Fluorescent Sandwich ELISA Method for Specific and Ultra-Sensitive Trace Detection of Insulin-like Growth Factor-1 in Bovine Colostrum Powders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Apparatus
2.3. Methods
2.3.1. Preparation of Traditional ELISA Working Solution
2.3.2. Optimization of Fluorescent Sandwich ELISA Working Solution
- The volume ratio of ADHP to H2O2: 20 μL of H2O2 was mixed with 10, 20, 40, and 80 μL of ADHP, respectively. Then, PBS buffer was added to dilute the fluorescence working solution to a total volume of 1 mL, making the final concentrations of ADHP 62.5 μM, 125 μM, 250 μM, and 500 μM, respectively.
- The total volume of ADHP and H2O2: The total volume of ADHP and H2O2 with an optimal ratio was changed from 20 to 40, 60, and 80 μL, and PBS buffer was added to dilute the fluorescence working solution to a total volume of 1 mL.
- The acidity and alkalinity of the working solution: 50 mL of 50 mM PBS buffer (10.4 mM NaH2PO4, 39.6 mM Na2HPO4, 150 mM NaCl) was prepared, and the pH value of the buffer was adjusted to 5, 7, and 9, respectively. The fluorescence working solutions were prepared with the above buffers.
- The reaction temperature: The reaction temperature of the fluorescent working solution was varied by changing the incubation temperature of the microplate thermostatic oscillator to 25 °C, 37 °C, and 50 °C, respectively.
2.3.3. Detection Process
- Traditional ELISA Method:
- Fluorescent sandwich ELISA method:
2.3.4. Specificity Study
2.3.5. Pretreatment of Bovine Colostrum Powders
2.3.6. Real Samples Detection
3. Results and Discussion
3.1. Optimizing Conditions
3.2. Detection of IGF-1
3.3. Specificity of IGF-1 Detection
3.4. Multi-Step Pretreatment of Bovine Colostrum Powders
3.5. Detection of IGF-1 in Bovine Colostrum Powders
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pontoppidan, P.E.; Shen, R.L.; Cilieborg, M.S.; Jiang, P.; Kissow, H.; Petersen, B.L.; Thymann, T.; Heilmann, C.; Müller, K.; Sangild, P.T. Bovine Colostrum Modulates Myeloablative Chemotherapy–Induced Gut Toxicity in Piglets. J. Nutr. 2015, 145, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut Microbiota Induce IGF-1 and Promote Bone Formation and Growth. Proc. Natl. Acad. Sci. USA 2016, 113, E7554–E7563. [Google Scholar] [CrossRef] [PubMed]
- Clatici, V.G.; Voicu, C.; Voaides, C.; Roseanu, A.; Icriverzi, M.; Jurcoane, S. Diseases of Civilization–Cancer, Diabetes, Obesity and Acne–the Implication of Milk, IGF-1 and mTORC1. Maedica 2018, 13, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; Schmitz, G. Role of Insulin, Insulin-Like Growth Factor-1, Hyperglycaemic Food and Milk Consumption in the Pathogenesis of Acne Vulgaris. Exp. Dermatol. 2009, 18, 833–841. [Google Scholar] [CrossRef]
- Melnik, B.; John, S.; Plewig, G. Acne: Risk Indicator for Increased Body Mass Index and Insulin Resistance. Acta Derm. Venerol. 2013, 93, 644–649. [Google Scholar] [CrossRef]
- Rodighiero, E.; Bertolani, M.; Saleri, R.; Pedrazzi, G.; Lotti, T.; Feliciani, C.; Satolli, F. Do Acne Treatments Affect Insulin-Like Growth Factor-1 Serum Levels? A Clinical and Laboratory Study on Patients with Acne Vulgaris. Dermatol. Ther. 2020, 33, e13439. [Google Scholar] [CrossRef]
- Francis, G.L.; Upton, F.M.; Ballard, F.J.; McNeil, K.A.; Wallace, J.C. Insulin-Like Growth Factors 1 and 2 in Bovine Colostrum. Sequences and Biological Activities Compared with Those of a Potent Truncated Form. Biochem. J. 1988, 251, 95–103. [Google Scholar] [CrossRef]
