An Unsupervised Learning Approach for Coal Spontaneous Combustion Warning Level Classification Using t-SNE and k-Means Clustering
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Experimental System and Data Acquisition
2.2. t-SNE Algorithm for Dimensionality Reduction
2.3. K-Means Clustering Algorithm
2.4. Support Vector Classification Model
3. Results and Discussion
3.1. Analysis of Warning Level Classification
3.2. Engineering Application and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Temperature | CO2/% | C2H4/ppm | C2H6/ppm | CH4/ppm | CO/ppm | C2H2/ppm | O2/% | N2/% |
---|---|---|---|---|---|---|---|---|
30 | 0.05 | 0 | 0 | 0.54 | 0 | 0 | 19.42 | 78.67 |
40 | 0.11 | 0 | 0 | 2.35 | 0 | 0 | 18.98 | 79.23 |
50 | 0.59 | 0 | 0 | 5.30 | 7.16 | 0 | 18.49 | 80.66 |
60 | 0.64 | 0 | 0 | 14.61 | 12.40 | 0 | 17.71 | 75.99 |
70 | 0.73 | 0 | 1.04 | 52.63 | 26.92 | 0 | 17.08 | 75.00 |
80 | 0.95 | 0 | 5.40 | 72.63 | 96.71 | 0 | 16.94 | 75.86 |
90 | 1.22 | 0 | 6.65 | 95.16 | 153.74 | 0 | 16.68 | 76.73 |
100 | 1.46 | 0 | 10.54 | 109.46 | 183.45 | 0 | 16.53 | 77.47 |
110 | 1.65 | 0 | 14.18 | 137.96 | 219.70 | 0 | 16.28 | 77.62 |
120 | 3.15 | 0 | 38.90 | 222.38 | 835.21 | 0 | 14.93 | 77.18 |
130 | 4.41 | 0 | 69.87 | 227.53 | 2102.48 | 0 | 12.60 | 80.10 |
140 | 5.48 | 5.97 | 106.10 | 238.79 | 2725.89 | 0 | 10.76 | 81.99 |
150 | 7.38 | 10.11 | 82.44 | 252.63 | 4142.65 | 0 | 8.04 | 84.88 |
160 | 9.58 | 18.19 | 122.92 | 327.96 | 5865.54 | 1.96 | 6.67 | 86.77 |
170 | 10.88 | 22.12 | 196.51 | 517.61 | 6366.78 | 3.55 | 4.13 | 88.39 |
180 | 12.76 | 28.47 | 253.42 | 578.61 | 6909.85 | 7.94 | 3.13 | 90.37 |
References
- Onifade, M.; Genc, B. A review of research on spontaneous combustion of coal. Int. J. Min. Sci. Technol. 2020, 30, 303–311. [Google Scholar] [CrossRef]
- Su, C.; Deng, J.; Li, X.; Huang, W.; Ma, J.; Wang, C.; Wang, X. Investment in enhancing resilience safety of chemical parks under blockchain technology: From the perspective of dynamic reward and punishment mechanisms. J. Loss Prev. Process Ind. 2025, 94, 105523. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, P.Y.; Chen, X.K.; He, Y.P.; Wei, G.M.; Fan, J. Numerical investigation of coupling hazard zone of coal spontaneous combustion and gas in gob for high-gas mines. Case Stud. Therm. Eng. 2024, 63, 105341. [Google Scholar] [CrossRef]
- Su, C.; Zha, X.; Ma, J.; Li, B.; Wang, X. Dynamic optimal control strategy of ccus technology innovation in coal power stations under environmental protection tax. Systems 2025, 13, 193. [Google Scholar] [CrossRef]
- Qu, G.; Deng, J.; Ren, S.; Xiao, Y.; Wang, C.; Wang, J.; Duan, X.; Zhang, L. Effect of oxygen deficient conditions on oxidative spontaneous combustion characteristics of raw coal and water-immersed air-dried bituminous coal. Process Saf. Environ. Prot. 2025, 196, 106859. [Google Scholar] [CrossRef]
- Gao, L.; Tan, B.; Fan, L.; Cliff, D.; Huang, J.; Wang, H.; Kong, B. An experimental study on monitoring and early warning of spontaneous coal combustion fires using CPM. J. Environ. Chem. Eng. 2024, 12, 114712. [Google Scholar] [CrossRef]
- Lu, B.; Zhang, X.; Qiao, L.; Ding, C.; Fan, N.; Huang, G. Experimental study on the effect of slow reaction process of the latent period on coal spontaneous combustion. Energy 2024, 302, 131927. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, L.; Sun, J.; Chen, R.; Pei, G.; Chen, X.; Fan, J. Numerical investigation of air flow field evolution and leakage patterns in large-scale goaf areas. Phys. Fluids 2025, 37, 027151. [Google Scholar] [CrossRef]
