Eng. 2024, 36, 8238–8250. [Google Scholar] [CrossRef]
- Li, H.; Zheng, J.; Jin, B.; Zhu, H. Adaptive Knowledge Contrastive Learning with Dynamic Attention for Recommender Systems. Electronics 2024, 13, 3594. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Hu, J.; Qian, S.; Xu, C. TCKGE: Transformers with contrastive learning for knowledge graph embedding. Int. J. Multimed. Inf. Retr. 2022, 11, 589–597. [Google Scholar] [CrossRef]
- Yuan, R.; Tang, Y.; Wu, Y.; Zhang, W. Clustering enhanced multiplex graph contrastive representation learning. IEEE Trans. Neural Netw. Learn. Syst. 2023, 36, 1341–1355. [Google Scholar] [CrossRef]
- Liang, H.; Du, X.; Zhu, B.; Ma, Z.; Chen, K.; Gao, J. Graph contrastive learning with implicit augmentations. Neural Netw. 2023, 163, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Y.; Zhao, X.; Chen, H.; Yin, H.; Li, Q.; Xu, G. Multi-level Graph Knowledge Contrastive Learning. IEEE Trans. Knowl. Data Eng. 2024, 36, 8829–8841. [Google Scholar] [CrossRef]
- Baghershahi, P.; Hosseini, R.; Moradi, H. Self-attention presents low-dimensional knowledge graph embeddings for link prediction. Knowl.-Based Syst. 2023, 260, 110124. [Google Scholar] [CrossRef]
- Yu, H.; Tang, J.; Peng, Z.; Wang, Y. Relation correlations-aware graph convolutional network with text-enhanced for knowledge graph embedding. Int. J. Mach. Learn. Cybern. 2024, 15, 4659–4668. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, J.; Zheng, X. Learning structured embeddings of knowledge graphs with generative adversarial framework. Expert Syst. Appl. 2022, 204, 117361. [Google Scholar] [CrossRef]
- Liu, S.; Yan, X.; Jin, Y. An edge-aware graph autoencoder trained on scale-imbalanced data for traveling salesman problems. Knowl.-Based Syst. 2024, 291, 111559. [Google Scholar] [CrossRef]
- Zeb, A.; Saif, S.; Chen, J.; Yu, J.J.; Jiang, Q.; Zhang, D. CoPE: Composition-based Poincaré embeddings for link prediction in knowledge graphs. Inf. Sci. 2024, 662, 120197. [Google Scholar] [CrossRef]
- Lu, M.; Li, Y.; Zhang, J.; Ren, H.; Zhang, X. Deep hyperbolic convolutional model for knowledge graph embedding. Knowl.-Based Syst. 2024, 300, 112183. [Google Scholar] [CrossRef]
- Hu, X.; Gu, L.; Kobayashi, K.; Liu, L.; Zhang, M.; Harada, T.; Summers, R.M.; Zhu, Y. Interpretable medical image visual question answering via multi-modal relationship graph learning. Med. Image Anal. 2024, 97, 103279. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhao, H. Hierarchical long-tailed classification based on multi-granularity knowledge transfer driven by multi-scale feature fusion. Pattern Recognit. 2024, 145, 109842. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Yuan, Y.; Guan, Y.; Jiang, J.; Guo, X.; Peng, X. Knowledge-based dynamic prompt learning for multi-label disease diagnosis. Knowl.-Based Syst. 2024, 286, 111395. [Google Scholar] [CrossRef]
- Bakken, M. maplib: Interactive, literal RDF model mapping for industry. IEEE Access 2023, 11, 39990–40005. [Google Scholar] [CrossRef]
- Sola, F.; Ayala, D.; Ayala, R.; Hernández, I.; Rivero, C.R.; Ruiz, D. AYNEXT-tools for streamlining the evaluation of link prediction techniques. SoftwareX 2023, 23, 101474. [Google Scholar]
- Zhang, Z.-B.; Zhong, Z.-M.; Yuan, P.-P.; Jin, H. Improving entity linking in Chinese domain by sense embedding based on graph clustering. J. Comput. Sci. Technol. 2023, 38, 196–210. [Google Scholar]
- John, S.; Kosiol, J.; Lambers, L.; Taentzer, G. A graph-based framework for model-driven optimization facilitating impact analysis of mutation operator properties. Softw. Syst. Model. 2023, 22, 1281–1318. [Google Scholar]
- Ni, Q.; Wang, Y.; Yuan, J. Adaptive scalable spatio-temporal graph convolutional network for PM2. 5 prediction. Eng. Appl. Artif. Intell. 2023, 126, 107080. [Google Scholar] [CrossRef]
