The Application of the SubChain Salp Swarm Algorithm in the Less-Than-Truckload Freight Matching Problem
Abstract
:1. Introduction
2. Introduction of the Less-Than-Truckload (LTL) Freight Matching System
2.1. Problem Assumptions
- The locations of distribution centers and delivery points are known, and the truck needs to start from the distribution center and travel to the place of receipt of goods to distribute the cargo.
- Only cargo with less volume and weight than those of the remaining trucks can be loaded onto the truck; otherwise, the effect of shape is not considered.
- The basic cost is calculated when the truck is dispatched, and then the fuel consumption cost is calculated based on the driving distance. The distribution cost for a truck is the sum of the departure cost and fuel expenses.
- Delivery time is calculated based on the average speed of the vehicle, without considering the impact of road conditions. Each cargo has a maximum available distribution time. If the time cost of delivering goods to a distribution center exceeds the maximum permitted delivery time, an overtime penalty will be incurred.
2.2. System Operating Cost
- (1)
- Basic Fees
- (2)
- Fuel Costs
- (3)
- Handling Costs
- (4)
- Overtime Penalties
2.3. Customer Satisfaction Analysis
2.3.1. Calculation of Cargo Waiting Time Satisfaction
2.3.2. Analysis of Cargo Arrival Time Satisfaction
2.4. Objective Function
3. SubChain Salp Swarm Algorithm Description and Experiment
3.1. Standard Salp Swarm Algorithm
3.2. SubChain Salp Swarm Algorithm
3.2.1. Selection Strategy for Exercise Points
3.2.2. Updating Strategy for the SubChain Individual
3.3. Numerical Experiments
4. The LTL Vehicle–Cargo Matching System Based on the SubChain Salp Swarm Algorithm: Design and Experiment
4.1. Design of the Individual in the SSSA
4.2. Data in the Experiment
4.3. Experimental Results and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | Volume | Capacity | Speed | Basic Fee |
---|---|---|---|---|
1 | 54 | 12 | 63 | 141 |
2 | 47 | 11 | 65 | 114 |
3 | 53 | 12 | 73 | 154 |
4 | 49 | 15 | 65 | 183 |
5 | 52 | 13 | 75 | 112 |
6 | 49 | 14 | 66 | 128 |
7 | 49 | 12 | 69 | 104 |
8 | 47 | 13 | 64 | 105 |
9 | 4.6577 | 3.1337 | 24 | 07:30:07 |
10 | 14.0742 | 1.4090 | 20 | 10:37:25 |
11 | 10.2885 | 1.9472 | 22 | 09:41:36 |
12 | 5.1599 | 3.3614 | 20 | 10:25:18 |
13 | 11.9978 | 0.7438 | 12 | 10:59:45 |
14 | 2.8813 | 3.0847 | 27 | 07:59:37 |
15 | 9.1337 | 2.5067 | 20 | 08:35:48 |
16 | 1.0011 | 1.1360 | 17 | 08:16:08 |
No. | Volume | Weight | Packaging Cost | Arrival Time | Maximum Delivery Time | Target Delivery Destination | Overtime Penalty |
---|---|---|---|---|---|---|---|
1 | 10.3771 | 3.2584 | 13 | 08:50:42 | 23 | 3 | 50 |
2 | 5.3112 | 2.4297 | 22 | 11:42:57 | 23 | 13 | 27 |
3 | 3.4778 | 1.0340 | 17 | 08:57:27 | 22 | 11 | 37 |
4 | 4.8799 | 2.1599 | 16 | 09:27:29 | 5 | 10 | 20 |
5 | 10.4976 | 3.1631 | 18 | 07:28:22 | 5 | 19 | 34 |
6 | 10.7546 | 3.2597 | 30 | 08:01:52 | 22 | 15 | 42 |
7 | 5.0624 | 0.9055 | 21 | 11:28:59 | 13 | 5 | 19 |
8 | 11.2640 | 2.4548 | 22 | 07:01:19 | 23 | 6 | 21 |