- Juul, A.; Dalgaard, P.; Blum, W.F.; Bang, P.; Hall, K.; Michaelsen, K.F.; Müller, J.; Skakkebaek, N.E. Serum Levels of Insulin-like Growth Factor (IGF)-Binding Protein-3 (IGFBP-3) in Healthy Infants, Children, and Adolescents: The Relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, Age, Sex, Body Mass Index, and Pubertal Maturation. J. Clin. Endocrinol. Metab. 1995, 80, 2534–2542. [Google Scholar] [CrossRef]
- Juskevich, J.C.; Guyer, C.G. Bovine Growth Hormone: Human Food Safety Evaluation. Science 1990, 249, 875–884. [Google Scholar] [CrossRef]
- Pakkanen, R.; Aalto, J. Growth Factors and Antimicrobial Factors of Bovine Colostrum. Int. Dairy J. 1997, 7, 285–297. [Google Scholar] [CrossRef]
- Dzik, S.; Miciński, B.; Aitzhanova, I.; Miciński, J.; Pogorzelska, J.; Beisenov, A.; Kowalski, I.M. Properties of Bovine Colostrum and the Possibilities of Use. Pol. Ann. Med. 2017, 24, 295–299. [Google Scholar] [CrossRef]
- Givens, D.I. Milk Symposium Review: The Importance of Milk and Dairy Foods in the Diets of Infants, Adolescents, Pregnant Women, Adults, and the Elderly. J. Dairy Sci. 2020, 103, 9681–9699. [Google Scholar] [CrossRef] [PubMed]
- Ketha, H.; Singh, R.J. Clinical Assays for Quantitation of Insulin-like-Growth-Factor-1 (IGF1). Methods 2015, 81, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef]
- Bastian, S.E.P.; Dunbar, A.J.; Priebe, I.K.; Owens, P.C.; Goddard, C. Measurement of Betacellulin Levels in Bovine Serum, Colostrum and Milk. J. Endocrinol. 2001, 168, 203. [Google Scholar] [CrossRef]
- Cheng, J.B.; Wang, J.Q.; Bu, D.P.; Liu, G.L.; Zhang, C.G.; Wei, H.Y.; Zhou, L.Y.; Wang, J.Z. Factors Affecting the Lactoferrin Concentration in Bovine Milk. J. Dairy Sci. 2008, 91, 970–976. [Google Scholar] [CrossRef]
- Shen, W.; Xuan, Z.; Liu, H.; Huang, K.; Guan, X.; Guo, B. A Magnetic Beads-Based Sandwich Chemiluminescence Enzyme Immunoassay for the Rapid and Automatic Detection of Lactoferrin in Milk. Foods 2024, 13, 953. [Google Scholar] [CrossRef]
- Guidi, A.; Castigliego, L.; Iannone, G.; Armani, A.; Gianfaldoni, D. An Immunoenzymatic Method to Measure IGF-1 in Milk. Vet. Res. Commun. 2007, 31, 373–376. [Google Scholar] [CrossRef]
- Elfstrand, L.; Lindmark-Månsson, H.; Paulsson, M.; Nyberg, L.; Åkesson, B. Immunoglobulins, Growth Factors and Growth Hormone in Bovine Colostrum and the Effects of Processing. Int. Dairy J. 2002, 12, 879–887. [Google Scholar] [CrossRef]
- Remaggi, G.; Saleri, R.; Andrani, M.; Satolli, F.; Rodighiero, E.; Elviri, L. Development and Single Laboratory Validation of a Targeted Liquid Chromatography-Triple Quadrupole Mass Spectrometry-Based Method for the Determination of Insulin Like Growth Factor-1 in Different Types of Milk Samples. Food Chem. X 2022, 13, 100271. [Google Scholar] [CrossRef]
- Welsh, J.A.; Braun, H.; Brown, N.; Um, C.; Ehret, K.; Figueroa, J.; Barr, D.B. Production-Related Contaminants (Pesticides, Antibiotics and Hormones) in Organic and Conventionally Produced Milk Samples Sold in the USA. Public Health Nutr. 2019, 22, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Curone, G.; Chandler, T.L.; Moroni, P.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: I. Effects on Bacterial and Somatic Cell Counts, Immunoglobulin, Insulin, and IGF-I Concentrations, as Well as the Colostrum Proteome. J. Dairy Sci. 2020, 103, 9368–9383. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Curone, G.; Chandler, T.L.; Sipka, A.; Cha, J.; Bhawal, R.; Zhang, S. Heat Treatment of Bovine Colostrum: II. Effects on Calf Serum Immunoglobulin, Insulin, and IGF-I Concentrations, and the Serum Proteome. J. Dairy Sci. 2020, 103, 9384–9406. [Google Scholar] [CrossRef] [PubMed]