- Huang, Y.; Luo, F.; Wang, X.; Di, Z.; Li, B.; Luo, B. A one-size-fits-three representation learning framework for patient similarity search. Data Sci. Eng. 2023, 8, 306–317. [Google Scholar] [CrossRef]
- Wan, G.; Zhou, Z.; Zheng, Z.; Du, B. Sub-Entity Embedding for inductive spatio-temporal knowledge graph completion. Future Gener. Comput. Syst. 2023, 148, 240–249. [Google Scholar] [CrossRef]
- Zhu, B.; Bao, T.; Liu, L.; Han, J.; Wang, J.; Peng, T. Cross-lingual knowledge graph entity alignment based on relation awareness and attribute involvement. Appl. Intell. 2023, 53, 6159–6177. [Google Scholar] [CrossRef]
- Mohammadhassanzadeh, H.; Abidi, S.S.R. Plausible reasoning over large health datasets: A novel approach to data analytics leveraging semantics. Knowl.-Based Syst. 2024, 289, 111493. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Hoo, V.; Shao, Z.; Zhang, X. LegalReasoner: A Multi-Stage Framework for Legal Judgment Prediction via Large Language Models and Knowledge Integration. IEEE Access 2024, 12, 166843–166854. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, S.; Zhou, H.; Li, M.; Yang, H.; Zhang, R. FuseLinker: Leveraging LLM’s pre-trained text embeddings and domain knowledge to enhance GNN-based link prediction on biomedical knowledge graphs. J. Biomed. Inform. 2024, 158, 104730. [Google Scholar] [CrossRef] [PubMed]
- Nath, R.P.D.; Das, T.R.; Das, T.C.; Raihan, S.S. Knowledge Graph Generation and Enabling Multidimensional Analytics on Bangladesh Agricultural Data. IEEE Access 2024, 12, 87512–87531. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Qian, X.; Fang, M. Asymmetrical Contrastive Learning Network via Knowledge Distillation for No-Service Rail Surface Defect Detection. IEEE Trans. Neural Netw. Learn. Syst. 2024. [Google Scholar] [CrossRef]
- Shen, L.; Tai, Z.; Shen, E.; Wang, J. Graph exploration with embedding-guided layouts. IEEE Trans. Vis. Comput. Graph. 2023, 30, 3693–3708. [Google Scholar] [CrossRef]
- Xu, H.; Bao, J.; Li, H.; He, C.; Chen, F. A multi-view temporal knowledge graph reasoning framework with interpretable logic rules and feature fusion. Electronics 2024, 13, 742. [Google Scholar] [CrossRef]
- Bai, L.; Yu, W.; Chai, D.; Zhao, W.; Chen, M. Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules. Inf. Sci. 2023, 621, 22–35. [Google Scholar] [CrossRef]
- Siciliani, L.; Basile, P.; Lops, P.; Semeraro, G. MQALD: Evaluating the impact of modifiers in question answering over knowledge graphs. Semant. Web 2022, 13, 215–231. [Google Scholar] [CrossRef]
- Zhou, D.; Gan, Z.; Shi, X.; Patwari, A.; Rush, E.; Bonzel, C.-L.; Panickan, V.A.; Hong, C.; Ho, Y.-L.; Cai, T.; et al. Multiview Incomplete Knowledge Graph Integration with application to cross-institutional EHR data harmonization. J. Biomed. Inform. 2022, 133, 104147. [Google Scholar] [CrossRef] [PubMed]
- Melotte, S.; Ilievski, F.; Zhang, L.; Malte, A.; Mutha, N.; Morstatter, F.; Mehrabi, N. Where Does Bias in Common Sense Knowledge Models Come From? IEEE Internet Comput. 2022, 26, 12–20. [Google Scholar] [CrossRef]
- Gambarelli, G.; Gangemi, A. PRIVAFRAME: A frame-based knowledge graph for sensitive personal data. Big Data Cogn. Comput. 2022, 6, 90. [Google Scholar] [CrossRef]
- Huseynli, A.; Akcayol, M.A. Continuous Knowledge Graph Refinement With Confidence Propagation. IEEE Access 2023, 11, 59226–59237. [Google Scholar] [CrossRef]
- Abuoda, G.; Aebeloe, C.; Dell’Aglio, D.; Keen, A.; Hose, K. StarBench: Benchmarking RDF-star triplestores. In QuWeDa 2023: 7th Workshop on Storing, Querying and Benchmarking Knowledge Graphs; CEUR Workshop Proceedings: Kyiv, Ukraine, 2023. [Google Scholar]
