Effects of a Multimodal Immersive Virtual Reality Intervention on Heart Rate Variability in Adults with Post-COVID-19 Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.2.1. Time-Domain
2.2.2. Frequency-Domain
2.3. Procedure
Multimodal IVR Intervention
2.4. Data Analysis
3. Results
3.1. Time-Domain HRV Measures
3.2. Frequency-Domain HRV Measurements
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koczulla, A.R.; Ankermann, T.; Behrends, U.; Berlit, P.; Böing, S.; Brinkmann, F.; Franke, C.; Glöckl, R.; Gogoll, C.; Hummel, T.; et al. S1-leitlinie post-COVID/long-COVID [S1 guideline post-COVID/long-COVID]. Pneumologie 2021, 75, 869–900. [Google Scholar] [CrossRef] [PubMed]
- Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A Review of Persistent Post-COVID Syndrome (PPCS). Clin. Rev. Allergy Immunol. 2023, 64, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Rabady, S.; Altenberger, J.; Brose, M.; Denk-Linnert, D.M.; Fertl, E.; Götzinger, F.; de la Cruz Gomez Pellin, M.; Hofbaur, B.; Hoffmann, K.; Hoffmann-Dorninger, R.; et al. Leitlinie S1: Long COVID: Differenzialdiagnostik und Behandlungsstrategien [Guideline S1: Long COVID: Diagnostics and treatment strategies]. Wien. Klin. Wochenschr. 2021, 133, 237–278. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef]
- Antonelli, M.; Pujol, J.C.; Spector, T.D.; Ourselin, S.; Steves, C.J. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 2022, 399, 2263–2264. [Google Scholar] [CrossRef]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Capdevila, P.J.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndrome and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in “long COVID”: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Atanu, F.O.; Batiha, G.E. COVID-19-induced dysautonomia: A menace of sympathetic storm. ASN Neuro. 2021, 13, 17590914211057635. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.M.; Landers, D.B.; Hollenberg, S.M.; Turi, Z.G.; Glotzer, T.V.; Tancredi, J.; Parrillo, J.E. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 2022, 79, 2325–2330. [Google Scholar] [CrossRef] [PubMed]
- Scala, I.; Rizzo, P.A.; Bellavia, S.; Brunetti, V.; Colò, F.; Broccolini, A.; Della Marca, G.; Calabresi, P.; Luigetti, M.; Frisullo, G. Autonomic dysfunction during acute SARS-CoV-2 infection: A systematic review. J. Clin. Med. 2022, 11, 3883. [Google Scholar] [CrossRef]
- Xie, J.; Prats-Uribe, A.; Feng, Q.; Wang, Y.; Gill, D.; Paredes, R.; Prieto-Alhambra, D. Clinical and genetic risk factors for acute incident venous thromboembolism in ambulatory patients with COVID-19. JAMA Intern. Med. 2022, 182, 1063–1070. [Google Scholar] [CrossRef]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Asarcikli, L.D.; Hayiroglu, M.I.; Osken, A.; Keskin, K.; Bakan, N.; Kocayigit, I. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 2022, 63, 715–721. [Google Scholar] [CrossRef]
- Barizien, N.; le Guen, M.; Russel, S.; Touche, P.; Huang, F.; Vallée, A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 2021, 11, 14042. [Google Scholar] [CrossRef]
- Hasty, F.; García, G.; Dávila, H.; Wittels, S.H.; Hendricks, S.; Chong, S. Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil. Med. 2021, 186, e34–e38. [Google Scholar] [CrossRef]
- Kaliyaperumal, D.; Rk, K.; Alagesan, M.; Ramalingam, S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: A hospital based preliminary observational study. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 247–253. [Google Scholar] [CrossRef]