- Guo, J.; Wen, H.; Zheng, X.; Liu, Y.; Cheng, X. A method for evaluating the spontaneous combustion of coal by monitoring various gases. Process Saf. Environ. Prot. 2019, 126, 223–231. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.; Ren, T.; Qiao, M.; Yan, J. Influence of methane on the prediction index gases of coal spontaneous combustion: A case study in Xishan coalfield, China. Fuel 2021, 289, 119852. [Google Scholar] [CrossRef]
- Zhou, Q.; Mao, X.; Jia, B. Development of a Graded Early Warning Index System and Identification of Critical Temperatures for Coal Spontaneous Combustion Using Composite Gas Characteristics. ACS Omega 2024, 9, 33. [Google Scholar] [CrossRef]
- Wang, F.; Ji, Z.; Wang, H.; Chen, Y.; Wang, T.; Tao, R.; Su, C.; Niu, G. Analysis of the Current Status and Hot Technologies of Coal Spontaneous Combustion Warning. Processes 2023, 11, 2480. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Wang, E.; Li, Z.; Liu, X.; Wang, K. Research on evolution law of index gases produced by the coal spontaneous combustion based on wavelet analysis. Fuel 2024, 370, 131859. [Google Scholar] [CrossRef]
- Luo, Z.M.; Wang, S.J.; Wang, K.; Yang, Y.; Zhang, X.W. Experimental Study on Constructing a Classification and Early Warning Index System for Non-Stick Coal Spontaneous Combustion. Combust. Sci. Technol. 2025, 1, 1–23. [Google Scholar] [CrossRef]
- Qi, Y.; Xue, K.; Wang, W.; Cui, X.; Liang, R. Prediction Model of Borehole Spontaneous Combustion Based on Machine Learning and Its Application. Fire 2023, 6, 357. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, C.; Song, J.; Lu, S.; Deng, J.; Zhang, Y.; Shu, C.M. Quantitative characterisation of the influence of different environmental factors on coal spontaneous combustion. J. Therm. Anal. Calorim. 2024, 149, 10241–10264. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, M.; Deng, J.; Xiao, Y.; Chen, W.; Heris, S.Z. Effects on environmental conditions and limiting parameters for spontaneous combustion of residual coal in underground goaf. Process Saf. Environ. Prot. 2024, 187, 1378–1389. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Y.; Jin, C. Prediction of Coal Spontaneous Combustion in Goaf Based on the BP Neural Network. Procedia Eng. 2012, 43, 88–92. [Google Scholar] [CrossRef]
- Xiao, H.; Tian, Y. Prediction of mine coal layer spontaneous combustion danger based on genetic algorithm and BP neural networks. Procedia Eng. 2011, 26, 139–146. [Google Scholar] [CrossRef]
- Deng, J.; Chen, W.; Wang, C.; Wang, W. Prediction Model for Coal Spontaneous Combustion Based on SA-SVM. ACS Omega 2021, 6, 11307–11318. [Google Scholar] [CrossRef]
- Lei, C.; Deng, J.; Cao, K.; Xiao, Y.; Ma, L.; Wang, W.; Ma, T.; Shu, C. A comparison of random forest and support vector machine approaches to predict coal spontaneous combustion in gob. Fuel 2019, 239, 297–311. [Google Scholar]
- Lei, C.; Deng, J.; Cao, K.; Ma, L.; Xiao, Y.; Ren, L. A random forest approach for predicting coal spontaneous combustion. Fuel 2018, 223, 63–73. [Google Scholar]
- Bao, R.; Feng, Q.; Lei, C. Influencing Factors Analysis and Prediction of Gas Emission in Mining Face. Sustainability 2025, 17, 578. [Google Scholar] [CrossRef]
- Ni, S.; Yue, Y.; Chen, Q. Research on the Prediction Model of Coal Spontaneous Combustion Hazard Level Based on IGWO-GRNN. Combust. Sci. Technol. 2025, 1, 1–11. [Google Scholar]
- Pan, H.; Fan, Y.; Deng, J.; Shi, K.; Wang, C.; Lei, X.; Wei, Z.; Bai, J. GCN-based prediction method for coal spontaneous combustion temperature. Process Saf. Environ. Prot. 2025, 196, 106855. [Google Scholar]