- Garay-Sevilla, M.E.; Nava, L.E.; Malacara, J.M.; Wróbel, K.; Wróbel, K.; Pérez, U. Advanced Glycosylation End Products (AGEs), Insulin-Like Growth Factor-1 (IGF-1) and IGF-Binding Protein-3 (IGFBP-3) in Patients with Type 2 Diabetes Mellitus. Diabetes Metab. Res. Rev. 2000, 16, 106–113. [Google Scholar] [CrossRef]
- Ginjala, V.; Pakkanen, R. Determination of Transforming Growth Factor-Β1 (TGF-Β1) and Insulin-Like Growth Factor 1 (IGF-1) in Bovine Colostrum Samples. J. Immunoass. Immunochem. 1998, 19, 195–207. [Google Scholar] [CrossRef]
- Daxenberger, A.; Sauerwein, H.; Breier, B.H. Increased Milk Levels of Insulin-like Growth Factor 1 (IGF-1) for the Identification of Bovine Somatotropin (bST) Treated Cows†. Analyst 1998, 123, 2429–2435. [Google Scholar] [CrossRef]
- Lee, J.H.; Rho, J.-E.R.; Rho, T.-H.D.; Newby, J.G. Advent of Innovative Chemiluminescent Enzyme Immunoassay. Biosens. Bioelectron. 2010, 26, 377–382. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q.; Lang, Y.; Jiang, X.; Wu, P. Rationale of 3,3′,5,5′-Tetramethylbenzidine as the Chromogenic Substrate in Colorimetric Analysis. Anal. Chem. 2020, 92, 12400–12406. [Google Scholar] [CrossRef]
- Silva, E.G.D.S.O.; Rangel, A.H.D.N.; Mürmam, L.; Bezerra, M.F.; Oliveira, J.P.F.D. Bovine Colostrum: Benefits of Its Use in Human Food. Food Sci. Technol 2019, 39, 355–362. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, F.; Xia, X.; Ye, D.; Zhou, R.; Li, L.; Deng, T.; Ding, Z.; Liu, F. Developing a Fluorescence Substrate for HRP-Based Diagnostic Assays with Superiorities Over the Commercial ADHP. Chin. Chem. Lett. 2024, 35, 108970. [Google Scholar] [CrossRef]
- Heo, Y.; Shin, K.; Park, M.C.; Kang, J.Y. Photooxidation-Induced Fluorescence Amplification System for an Ultra-Sensitive Enzyme-Linked Immunosorbent Assay (ELISA). Sci. Rep. 2021, 11, 5831. [Google Scholar] [CrossRef]
- Meng, Y.; High, K.; Antonello, J.; Washabaugh, M.W.; Zhao, Q. Enhanced Sensitivity and Precision in an Enzyme-Linked Immunosorbent Assay with Fluorogenic Substrates Compared with Commonly Used Chromogenic Substrates. Anal. Biochem. 2005, 345, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Dębski, D.; Smulik, R.; Zielonka, J.; Michałowski, B.; Małgorzata, J.; Karolina, D.; Jan, A.; Andrzej, M.; Balaraman, K.; Adam, S. Mechanism of Oxidative Conversion of Amplex® Red to Resorufin_ Pulse Radiolysis and Enzymatic Studies. Free. Radic. Bio. Med. 2016, 95, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Castigliego, L.; Li, X.; Armani, A.; Mazzi, M.; Guidi, A. An Immunoenzymatic Assay to Measure Insulin-Like Growth Factor 1 (IGF-1) in Buffalo Milk with an IGF Binding Protein Blocking Pre-Treatment of the Sample. Int. Dairy J. 2011, 21, 421–426. [Google Scholar] [CrossRef]
- Bronsema, K.J.; Klont, F.; Schalk, F.B.; Bischoff, R.; Kema, I.P.; Van De Merbel, N.C. A Quantitative LC-MS/MS Method for Insulin-Like Growth Factor 1 in Human Plasma. Clin. Chem. Lab. Med. 2018, 56, 1905–1912. [Google Scholar] [CrossRef]