- Mol, M.B.A.; Strous, M.T.A.; van Osch, F.H.M.; Vogelaar, F.J.; Barten, D.G.; Farchi, M.; Foudraine, N.A.; Gidron, Y. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS ONE 2021, 16, e0258841. [Google Scholar] [CrossRef] [PubMed]
- Soliński, M.; Mamcarz, A.; Mamcarz, M.; Głowińska, A.; Kaliszewski, P. Heart rate variability comparison between young males after 4–6 weeks from the end of SARS-CoV-2 infection and controls. Sci. Rep. 2022, 12, 8832. [Google Scholar] [CrossRef] [PubMed]
- Henje, B.E.; Olsson, E.M.; Serlachius, E.; Ericson, M.; Ingvar, M. Heart rate variability is related to self-reported physical activity in a healthy adolescent population. Eur. J. Appl. Physiol. 2009, 106, 877–883. [Google Scholar] [CrossRef]
- Kluttig, A.; Schumann, B.; Swenne, C.A.; Kors, J.A.; Kuss, O.; Schmidt, H.; Werdan, K.; Haerting, J.; Greiser, K. Association of health behaviour with heart rate variability: A population-based study. BMC Cardiovasc. Disord. 2010, 10, 58. [Google Scholar] [CrossRef]
- Manser, P.; Thalmann, M.; Adcock, M.; Knols, R.H.; De Bruin, E.D. Can reactivity of heart rate variability be a potential biomarker and monitoring tool to promote healthy aging? A systematic review with meta-analyses. Front. Physiol. 2021, 12, 686129. [Google Scholar] [CrossRef]
- Guiraud, T.; Labrunee, M.; Gaucher-Cazalis, K.; Despas, F.; Meyer, P.; Bosquet, L.; Gales, C.; Vaccaro, A.; Bousquet, M.; Galinier, M.; et al. High-intensity interval exercise improves vagal tone and decreases arrhythmias in chronic heart failure. Med. Sci. Sports Exerc. 2013, 45, 1861–1867. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Tordecilla-Sanders, A.; Téllez-T, L.A.; Camelo-Prieto, D.; Hernández-Quiñonez, P.A.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Effect of moderate- versus high-intensity interval exercise training on heart rate variability parameters in inactive Latin-American adults: A randomized clinical trial. J. Strength Cond. Res. 2020, 34, 3403–3415. [Google Scholar] [CrossRef]
- Del Valle, M.F.; Valenzuela, J.; Marzuca-Nassr, G.N.; Cabrera-Inostroza, C.; Del Sol, M.; Lizana, P.A.; Escobar-Cabello, M.; Muñoz-Cofre, R. Eight weeks of supervised pulmonary rehabilitation are effective in improving resting heart rate and heart rate recovery in severe COVID-19 patient survivors of mechanical ventilation. Medicina 2022, 58, 514. [Google Scholar] [CrossRef]
- Allen, T.D.; Henderson, T.G.; Mancini, V.S.; French, K.A. Mindfulness and meditation practice as moderators of the relationship between age and subjective wellbeing among working adults. Mindfulness 2017, 8, 1055–1063. [Google Scholar] [CrossRef]
- Brown, K.W.; Weinstein, N.; Creswell, D.J. Trait mindfulness modulates neuroendocrine and affective responses to social evaluative threat. Psychoneuroendocrinology 2012, 37, 2037–2041. [Google Scholar] [CrossRef]
- Rådmark, L.; Sidorchuk, A.; Osika, W.; Niemi, M. A systematic review and meta-analysis of the impact of mindfulness-based interventions on heart rate variability and inflammatory markers. J. Clin. Med. 2019, 8, 1638. [Google Scholar] [CrossRef] [PubMed]
- Morgan, N.; Irwin, M.R.; Chung, M.; Wang, C. The effects of mind-body therapies on the immune system: Meta-analysis. PLoS ONE 2014, 9, e100903. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Sasaki, J.E.; Wei, G.X.; Huang, T.; Yeung, A.S.; Neto, O.B.; Chen, K.W.; Hui, S.S.-C. Effects of mind-body exercises (Tai Chi/Yoga) on heart rate variability parameters and perceived stress: A systematic review with meta-analysis of randomized controlled trials. J. Clin. Med. 2018, 7, 404. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Yen, H.Y.; Chiu, H.L. Virtual reality exergames for improving older adults' cognition and depression: A systematic review and meta-analysis of randomized controlled trials. J. Am. Med. Dir. Assoc. 2021, 22, 995–1002. [Google Scholar] [CrossRef]