- Formica, A.; Taglino, F. Semantic relatedness in DBpedia: A comparative and experimental assessment. Inf. Sci. 2023, 621, 474–505. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, Y.; Xu, Y.; Hu, J.; Dong, S. Interpretable Disease Prediction via Path Reasoning over medical knowledge graphs and admission history. Knowl.-Based Syst. 2023, 281, 111082. [Google Scholar] [CrossRef]
- Sataer, Y.; Gao, Z.; Fan, Y.; Li, B.; Gao, M.; Shi, C. Exploration and comparison of diverse approaches for integrating syntactic knowledge into AMR parsing. Appl. Intell. 2023, 53, 30757–30777. [Google Scholar] [CrossRef]
- Kirielle, N.; Christen, P.; Ranbaduge, T. Unsupervised graph-based entity resolution for complex entities. ACM Trans. Knowl. Discov. Data 2023, 17, 1–30. [Google Scholar] [CrossRef]
- Egami, S.; Ugai, T.; Oono, M.; Kitamura, K.; Fukuda, K. Synthesizing event-centric knowledge graphs of daily activities using virtual space. IEEE Access 2023, 11, 23857–23873. [Google Scholar] [CrossRef]
- Tsaneva, S. Evaluating Knowledge Graphs with Hybrid Intelligence. In The Semantic Web: ESWC 2023 Satellite Events; Pesquita, C., Skaf-Molli, H., Efthymiou, V., Kirrane, S., Ngonga, A., Collarana, D., Cerqueira, R., Alam, M., Trojahn, C., Hertling, S., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; Volume 13998, pp. 310–320. [Google Scholar] [CrossRef]
- Lyu, K.; Tian, Y.; Shang, Y.; Zhou, T.; Yang, Z.; Liu, Q.; Yao, X.; Zhang, P.; Chen, J.; Li, J. Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy. J. Biomed. Inform. 2023, 139, 104298. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Beck, D.; Verspoor, K. Graph embedding-based link prediction for literature-based discovery in Alzheimer’s Disease. J. Biomed. Inform. 2023, 145, 104464. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhao, Y.; Luo, S.; Wang, G.; Wang, Z. Efficient community search in edge-attributed graphs. IEEE Trans. Knowl. Data Eng. 2023, 35, 10790–10806. [Google Scholar] [CrossRef]
- Li, H.; Shi, Z.; Pan, C.; Zhao, D.; Sun, N. Cybersecurity knowledge graphs construction and quality assessment. Complex Intell. Syst. 2024, 10, 1201–1217. [Google Scholar] [CrossRef]
- Ciroku, F.; de Berardinis, J.; Kim, J.; Meroño-Peñuela, A.; Presutti, V.; Simperl, E. RevOnt: Reverse engineering of competency questions from knowledge graphs via language models. J. Web Semant. 2024, 82, 100822. [Google Scholar] [CrossRef]
- Xing, Y.; Hu, L.; Du, X.; Shen, Z.; Hu, J.; Wang, F. CCDF-TAP: A Context-Aware Conflict Detection Framework for IoT Trigger-Action Programming With Graph Neural Network. IEEE Internet Things J. 2024, 11, 31534–31544. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J. Knowledge enhanced graph inference network based entity-relation extraction and knowledge graph construction for industrial domain. Front. Eng. Manag. 2024, 11, 143–158. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Wu, S.; Gu, Z.; Tian, Y. Performance benchmark on semantic web repositories for spatially explicit knowledge graph applications. Comput. Environ. Urban Syst. 2022, 98, 101884. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, J.; Liu, X.; Tao, T.; Ren, Z.; Wang, X.; Wang, Y. Research on a knowledge graph embedding method based on improved convolutional neural networks for hydraulic engineering. Electronics 2023, 12, 3099. [Google Scholar] [CrossRef]
- Trisedya, B.D.; Salim, F.D.; Chan, J.; Spina, D.; Scholer, F.; Sanderson, M. i-Align: An interpretable knowledge graph alignment model. Data Min. Knowl. Discov. 2023, 37, 2494–2516. [Google Scholar] [CrossRef]
- Liang, S.; Shao, J.; Zhang, D.; Zhang, J.; Cui, B. DRGI: Deep Relational Graph Infomax for Knowledge Graph Completion: (Extended Abstract). In Proceedings of the 2022 IEEE 38th International Conference on Data Engineering (ICDE), Kuala Lumpur, Malaysia, 9–12 May 2022; pp. 1499–1500. [Google Scholar] [CrossRef]