9 | 4.6577 | 3.1337 | 24 | 07:30:07 | 5 | 6 | 33 |
10 | 14.0742 | 1.4090 | 20 | 10:37:25 | 15 | 5 | 36 |
11 | 10.2885 | 1.9472 | 22 | 09:41:36 | 18 | 15 | 31 |
12 | 5.1599 | 3.3614 | 20 | 10:25:18 | 24 | 10 | 32 |
13 | 11.9978 | 0.7438 | 12 | 10:59:45 | 20 | 6 | 30 |
14 | 2.8813 | 3.0847 | 27 | 07:59:37 | 22 | 4 | 49 |
15 | 9.1337 | 2.5067 | 20 | 08:35:48 | 24 | 19 | 17 |
16 | 1.0011 | 1.1360 | 17 | 08:16:08 | 12 | 5 | 32 |
17 | 13.6046 | 0.5339 | 26 | 07:00:16 | 15 | 5 | 16 |
18 | 4.2527 | 0.4867 | 20 | 08:20:02 | 17 | 3 | 31 |
19 | 3.9872 | 3.9430 | 28 | 09:43:56 | 11 | 16 | 42 |
20 | 1.3102 | 1.8544 | 23 | 09:32:33 | 12 | 8 | 49 |
21 | 14.1833 | 3.5235 | 19 | 09:04:17 | 11 | 5 | 24 |
22 | 13.8680 | 2.6240 | 29 | 07:37:52 | 9 | 10 | 21 |
23 | 8.9140 | 2.0293 | 24 | 07:23:40 | 11 | 14 | 48 |
24 | 8.2938 | 05900 | 29 | 09:41:20 | 23 | 18 | 14 |
25 | 3.4485 | 1.5086 | 16 | 10:14:09 | 6 | 13 | 25 |
26 | 10.8970 | 3.0812 | 30 | 08:17:04 | 18 | 11 | 17 |
27 | 2.2404 | 0.3642 | 18 | 10:43:26 | 5 | 11 | 42 |
28 | 11.9563 | 0.4347 | 25 | 10:37:00 | 21 | 20 | 38 |
29 | 14.8442 | 3.5172 | 27 | 11:13:30 | 12 | 4 | 29 |
30 | 14.2168 | 2.7373 | 15 | 10:53:42 | 21 | 2 | 34 |
31 | 9.1474 | 2.2252 | 17 | 10:37:09 | 6 | 7 | 13 |
32 | 11.1638 | 1.2771 | 22 | 07:05:46 | 20 | 12 | 38 |
33 | 2.7359 | 1.5288 | 15 | 09:39:25 | 9 | 7 | 33 |
34 | 9.9714 | 1.0141 | 29 | 07:10:39 | 8 | 18 | 22 |
35 | 8.5732 | 3.7996 | 25 | 09:35:02 | 13 | 15 | 35 |
36 | 12.0620 | 1.8673 | 18 | 11:31:15 | 16 | 17 | 36 |
37 | 10.6899 | 1.7073 | 18 | 10:23:08 | 13 | 9 | 37 |
38 | 4.2751 | 1.8803 | 27 | 08:32:28 | 14 | 6 | 38 |
39 | 0.8281 | 1.6879 | 16 | 07:18:05 | 11 | 7 | 39 |
40 | 13.7918 | 0.2964 | 23 | 07:13:38 | 14 | 10 | 40 |
References
- Surya, V.J.; Muthurajkumar, S.; Jitiendran, K.; Ajithkumar, K.; Ibrahim, S.M. A Web Based Application for Optimization of Less than Truckload Problem. In Proceedings of the IEEE World Conference on Applied Intelligence and Computing (AIC), Sonbhadra, India, 17–19 June 2022; pp. 813–817. [Google Scholar]
- Kaewpuang, R.; Sawadsitang, S.; Yu, H. Evolutionary Carrier Selection for Shared Truck Delivery Services. IEEE Trans. Veh. Technol. 2023, 72, 6778–6782. [Google Scholar] [CrossRef]
- Yang, X.; Bian, Y.; Bostel, N.; Dejax, P. A Two-Phase Method for Solving the Hub Location and Routing Problem. In Proceedings of the IEEE International Conference on Cybernetics (Cybconf), Beijing, China, 5–7 July 2019; pp. 1–6. [Google Scholar]
- Lai, M.; Cai, X.; Hall, N.G. Cost Allocation for Less-Than-Truckload Collaboration via Shipper Consortium. Transp. Sci. 2021, 56, 585–611. [Google Scholar] [CrossRef]
- Lyu, X.; Chen, H.; Wang, N.; Yang, Z. A multi-round exchange mechanism for carrier collaboration in less than truckload transportation. Transp. Res. Part E Logist. Transp. Rev. 2019, 129, 38–59. [Google Scholar] [CrossRef]
- Herszterg, I.; Ridouane, Y.; Boland, N.; Erera, A.; Savelsbergh, M. Near real-time loadplan adjustments for less-than-truckload carriers. Eur. J. Oper. Res. 2022, 301, 1021–1034. [Google Scholar] [CrossRef]