- Li, J.; Theng, Y.L.; Foo, S. Effect of exergames on depression: A systematic review and meta-analysis. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 34–42. [Google Scholar] [CrossRef]
- Riva, G.; Mancuso, V.; Cavedoni, S.; Stramba-Badiale, C. Virtual reality in neurorehabilitation: A review of its effects on multiple cognitive domains. Expert. Rev. Med. Devices. 2020, 17, 1035–1061. [Google Scholar] [CrossRef]
- Matamala-Gomez, M.; Stasolla, F.; Seinfeld, S.; Caffò, A.O.; Banakou, D.; Bottiroli, S. Neuropsychological and cognitive-behavioral assessment of neurodegenerative disease and rehabilitation using new technologies and virtual reality. Front. Psychol. 2021, 12, 691909. [Google Scholar] [CrossRef]
- Ostrowska, P.M.; Śliwiński, M.; Studnicki, R.; Hansdorfer-Korzon, R. Telerehabilitation of post-stroke patients as a therapeutic solution in the era of the COVID-19 pandemic. Healthcare 2021, 9, 654. [Google Scholar] [CrossRef]
- Groenveld, T.; Achttien, R.; Smits, M.; de Vries, M.; van Heerde, R.; Staal, B.; van Goor, H.; COVID Rehab Group. Feasibility of virtual reality exercises at home for post–COVID-19 condition: Cohort study. JMIR Rehabil. Assist. Technol. 2022, 9, e36836. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi Marzaleh, M.; Peyravi, M.; Azhdari, N.; Bahaadinbeigy, K.; Sharifian, R.; Samad-Soltani, T.; Sarpourian, F. Virtual reality applications for rehabilitation of COVID-19 patients: A systematic review. Health Sci. Rep. 2022, 5, e853. [Google Scholar] [CrossRef] [PubMed]
- García-Bravo, S.; Cuesta-Gómez, A.; Campuzano-Ruiz, R.; López-Navas, M.J.; Domínguez-Paniagua, J.; Araújo-Narváez, A.; Barreñada-Copete, E.; García-Bravo, C.; Flórez-García, M.T.; Botas-Rodríguez, J.; et al. Virtual reality and video games in cardiac rehabilitation programs: A systematic review. Disabil Rehabil. 2021, 43, 448–457. [Google Scholar] [CrossRef]
- Diez-Quevedo, C.; Rangil, T.; Sanchez-Planell, L.; Kroenke, K.; Spitzer, R.L. Validation and utility of the patient health questionnaire in diagnosing mental disorders in 1003 general hospital Spanish inpatients. Psychosom. Med. 2001, 63, 679–686. [Google Scholar] [CrossRef]
- García-Campayo, J.; Zamorano, E.; Ruiz, M.A.; Pardo, A.; Pérez-Páramo, M.; López-Gómez, V.; Freire, O.; Rejas, J. Cultural adaptation into Spanish of the generalized anxiety disorder-7 (GAD-7) scale as a screening tool. Health Qual. Life Outcomes 2010, 8, 8. [Google Scholar] [CrossRef]
- Couderc, J.-P.; Beshaw, C.; Niu, X.; Serrano-Finetti, E.; Casas, O.; Pallas-Areny, R.; Rosero, S.; Zareba, W. The QT scale: A weight scale measuring the QTc interval. Ann. Noninvasive Electrocardiol. 2017, 22, 12378. [Google Scholar] [CrossRef]
- Hernández-Urrea, M.; Casanella, R.; Javierre, C.; Casas, O. An easy-to-use hand-to-hand impedance-based sensor to obtain carotid pulse arrival time. IEEE Sens. J. 2023, 23, 5362–5369. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Kabat-Zinn, J. The Effect of Mindfulness-Based Stress Reduction, Mindfulness and Stress Level. In Holland, J.C., Ed.; Oxford University Press: New York, NY, USA, 1998; pp. 767–779. [Google Scholar]
- Schmider, E.; Ziegler, M.; Danay, E.; Beyer, L.; Bühner, M. Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution assumption. Methodology 2010, 6, 147–151. [Google Scholar] [CrossRef]