- Constantinou, A.C.; Guo, Z.; Kitson, N.K. The impact of prior knowledge on causal structure learning. Knowl. Inf. Syst. 2023, 65, 3385–3434. [Google Scholar] [CrossRef]
- Fanourakis, N.; Efthymiou, V.; Kotzinos, D.; Christophides, V. Knowledge graph embedding methods for entity alignment: Experimental review. Data Min. Knowl. Discov. 2023, 37, 2070–2137. [Google Scholar] [CrossRef]
- Wu, H.; Ma, Y.; Xiang, Z.; Yang, C.; He, K. A spatial–temporal graph neural network framework for automated software bug triaging. Knowl.-Based Syst. 2022, 241, 108308. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Xing, X.; Yuan, Y. Medical federated learning with joint graph purification for noisy label learning. Med. Image Anal. 2023, 90, 102976. [Google Scholar] [CrossRef]
- Xie, P.; Zhou, G.; Liu, J.; Huang, J.X. Incorporating global–local neighbors with Gaussian mixture embedding for few-shot knowledge graph completion. Expert Syst. Appl. 2023, 234, 121086. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Shi, Z.; Cai, J.; Ji, S.; Wu, F. Duality-induced regularizer for semantic matching knowledge graph embeddings. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 1652–1667. [Google Scholar] [CrossRef]
Method | Core Technique | Pros | Cons | Typical Use Cases |
---|---|---|---|---|
RNN (e.g., LSTM/GRU) | Sequential processing of tokens over time | Efficient, Simple | Limited, Forgetful | Small-scale, Streaming |
Transformer (e.g., BERT) | Self-attention mechanism (non-sequential) | Powerful, Accurate | Expensive, Memory intensive | Large-scale, Complex |
Name | Equation | Definition |
---|---|---|
Precision | TP: True Positives FP: False Positives | |
Recall | TP: True Positives FN: False Negatives | |
F1 score | Precision, Recall | |
MRR (Mean Reciprocal Rank) | N: Total number of queries ranki: Rank position of the correct answer for the ith query | |
Hits@K (Hits at K) | N: Total number of queries K: Rank threshold ranki: Rank of the correct answer for the ith query | |
RMSE (Root Mean Squared Error) | N: Number of samples ŷi: Predicted value for sample i yi: Actual value for sample i | |
MAE (Mean Absolute Error) | Same variables as RMSE | |
MAPE (Mean Absolute Percentage Error) | N: Number of samples ŷi: Predicted value yi: Actual value | |
PCC (Pearson Correlation Coefficient) | xi, yi: Paired values from two datasets , : Mean of x and y values, respectively | |
Average Effectiveness | N: Total number of runs Ei: Effectiveness measure for the ith run | |
SD (Standard Deviation) | N: Total number of measurements : Mean of the measurements xi: Individual measurement value | |
Mean Execution Time | N: Total number of runs ti: Execution time for the ith run | |
Execution Time Standard Deviation | ti: Individual execution time : Mean execution time | |
Mean Memory Usage | N: Total number of runs mi: Memory usage for the ith run | |
Memory Usage Standard Deviation | mi: Individual memory usage measurement : Mean memory usage |
Dataset Name | Domain/Field | Main Usage | Key Feature |
---|---|---|---|
GTS Madrid benchmark | Public Transportation | Comparing mapping tools, data consistency evaluation | Based on the GTFS standard for public transit data |
FB15K, FB15K-237 | Knowledge Graph Embedding (KGE) | Link prediction, embedding evaluation | FB15K-237 refines FB15K by removing redundant/inverse relations |
WN18, WN18RR | Natural Language Embedding | Link prediction, embedding evaluation | Based on WordNet; WN18RR removes duplicate relations |
SCWS (Stanford Contextual Word Similarities) | Natural Language Processing | Word/context similarity evaluation | Used for assessing context-based word embeddings |
New York Times, WebNLG, ADE | Text Analysis Relation Extraction | Entity-relation extraction | Data from news articles, web content, and medical reports |