- Coppieters, G.; Judák, P.; Van Haecke, N.; Van Renterghem, P.; Van Eenoo, P.; Deventer, K. A High-Throughput Assay for the Quantification of Intact Insulin-Like Growth Factor I in Human Serum Using Online SPE-LC-HRMS. Clin. Chim. Acta 2020, 510, 391–399. [Google Scholar] [CrossRef]
- Pratt, M.S.; Van Faassen, M.; Remmelts, N.; Bischoff, R.; Kema, I.P. An Antibody-Free LC-MS/MS Method for the Quantification of Intact Insulin-Like Growth Factors 1 and 2 in Human Plasma. Anal. Bioanal. Chem. 2021, 413, 2035–2044. [Google Scholar] [CrossRef]
- Chen, P.; Wang, R.-M.; Xu, B.-C.; Xu, F.-R.; Ye, Y.-W.; Zhang, B. Food Emulsifier Based on the Interaction of Casein and Butyrylated Dextrin for Improving Stability and Emulsifying Properties. J. Dairy Sci. 2023, 106, 1576–1585. [Google Scholar] [CrossRef]
- Khosravi, M.J.; Diamandi, A.; Mistry, J.; Lee, P.D. Noncompetitive ELISA for Human Serum Insulin-like Growth Factor-I. Clin. Chem. 1996, 42, 1147–1154. [Google Scholar] [CrossRef]
- Han, B.; Zhang, L.; Zhou, P. Comparative Proteomics of Whey Proteins: New Insights into Quantitative Differences between Bovine, Goat and Camel Species. Int. J. Biol. Macromol. 2023, 227, 10–16. [Google Scholar] [CrossRef]
Method | IGF-1 Source | LOD a/LOQ b (ng/mL) | Detection Range (ng/mL) | Reference |
---|---|---|---|---|
Fluorescent sandwich ELISA | Bovine colostrum powder | 0.07729 (LOD) | 0.1–30 | This work |
Traditional ELISA | Bovine colostrum powder | 1.018 (LOD) | 1.25–100 | This work |
Traditional ELISA | Milk | 0.3 (LOD) | 0.3–10 | [18] |
Traditional ELISA | Buffalo milk | 0.1 (LOD) | 0.25–4 | [34] |
LC-MS/MS c | Human plasma | 10 (LOQ) | 10–1000 | [35] |
LC-MS | Human serum | 50 (LOQ) | 50–1000 | [36] |
LC-MS/MS | Human plasma | 5.9 (LOQ) | 15–1100 | [37] |
Added IGF-1 Concentration (ng/mL) | Calculated IGF-1 Concentration (ng/mL) | Recovery Rate (%) | CV a (n = 3, %) | Calculated IGF-1 Content in Bovine Colostrum Powder (ng/g) | Average IGF-1 Content in Bovine Colostrum Powder (ng/g) |
---|---|---|---|---|---|
Fluorescent sandwich ELISA | |||||
0 | 14.06 | / | 3.81 | 1125.00 | 1096.68 |
1 | 15.08 | 102.32 | 5.54 | 1126.85 | |
5 | 18.87 | 96.09 | 3.34 | 1109.36 | |
15 | 27.82 | 91.71 | 1.99 | 1025.50 | |
Traditional ELISA | |||||
0 | 32.08 | / | 3.12 | 1026.56 | 1087.72 |
25 | 57.25 | 100.69 | 5.89 | 1032.09 | |
60 | 97.93 | 109.75 | 3.89 | 1213.86 | |
80 | 113.70 | 102.02 | 2.50 | 1078.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Liu, B.; He, S.; Teng, Y.; Pan, Z. Fluorescent Sandwich ELISA Method for Specific and Ultra-Sensitive Trace Detection of Insulin-like Growth Factor-1 in Bovine Colostrum Powders. Appl. Sci. 2025, 15, 3972. https://doi.org/10.3390/app15073972
Hu T, Liu B, He S, Teng Y, Pan Z. Fluorescent Sandwich ELISA Method for Specific and Ultra-Sensitive Trace Detection of Insulin-like Growth Factor-1 in Bovine Colostrum Powders. Applied Sciences. 2025; 15(7):3972. https://doi.org/10.3390/app15073972
Chicago/Turabian StyleHu, Tianyu, Bingying Liu, Siqian He, Yuanjie Teng, and Zaifa Pan. 2025. "Fluorescent Sandwich ELISA Method for Specific and Ultra-Sensitive Trace Detection of Insulin-like Growth Factor-1 in Bovine Colostrum Powders" Applied Sciences 15, no. 7: 3972. https://doi.org/10.3390/app15073972
APA StyleHu, T., Liu, B., He, S., Teng, Y., & Pan, Z. (2025). Fluorescent Sandwich ELISA Method for Specific and Ultra-Sensitive Trace Detection of Insulin-like Growth Factor-1 in Bovine Colostrum Powders. Applied Sciences, 15(7), 3972. https://doi.org/10.3390/app15073972