- Qiao, B.; Pan, S.; Ballot, E. Revenue optimization for less-than-truckload carriers in the Physical Internet: Dynamic pricing and request selection. Comput. Ind. Eng. 2020, 139, 105563. [Google Scholar] [CrossRef]
- Qiao, B.; Pan, S.; Ballot, E. Dynamic pricing model for less-than-truckload carriers in the Physical Internet. J. Intell. Manuf. 2019, 30, 2631–2643. [Google Scholar] [CrossRef]
- Tang, W.; Chen, X.; Lang, M.; Li, S.; Liu, Y.; Li, W. Optimization of truck–cargo online matching for the less-than-truck-load logistics hub under real-time demand. Mathematics 2024, 12, 755. [Google Scholar] [CrossRef]
- Shu, S.; Xu, Z.; Baldacci, R. Incorporating holding costs in continuous-time service network design: New model, relaxation, and exact algorithm. Transp. Sci. 2024, 58, 412–433. [Google Scholar] [CrossRef]
- Sun, X.; Xing, D. Research on vehicle-cargo matching algorithm considering price heterogeneity. In Proceedings of the Fourth International Conference on Intelligent Traffic Systems and Smart City (ITSSC 2024), Xi’an, China, 23–25 August 2024; pp. 117–129. [Google Scholar]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and applications. Adv. Eng. Softw. 2017, 105, 50–67. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.B.; Houssein, E.H. Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions. Evol. Intell. 2022, 15, 23–56. [Google Scholar] [CrossRef]
- Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A. Salp swarm algorithm: Theory, literature review, and application in extreme learning machines. In Nature-Inspired Optimizers; Springer: Berlin/Heidelberg, Germany, 2020; pp. 185–199. [Google Scholar] [CrossRef]
- Tubishat, M.; Ja’afar, S.; Alswaitti, M.; Mirjalili, S.; Idris, N.; Ismail, M.A.; Omar, M.S. Dynamic salp swarm algorithm for feature selection. Expert Syst. Appl. 2021, 164, 113873. [Google Scholar] [CrossRef]
- Salgotra, R.; Singh, U.; Singh, S.; Singh, G.; Mittal, N. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl. Math. Model. 2021, 89, 188–207. [Google Scholar] [CrossRef]
- Zivkovic, M.; Stoean, C.; Chhabra, A.; Budimirovic, N.; Petrovic, A.; Bacanin, N. Novel improved salp swarm algorithm: An application for feature selection. Sensors 2022, 22, 1711. [Google Scholar] [CrossRef] [PubMed]
- Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113122. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, S.; Liu, J.; Wu, B.; Hu, Y. Chaotic Salp Swarm Algorithm for Inverse Kinematics of a 5-DOF Drill Floor Robot. In Proceedings of the 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP), Chengdu, China, 19–21 May 2023; pp. 725–728. [Google Scholar]
- Xu, P.; Li, B. Evolution design methodology of the metamorphic mechanisms inspired by gene deduction. J. Mech. Des. 2025, 147, 083302-1. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Rahmani, A.M.; Husari, F.M.; Alsalami, O.M.; Marzougui, M.; Nguyen, G.N.; Lee, S.W. A survey of artificial hummingbird algorithm and its variants: Statistical analysis, performance evaluation, and structural reviewing. Arch. Comput. Methods Eng. 2025, 32, 269–310. [Google Scholar] [CrossRef]