KnowAir, UrbanAir (North) | Environmental (Air Quality) | Air quality prediction | Evaluated using metrics such as RMSE, MAE, and MAPE |
MIMIC-III, MIMIC-IV, eICU | Healthcare (ICU Records) | Patient similarity search, disease prediction, clinical support | Large-scale clinical datasets based on electronic health records (EHR) |
ICEWS, GDELT | Time-series Events | Event prediction, temporal inference, logical rule evaluation | Contains spatiotemporal data on political/social events |
DBP15K | Multilingual Knowledge Graph | Entity alignment across languages | Derived from DBpedia for cross-lingual entity mapping |
ECHR | Legal | Legal judgment prediction, legal AI evaluation | ECHR from the European Court of Human Right; |
CAIL2018 | Legal | Legal judgment prediction, legal AI evaluation | CAIL2018 is a Chinese legal dataset |
KEGG50k, Hetionet, SuppKG, ADInt | Biomedical | Drug-disease link prediction, relation extraction | Large-scale biomedical data for analyzing biological pathways |
Bangladesh Agricultural Data (BBS) | Agriculture | KG generation, OLAP queries, business intelligence analysis | Includes fisheries, forestry, and agriculture data from Bangladesh |
NEU RSDDS-AUG | Railway Defect Detection | Railway defect detection and analysis | Uses railway images/signals for defect classification |
Yago (ST), DBpedia (ST), Wikidata (ST) | Knowledge Graph (Spatiotemporal) | Spatial/temporal KG analysis, link prediction | Extended versions of Yago, DBpedia, and Wikidata with spatiotemporal information |
RDF triple store benchmarks | Semantic Web Infrastructure | Evaluating RDF store performance (storage, querying, etc.) | Focuses on SPARQL query performance and scalability |
NLPCC2017, cMedQA, TREC-QA, WikiQA | Question Answering | QA system evaluation in Chinese and English | Uses metrics like Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) |
RxNorm, VA codes | Healthcare (Standard Codes) | Mapping drug/diagnosis codes, data integration between hospitals | Standard coding systems used in the U.S. healthcare domain |
ConceptNet, Wikidata-CS | Commonsense Knowledge Graph | Bias analysis, commonsense reasoning | Rich set of entities and relations for everyday knowledge |
DPV-based sensitive personal data | Data Privacy | Identifying sensitive information, data classification | Based on Data Privacy Vocabulary (DPV) |
NELL, YAGO3-10 | Knowledge Graph (General) | Link prediction, continuous learning | NELL is an online learning project; YAGO3-10 is a large-scale knowledge graph |
Les Misérables, Graph of Science | Graph Exploration Visualization | Community detection, graph layout analysis | Based on a literary work (Les Misérables) and a citation network (Graph of Science) |
Electronics, Instacart | E-commerce | Product relationship extraction, recommendation systems | Includes product categories, purchase histories, etc |
MQALD | SPARQL-based QA | Evaluating SPARQL query processing and modifier effects | Designed for testing natural language to SPARQL conversion |
AMR2.0, AMR3.0 | Natural Language Processing | AMR parsing, structured semantic analysis | Represents sentence meaning using graph-based structures |
Dataset Name | Evaluation Metrics/Considerations |
---|---|
GTS Madrid benchmark | Evaluate mapping accuracy, data consistency, processing speed, and scalability based on GTFS-standard transit data. |
FB15K, FB15K-237 | Use ranking metrics (MRR, Hits@K) and classification metrics (Precision, Recall, F1-Score). FB15K-237 refines FB15K by removing redundant/inverse relations. |
WN18, WN18RR | Similar ranking and classification metrics as FB15K, with WN18RR removing duplicate relations for more reliable link prediction. |
SCWS (Stanford Contextual Word Similarities) | Apply Pearson correlation coefficient and similarity-based F1-Score to evaluate context-based word embeddings. |
