Dynamic Scene Segmentation and Sentiment Analysis for Danmaku
Abstract
:1. Introduction
- (1)
- A scene merging method based on average color histogram similarity is introduced to more accurately identify and merge visually similar consecutive scenes and reduce erroneous scene switch predictions.
- (2)
- Combining an extended sentiment lexicon with BERT (Bidirectional Encoder Representations from Transformers). A novel fuzzy feature layer is introduced to refine sentiment quantification, mapping multidimensional sentiment scores into clear categories through fuzzy variables and membership functions, enhancing both granularity and interpretability of sentiment classification, addressing the challenges of ambiguity and complexity in emotional expressions.
2. Related Works
2.1. Scene Segmentation Technology
2.2. Deep Learning-Based Emotion Analysis
2.3. Association Rules Based Emotion Analysis
2.4. Model Design Theory
3. Method
3.1. Video Scene Segmentation
3.2. Sentiment Classification
3.2.1. Expanded Sentiment Dictionary
3.2.2. Model Design
3.3. Semantic Enhanced Apriori Algorithm
4. Experiments
4.1. Dataset
4.2. Scene Segmentation
4.3. Model Training
4.4. Association Rules
4.4.1. Association Rule Mining
4.4.2. Iterative Adjustment of Parameters
4.4.3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, Q.; Wei, K.; Zhou, J.; Xiong, C.; Wu, Y.; Lin, X.; He, L. Entity-level sentiment prediction in Danmaku video interaction. J. Supercomput. 2021, 77, 9474–9493. [Google Scholar] [CrossRef]
- Soucek, T.; Lokoc, J. Transnet v2: An effective deep network architecture for fast shot transition detection. In Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, VIC, Australia, 28 October–1 November 2024; pp. 11218–11221. [Google Scholar]
- Rao, A.; Xu, L.; Xiong, Y.; Xu, G.; Huang, Q.; Zhou, B.; Lin, D. A local-to-global approach to multi-modal movie scene segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10146–10155. [Google Scholar]
- Fu, J.; Liu, J.; Jiang, J.; Li, Y.; Bao, Y.; Lu, H. Scene Segmentation with Dual Relation-Aware Attention Network. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 2547–2560. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Kabir, M.N.; Ab Ghani, N.; Zamli, K.Z.; Zulkifli, N.S.A.; Rahman, M.; Moni, M.A. Challenges and future in deep learning for sentiment analysis: A comprehensive review and a proposed novel hybrid approach. Artif. Intell. Rev. 2024, 57, 1–79. [Google Scholar] [CrossRef]
- Kossack, P.; Unger, H. Emotion-Aware Chatbots: Understanding, Reacting and Adapting to Human Emotions in comments Conversations. In Proceedings of the International Conference on Autonomous Systems, Barcelona, Spain, 13–17 March 2023; Springer Nature: Cham, Switzerland, 2023; pp. 158–175. [Google Scholar]
- Lu, K.; Wu, J. Sentiment analysis of film review texts based on sentiment dictionary and SVM. In Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence, Suzhou, China, 15–18 March 2019; pp. 73–77. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Xu, D.; Tian, Z.; Lai, R.; Kong, X.; Tan, Z.; Shi, W. Deep learning based emotion analysis of microblog texts. Inf. Fusion 2020, 64, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, G. Sentiment classification algorithm of Danmaku comment based on modified Bayes model. In Proceedings of the 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 28–31 May 2021; pp. 342–346. [Google Scholar]