- Stanley, J.; Peake, J.M.; Buchheit, M. Cardiac parasympathetic reactivation following exercise: Implications for training prescription. Sports Med. 2013, 43, 1259–1277. [Google Scholar] [CrossRef]
- Pichot, V.; Roche, F.; Gaspoz, J.M.; Enjolras, F.; Antoniadis, A.; Minini, P.; Costes, F.; Busso, T.; Lacour, J.R.; Barthélémy, J.C. Relation between heart rate variability and training load in middle-distance runners. Med. Sci. Sports Exerc. 2000, 32, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Luft, C.D.B.; Takase, E.; Darby, D. Heart rate variability and cognitive function: Effects of physical effort. Biol. Psychol. 2009, 82, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Botvinick, M.M.; Braver, T.S.; Barch, D.M.; Carter, C.S.; Cohen, J.D. Conflict monitoring and cognitive control. Psychol. Rev. 2001, 108, 624–652. [Google Scholar] [CrossRef]
- Matuz, A.; van der Linden, D.; Kisander, Z.; Hernádi, I.; Karádi, K.; Csathó, Á. Enhanced cardiac vagal tone in mental fatigue: Analysis of heart rate variability in Time-on-Task, recovery, and reactivity. PLoS ONE 2021, 16, e0238670. [Google Scholar] [CrossRef]
- Csathó, Á.; van der Linden, D.; Matuz, A. Change in heart rate variability with increasing time-on-task as a marker for mental fatigue: A systematic review. Biol. Psychol. 2024, 185, 108727. [Google Scholar] [CrossRef]
- Delliaux, S.; Delaforge, A.; Deharo, J.C.; Chaumet, G. Mental workload alters heart rate variability, lowering non-linear dynamics. Front. Physiol. 2019, 10, 565. [Google Scholar] [CrossRef]
- Melo, H.M.; Nascimento, L.M.; Takase, E. Mental fatigue and heart rate variability (HRV): The time-on-task effect. Psychol. Neurosci. 2017, 10, 428–436. [Google Scholar] [CrossRef]
- Kim, J.; Foo, J.C.; Murata, T.; Togo, F. Reduced heart rate variability is related to fluctuations in psychological stress levels in daily life. Stress Health 2024, 40, e3447. [Google Scholar] [CrossRef]
- Brosschot, J.F.; Verkuil, B.; Thayer, J.F. Exposed to events that never happen: Generalized unsafety, the default stress response, and prolonged autonomic activity. Neurosci. Biobehav. Rev. 2017, 74, 287–296. [Google Scholar] [CrossRef]
- Michael, S.; Graham, K.S.; Davis, G.M. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals: A review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef]
- Brockmann, L.; Hunt, K.J. Heart rate variability changes with respect to time and exercise intensity during heart-rate-controlled steady-state treadmill running. Sci. Rep. 2023, 13, 8515. [Google Scholar] [CrossRef] [PubMed]
- Rutkowski, S.; Bogacz, K.; Rutkowska, A.; Szczegielniak, J.; Casaburi, R. Inpatient post-COVID-19 rehabilitation program featuring virtual reality: Preliminary results of randomized controlled trial. Front. Public Health 2023, 11, 1121554. [Google Scholar] [CrossRef]
- Vibhuti; Kumar, N.; Kataria, C. Efficacy assessment of virtual reality therapy for neuromotor rehabilitation in home environment: A systematic review. Disabil. Rehabil. Assist. Technol. 2023, 18, 1200–1220. [Google Scholar] [CrossRef]
- Porras-Garcia, B.; Rojas-Rincón, J.; Adams, A.; Garolera, M.; Chang, R. Immersive virtual reality cognitive training for improving cognition and depressive symptoms among older adults. Cyberpsychol. Behav. Soc. Netw. 2024, 27, 692–703. [Google Scholar] [CrossRef]
- Czaja, S.J. Long-term care services and support systems for older adults: The role of technology. Am. Psychol. 2016, 71, 294–301. [Google Scholar] [CrossRef]