New York Times, WebNLG, ADE | Use Precision, Recall, and F1-Score to assess relation extraction performance from diverse text sources. |
KnowAir, UrbanAir (North) | Utilize regression metrics (RMSE, MAE, MAPE) and efficiency measures (e.g., execution time) for air quality prediction. |
MIMIC-III, MIMIC-IV, eICU | Evaluate patient similarity search and disease prediction using Accuracy, F1-Score, and AUC-ROC, emphasizing clinical reliability. |
ICEWS, GDELT | Combine regression metrics (RMSE, MAE) with ranking metrics (MRR, Hits@K) to assess spatiotemporal event prediction and temporal inference. |
DBP15K | Evaluate cross-lingual entity alignment using Precision, Recall, and F1-Score to capture multilingual performance nuances. |
ECHR, CAIL2018 | Use Accuracy, AUC-ROC, and F1-Score to assess legal judgment prediction, ensuring reliable performance in legal applications. |
KEGG50k, Hetionet, SuppKG, ADInt | Apply MRR, Hits@K, Precision, Recall, and F1-Score for biomedical link prediction and relation extraction in large-scale biological datasets. |
Bangladesh Agricultural Data (BBS) | Measure query response time, throughput, and data completeness to evaluate OLAP queries and business intelligence analysis in agricultural contexts. |
NEU RSDDS-AUG | Use Accuracy, Precision, Recall, F1-Score, and computational efficiency metrics (execution time, memory usage) to evaluate railway defect detection performance. |
Yago (ST), DBpedia (ST), Wikidata (ST) | Employ regression metrics (RMSE, MAE) and ranking metrics (MRR, Hits@K) to assess spatiotemporal KG analysis and link prediction accuracy. |
RDF triple store benchmarks | Focus on SPARQL query response time, throughput, and scalability to evaluate RDF store performance. |
NLPCC2017, cMedQA, TREC-QA, WikiQA | Use MAP, MRR, and Accuracy to evaluate QA system performance in both Chinese and English. |
RxNorm, VA codes | Assess mapping accuracy and use Precision and Recall to evaluate drug/diagnosis code mapping and hospital data integration. |
ConceptNet, Wikidata-CS | Evaluate commonsense reasoning and bias using F1-Score and ranking-based metrics to assess the quality of everyday knowledge representations. |
DPV-based sensitive personal data | Use Precision, Recall, and F1-Score to measure the performance of sensitive information classification based on the Data Privacy Vocabulary (DPV). |
NELL, YAGO3-10 | Apply MRR, Hits@K, Precision, Recall, and F1-Score to evaluate continuous learning and link prediction in general-purpose knowledge graphs. |
Les Misérables, Graph of Science | Use clustering quality metrics and qualitative assessments to evaluate graph exploration and visualization performance. |
Electronics, Instacart | Assess product relationship extraction and recommender systems using Precision, Recall, F1-Score, and recommendation ranking metrics. |
MQALD | Evaluate natural language to SPARQL conversion by measuring query accuracy and response time. |
AMR2.0, AMR3.0 | Use parsing accuracy and F1-score to evaluate AMR parsing quality and structured semantic analysis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Jung, Y. Knowledge Graph Construction: Extraction, Learning, and Evaluation. Appl. Sci. 2025, 15, 3727. https://doi.org/10.3390/app15073727
Choi S, Jung Y. Knowledge Graph Construction: Extraction, Learning, and Evaluation. Applied Sciences. 2025; 15(7):3727. https://doi.org/10.3390/app15073727
Chicago/Turabian StyleChoi, Seungmin, and Yuchul Jung. 2025. "Knowledge Graph Construction: Extraction, Learning, and Evaluation" Applied Sciences 15, no. 7: 3727. https://doi.org/10.3390/app15073727
APA StyleChoi, S., & Jung, Y. (2025). Knowledge Graph Construction: Extraction, Learning, and Evaluation. Applied Sciences, 15(7), 3727. https://doi.org/10.3390/app15073727