- Zhao, J.; Liu, H.; Wang, Y.; Zhang, W.; Zhang, X.; Li, B.; Sun, T.; Qi, Y.; Zhang, S. Sentiment analysis of video Danmakus based on MIBE-RoBERTa-FF-BiLSTM. Sci. Rep. 2024, 14, 5827. [Google Scholar] [CrossRef] [PubMed]
- Rohidin, D.; Samsudin, N.A.; Deris, M.M. Association rules of fuzzy soft set based classification for text classification problem. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 801–812. [Google Scholar] [CrossRef]
- Cao, S.; Guo, D.; Cao, L.; Li, S.; Nie, J.; Singh, A.K.; Lv, H. VisDmk: Visual analysis of massive emotional danmaku in online videos. Vis. Comput. 2023, 39, 6553–6570. [Google Scholar] [CrossRef]
- Gutirrez Espinoza, L.; Keith Norambuena, B. Evaluating semantic representations for extended association rules. Intell. Data Anal. 2022, 26, 1341–1357. [Google Scholar] [CrossRef]
- Tayaba, M.; Ayon, E.H.; Mia, M.T.; Sarkar, M.; Ray, R.K.; Chowdhury, M.S.; Al-Imran, M.; Nobe, N.; Ghosh, B.P.; Islam, M.T.; et al. Transforming Customer Experience in the Airline Industry: A Comprehensive Analysis of Twitter Sentiments Using Machine Learning and Association Rule Mining. J. Comput. Sci. Technol. Stud. 2023, 5, 194–202. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Gao, M.; Tang, J.; Fan, W. Aspect sentiment mining of short bullet screen comments from online TV series. J. Assoc. Inf. Sci. Technol. 2023, 74, 1026–1045. [Google Scholar] [CrossRef]
- Ye, X.; Zhao, Y.; Li, J.; Zhang, Y.; Hansen, P. Exploring the Information Cues of Danmaku Comments to Stimulate Users’ Affective Generation in Reaction Videos. Proc. Assoc. Inf. Sci. Technol. 2023, 60, 723–727. [Google Scholar] [CrossRef]
- Nagao, H.; Tamura, K.; Katsurai, M. Effective Language Representations for Danmaku Comment Classification in Nicovideo. IEICE TRANS. Inf. Syst. 2023, 106, 838–846. [Google Scholar] [CrossRef]
- Li, J.; Li, Y. Constructing dictionary to analyze features sentiment of a movie based on Danmakus. In Proceedings of the International Conference on Advanced Data Mining and Applications, Dalian, China, 21–23 November 2019; Springer: Cham, Switzerland, 2019; pp. 474–488. [Google Scholar]
- Naznin, F.; Hazarika, I.; Laskar, D.; Mahanta, A.K. Mining association between different emotion classes present in users posts of social media. Soc. Netw. Anal. Min. 2024, 14, 1–18. [Google Scholar] [CrossRef]
- Xu, H.; Hou, X. A method based on Roberta_Seq2Seq for chinese text multi label sentiment analysis. In Proceedings of the 2022 International Conference on Machine Learning and Knowledge Engineering (MLKE), Guilin, China, 25–27 February 2022; pp. 88–92. [Google Scholar]
- Cojocaru, A.; Paraschiv, A.; Dascalu, M. News-RO-Offense-A Romanian Offensive Language Dataset and Baseline Models Centered on News Article Comments. In Proceedings of the RoCHI 2022, Craiova, Romania, 6–7 October 2022; pp. 65–72. [Google Scholar]