- Seifert, A.; Schlomannm, A. The use of virtual and augmented reality by older adults: Potentials and challenges. Front. Virtual Real. 2021, 2, 639718. [Google Scholar] [CrossRef]
- Borek, A.J.; Abraham, C. How do small groups promote behaviour change? An integrative conceptual review of explanatory mechanisms. Appl. Psychol. Health Well Being 2018, 10, 30–61. [Google Scholar] [CrossRef]
- Lattie, E.G.; Stiles-Shields, C.; Graham, A.K. An overview of and recommendations for more accessible digital mental health services. Nat. Rev. Psychol. 2022, 1, 87–100. [Google Scholar] [CrossRef]
Variable | Group 1 (n = 9) | Group 2 (n = 9) | t-Test | p |
---|---|---|---|---|
M (SD) | M (SD) | |||
Age (years) | 48.20 (7.28) | 47.22 (10.40) | 2.39 | 0.814 |
Education (years) | 12.40 (2.46) | 14.33 (3.54) | −1.396 | 0.192 |
Body mass index (kg/m2) | 25.92 (3.45) | 26.25 (6.13) | −0.142 | 0.889 |
IPAQ—physical exercise (METS) | 887.15 (691.09) | 1791.87 (1109.32) | −2.123 | 0.069 |
GAD-7—anxiety symptoms | 9.10 (5.63) | 11.75 (5.65) | −0.991 | 0.336 |
PHQ-9—depressive symptoms | 14.50 (5.21) | 15.38 (5.53) | −0.345 | 0.735 |
MoCA-Global cognition | 25.80 (3.19) | 25.73 (2.15) | 0.063 | 0.951 |
HRV Measures | Group 1 (Reduced Multimodal Training) | Group 2 (Extended Multimodal Training) | ||||
---|---|---|---|---|---|---|
Baseline M (SD) | Mid-Term (8th Session) M (SD) | End of the Intervention M (SD) | Baseline M (SD) | Mid-Term (12th Session) M (SD) | End of the Intervention M (SD) | |
SDSD | 0.103 (0.213) | 0.094 (0.206) | 0.100 (0.179) | 0.137 (0.125) | 0.028 (0.028) | 0.054 (0.076) |
SDNN | 0.075 (0.109) | 0.032(0.029) | 0.055 (0.070) | 0.132 (0.088) | 0.041 (0.024) | 0.059 (0.062) |
RMSSD | 0.074 (0.130) | 0.027 (0.025) | 0.043 (0.078) | 0.137 (0.125) | 0.028 (0.028) | 0.054 (0.076) |
pNN50 | 0.058 (0.097) | 0.027 (0.047) | 0.063 (0.133) | 0.166 (0.153) | 0.035 (0.039) | 0.114 (0.173) |
VLF | 1.28 (1.54) | 1.15 (1.14) | 1.00 (0.999) | 0.343 (0.321) | 0.955 (0.646) | 0.432 (0.274) |
LF | 0.974 (0.635) | 1.00 (0.701) | 1.21 (0.797) | 1.36 (0.942) | 1.27 (0.696) | 1.70 (0.985) |
HF | 0.573 (0.537) | 0.751 (0.643) | 0.627 (0.323) | 0.698 (0.610) | 0.456 (0.463) | 0.604 (0.553) |
LF/HF ratio | 5.56 (5.45) | 4.53 (6.83) | 7.15 (11.88) | 6.04 (9.71) | 6.04 (6.91) | 5.615 (5.96) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano, N.; Casas, O.; Ariza, M.; Gelonch, O.; Plana, Y.; Porras-Garcia, B.; Garolera, M. Effects of a Multimodal Immersive Virtual Reality Intervention on Heart Rate Variability in Adults with Post-COVID-19 Syndrome. Appl. Sci. 2025, 15, 4111. https://doi.org/10.3390/app15084111
Cano N, Casas O, Ariza M, Gelonch O, Plana Y, Porras-Garcia B, Garolera M. Effects of a Multimodal Immersive Virtual Reality Intervention on Heart Rate Variability in Adults with Post-COVID-19 Syndrome. Applied Sciences. 2025; 15(8):4111. https://doi.org/10.3390/app15084111
Chicago/Turabian StyleCano, Neus, Oscar Casas, Mar Ariza, Olga Gelonch, Yemila Plana, Bruno Porras-Garcia, and Maite Garolera. 2025. "Effects of a Multimodal Immersive Virtual Reality Intervention on Heart Rate Variability in Adults with Post-COVID-19 Syndrome" Applied Sciences 15, no. 8: 4111. https://doi.org/10.3390/app15084111
APA StyleCano, N., Casas, O., Ariza, M., Gelonch, O., Plana, Y., Porras-Garcia, B., & Garolera, M. (2025). Effects of a Multimodal Immersive Virtual Reality Intervention on Heart Rate Variability in Adults with Post-COVID-19 Syndrome. Applied Sciences, 15(8), 4111. https://doi.org/10.3390/app15084111