- Ikeagwuani, C.C.; Nnonyelu, C.J.; Oti, M.C.; Ude, E.J.; Alexander, T.C. A posteriori constrained bio-inspired algorithm for enhancing strength and resilient modulus of soft subgrade soil. Road Mater. Pavement Des. 2025, 1–32. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Premkumar, M.; Saha, A.K.; Houssein, E.H.; Wanjari, S.; Emam, M.M. Multi-objective quasi-reflection learning and weight strategy-based moth flame optimization algorithm. Neural Comput. Appl. 2024, 36, 4229–4261. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y. A novel marine predator whale optimization algorithm for global numerical optimization. Eng. Optim. 2025, 1–37. [Google Scholar] [CrossRef]
Functions | SSSA | SSA | GA | PSO | ||||
Avg | Std | Avg | Std | Avg | Std | Avg | Std | |
Michalewicz | −7.27 | 0.69 | −6.69 | 0.71 | −3.61 | 0.53 | −3.46 | 0.40 |
Shekel | −10.15 | 1.58 | −7.60 | 3.50 | −2.39 | 0.75 | −1.54 | 0.66 |
Hartmann_6 | −3.01 | 4.23 × 10−2 | −2.99 | 5.02 × 10−2 | −2.68 | 0.11 | −2.83 | 5.55 × 10−2 |
Trid | −194.72 | 25.53 | −71.39 | 32.54 | −36.03 | 38.03 | −65.73 | 52.13 |
Beale | 4.61 × 10−7 | 2.88 × 10−6 | 4.89 × 10−2 | 0.20 | 3.31 × 10−3 | 5.07 × 10−3 | 6.70 × 10−3 | 8.34 × 10−3 |
Styblinski_Tang | −26.83 | 0.08 | −24.85 | 1.68 | −9.18 | 4.10 | 9.64 | 49.50 |
Functions | AHA | GOA | MFO | GWO | ||||
Avg | Std | Avg | Std | Avg | Std | Avg | Std | |
Michalewicz | −3.86 | 0.33 | −6.29 | 1.20 | −3.55 | 0.72 | −3.81 | 0.54 |
Shekel | −2.07 | 0.42 | −5.61 | 3.48 | −8.70 | 2.97 | −7.55 | 0.003 |
Hartmann_6 | −2.74 | 0.14 | −3.00 | 0.04 | −3.00 | 0.04 | −3.00 | 0.04 |
Trid | 391.12 | 145.92 | −200.2 | 0.94 | −195.4 | 11.95 | −151.9 | 62.87 |
Beale | 0.02 | 0.01 | 0.03 | 0.39 | 5.59 × 10−9 | 0.01 | 6.79 × 10−7 | 0.01 |
Styblinski_Tang | 7.75 | 36.55 | −20.12 | 1.71 × 10−6 | −20.12 | 2.64 × 10−8 | −19.74 | 1.72 |
Parameters | Value | Parameters | Value |
---|---|---|---|
0.15 | 0.366 | ||
0.37 | 0.634 | ||
0.13 | 40 |
Parameters | Value | Parameters | Value |
---|---|---|---|
Iter max | 500 | dim | 40 |
limit low | 1 | popsize | 30 |
limit up | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yue, L.; Liu, Y.; Chen, W.; Sun, Z. The Application of the SubChain Salp Swarm Algorithm in the Less-Than-Truckload Freight Matching Problem. Appl. Sci. 2025, 15, 4436. https://doi.org/10.3390/app15084436
Sun Y, Yue L, Liu Y, Chen W, Sun Z. The Application of the SubChain Salp Swarm Algorithm in the Less-Than-Truckload Freight Matching Problem. Applied Sciences. 2025; 15(8):4436. https://doi.org/10.3390/app15084436
Chicago/Turabian StyleSun, Yibo, Lei Yue, Yi Liu, Weitong Chen, and Zhe Sun. 2025. "The Application of the SubChain Salp Swarm Algorithm in the Less-Than-Truckload Freight Matching Problem" Applied Sciences 15, no. 8: 4436. https://doi.org/10.3390/app15084436
APA StyleSun, Y., Yue, L., Liu, Y., Chen, W., & Sun, Z. (2025). The Application of the SubChain Salp Swarm Algorithm in the Less-Than-Truckload Freight Matching Problem. Applied Sciences, 15(8), 4436. https://doi.org/10.3390/app15084436