- Rahman, M.M.; Shiplu, A.I.; Watanobe, Y.; Alam, M.A. Roberta-bilstm: A context-aware hybrid model for sentiment analysis. arXiv 2024, arXiv:2406.00367. [Google Scholar]
Just Be Happy with Each Other | This Is Already Good | Unlucky Guy | |
---|---|---|---|
Beneficence | 0.0415 | 0.9365 | 0.0147 |
Malice | 0.0084 | 0.0160 | 0.6822 |
Happiness | 0.9364 | 0.0331 | 0.0025 |
Sadness | 0.0089 | 0.0112 | 0.0399 |
Fear | 0.0011 | 0.0013 | 0.2288 |
Anger | 0.0011 | 0.0007 | 0.0208 |
Surprise | 0.0023 | 0.0009 | 0.0108 |
Min-Scene-Length | Hist-Similarity-Threshold | Number of Scenes |
---|---|---|
14 | 0.6 | 15 |
14 | 0.7 | 14 |
14 | 0.8 | 13 |
15 | 0.6 | 14 |
15 | 0.7 | 13 |
15 | 0.8 | 12 |
16 | 0.6 | 12 |
16 | 0.7 | 11 |
16 | 0.8 | 10 |
Item | Parameter |
---|---|
Batch size | 64 |
Vocab size | 21,128 |
Maximum sequence length | 128 |
Optimizer | adamw_torch |
Scheduler | linear |
Seed | 42 |
Learning rate | 5 × 10−5 |
Warmup ratio | 0.2 |
Epoch | 25 |
Model | Original Dictionary | Expanded Dictionary | ||
---|---|---|---|---|
Accuracy | F1 | Accuracy | F1 | |
WoBert | 83.43 | 83.92 | 84.01 | 84.23 |
MacBert | 83.85 | 84.09 | 84.67 | 85.11 |
MacBert-CNN | 87.23 | 87.91 | 88.23 | 89.19 |
MacBert-GCN | 87.56 | 88.25 | 87.99 | 88.31 |
MacBert-BiLSTM | 88.19 | 89.52 | 89.04 | 89.68 |
MacBert-RNN | 89.11 | 89.42 | 90.52 | 90.58 |
MacBert-RCNN | 90.03 | 91.39 | 91.42 | 92.13 |
RoBERTa-CNN | 91.08 | 91.93 | 92.08 | 92.47 |
RoBERTa-RNN | 92.79 | 93.24 | 93.49 | 94.10 |
RoBERTa-BiLSTM | 91.58 | 93.42 | 94.30 | 94.70 |
Danmaku-E | 94.58 | 94.92 | 95.37 | 95.66 |
Ablation Group | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|
Danmaku-E (Baseline) | 95.37 | 95.66 | 95.84 | 95.10 |
Remove Scene Segmentation | 93.21 (−2.16) | 93.45 (−2.21) | 93.60 (−2.24) | 93.05 (−2.05) |
Remove Extended Dictionary | 94.58 (−0.79) | 94.92 (−0.74) | 95.10 (−0.74) | 94.58 (−0.52) |
Remove Fuzzy Feature Layer | 92.15 (−3.22) | 92.40 (−3.26) | 92.55 (−3.29) | 92.10 (−3.00) |
English Text | Emotional Label |
---|---|
Movie Really Very Great | Beneficence |
Happiness Most Important | Happiness |
Ah Actually Have This | Surprise |
Bad Era | Malice |
Soul All Be Scared | Fear |
Workers Angry | Anger |
The Whole Play The worst | Sadness |
Min_Support | Min_Threshold | Number of Rules (Number of Items = 2) |
---|---|---|
0.05 | 0.1 | 4 |
0.04 | 0.1 | 8 |
0.03 | 0.1 | 10 |
0.02 | 0.1 | 12 |
0.01 | 0.1 | 24 |
0.01 | 0.2 | 15 |
0.01 | 0.3 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jing, J.; Shi, P. Dynamic Scene Segmentation and Sentiment Analysis for Danmaku. Appl. Sci. 2025, 15, 4435. https://doi.org/10.3390/app15084435
Li L, Jing J, Shi P. Dynamic Scene Segmentation and Sentiment Analysis for Danmaku. Applied Sciences. 2025; 15(8):4435. https://doi.org/10.3390/app15084435
Chicago/Turabian StyleLi, Limin, Jie Jing, and Peng Shi. 2025. "Dynamic Scene Segmentation and Sentiment Analysis for Danmaku" Applied Sciences 15, no. 8: 4435. https://doi.org/10.3390/app15084435
APA StyleLi, L., Jing, J., & Shi, P. (2025). Dynamic Scene Segmentation and Sentiment Analysis for Danmaku. Applied Sciences, 15(8), 4435. https://doi.org/10.3390/app15084435