- Dey, P.; Saurabh, K.; Kumar, C.; Pandit, D.; Chaulya, S.K.; Ray, S.K.; Prasad, G.M.; Mandal, S.K. t-SNE and variational auto-encoder with a bi-LSTM neural network-based model for prediction of gas concentration in a sealed-off area of underground coal mines. Data Anal. Mach. Learn. 2021, 25, 14183–14207. [Google Scholar]
- Peng, H.B.; Chen, G.H.; Chen, X.X.; Lu, Z.M.; Yao, S.C. Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM. Plasma Sci. Technol. 2019, 21, 034008. [Google Scholar]
- Pandit, Y.P.; Badhe, Y.P.; Sharma, B.K.; Tambe, S.S.; Kulkarni, B.D. Classification of Indian power coals using K-means clustering and Self Organizing Map neural network. Fuel 2011, 90, 339–347. [Google Scholar]
- Sahu, H.B.; Mahapatra, S.S.; Panigrahi, D.C. Fuzzy c-means clustering approach for classification of Indian coal seams with respect to their spontaneous combustion susceptibility. Fuel Process. Technol. 2012, 104, 115–120. [Google Scholar]
- Zhai, X.W.; Hao, L.; Ma, T.; Song, B.B.; Wang, K.; Luo, J.L. Non-linear soft sensing method for temperature of coal spontaneous combustion. Process Saf. Environ. Prot. 2023, 170, 1023–1031. [Google Scholar]
- Wang, W.; Liang, R.; Qi, Y.; Cui, X.C.; Liu, J.; Xue, K.L. Study on the Prediction Model of Coal Spontaneous Combustion Limit Parameters and Its Application. Fire 2023, 6, 381. [Google Scholar] [CrossRef]
- Cheng, G.; Chen, J.; Wei, Y.F.; Chen, S.S.; Pan, Z.Y. A Coal Gangue Identification Method Based on HOG Combined with LBP Features and Improved Support Vector Machine. Symmetry 2023, 15, 202. [Google Scholar] [CrossRef]
Sequence | t-SNE Cluster | Warning Level |
---|---|---|
1 | 4 | Safe |
2 | 6 | Low Risk |
3 | 2 | Moderate Risk |
4 | 1 | High Risk |
5 | 5 | Severe Risk |
6 | 3 | Critical Risk |
Sequence | CO2/% | C2H4/ppm | C2H6/ppm | CH4/ppm | CO/ppm | C2H2/ppm | O2/% | N2/% | t-SNE |
---|---|---|---|---|---|---|---|---|---|
1 | 0.06 | 0 | 0 | 0 | 0 | 0 | 20.56 | 79.38 | Safe |
2 | 0.06 | 0 | 0 | 0 | 0 | 0 | 20.37 | 79.57 | Safe |
3 | 0.53 | 0 | 0 | 5 | 9 | 0 | 19.39 | 80.08 | Low Risk |
4 | 0.68 | 0 | 0 | 6 | 8 | 0 | 19.22 | 80.10 | Low Risk |
5 | 0.75 | 0 | 0 | 3 | 5 | 0 | 19.63 | 79.57 | Low Risk |
6 | 0.95 | 0 | 6.20 | 79 | 107 | 0 | 17.95 | 81.05 | High Risk |
7 | 0.91 | 0 | 8.55 | 86 | 132 | 0 | 16.97 | 81.10 | High Risk |
8 | 1.45 | 0 | 13.53 | 132 | 192 | 0 | 15.21 | 83.30 | Severe Risk |
9 | 1.64 | 0 | 13.31 | 112 | 199 | 0 | 15.18 | 83.16 | Severe Risk |
10 | 1.59 | 0 | 15.64 | 136 | 226 | 0 | 13.94 | 84.44 | Severe Risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Chen, X. An Unsupervised Learning Approach for Coal Spontaneous Combustion Warning Level Classification Using t-SNE and k-Means Clustering. Appl. Sci. 2025, 15, 3756. https://doi.org/10.3390/app15073756
Zhang P, Chen X. An Unsupervised Learning Approach for Coal Spontaneous Combustion Warning Level Classification Using t-SNE and k-Means Clustering. Applied Sciences. 2025; 15(7):3756. https://doi.org/10.3390/app15073756
Chicago/Turabian StyleZhang, Pengyu, and Xiaokun Chen. 2025. "An Unsupervised Learning Approach for Coal Spontaneous Combustion Warning Level Classification Using t-SNE and k-Means Clustering" Applied Sciences 15, no. 7: 3756. https://doi.org/10.3390/app15073756
APA StyleZhang, P., & Chen, X. (2025). An Unsupervised Learning Approach for Coal Spontaneous Combustion Warning Level Classification Using t-SNE and k-Means Clustering. Applied Sciences, 15(7), 3756. https://doi.org/10.3390/app15073756